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ABSTRACT 

Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism 

that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the 

chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle.  

Genetic analysis is difficult due to the large size and repetitive nature of the array, a nearly 

identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered 

throughout the genome.  Here, we combine nanopore long-read sequencing with Cas9-targeted 

enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including 

determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution.  In the same 

assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify 

paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in 

the array.  Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q 

D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, 

consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis 

of individual D4Z4 repeat methylation revealed areas of low methylation near the 

CTCF/insulator region and areas of high methylation immediately preceding the DUX4 

transcriptional start site.  Within the DUX4 exons, we observed a waxing/waning methylation 

pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes.  Targeted 

nanopore sequencing complements recently developed molecular combing and optical mapping 

approaches to genetic analysis for FSHD by adding precision of the length measurement, base-

pair resolution sequencing, and quantitative methylation analysis.   
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INTRODUCTION 

Fascioscapulohumeral muscular dystrophy (FSHD) is one of the most common forms of 

muscular dystrophy with a prevalence of 1:15,000-1:20,000 (Padberg 1982; Flanigan et al. 2001; 

Mostacciuolo et al. 2009).  As suggested in the name, FSHD results in weakness of the muscles 

of the face, shoulder stabilizers, and upper arm but also affects proximal and distal muscles of 

the legs.  Unlike other muscular dystrophies, weakness can be asymmetric, and onset and 

severity are variable even between members of the same family with the same mutation (Tyler 

and Stephens 1950; Flanigan et al. 2001).  Weakness is progressive, leading to significant 

morbidity with ~20% requiring a wheelchair over 50 years of age, and 10% developing 

restrictive respiratory disease (Scully et al. 2014; Statland and Tawil 2014).  Complicating 

diagnosis, FSHD has a mechanism combining both genetic and epigenetic factors in a region that 

is notoriously difficult to analyze due to its length and repetitive elements.  

  FSHD maps to the subtelomeric end of chromosome 4q, in a region that contains 

tandem copies of D4Z4, a 3.3kb CpG-rich macrosatellite with an intronless retrogene encoding 

the DUX4 homeobox domain protein.  DUX4 is an important regulator of early genome 

activation, but expression is heavily repressed by epigenetic mechanisms after the first few cell 

divisions (Hendrickson et al. 2017).  In FSHD patients, chromatin relaxation accompanied by 

hypomethylation of the D4Z4 array leads to ectopic expression of DUX4 which is toxic to 

skeletal muscle (Lemmers et al. 2010a).  Hypomethylation of the array is asymmetric, involving 

the proximal more than distal D4Z4 repeats, and is inversely correlated with the number of 

repeats (de Greef et al. 2009).  DUX4 expression in skeletal muscle arises from the distal D4Z4 

repeat and requires a short flanking sequence, pLAM, which contains a 3’-terminal exon and 

polymorphic signals for pre-mRNA cleavage and polyadenylation (Lemmers et al. 2007; de 
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Greef et al. 2009).  pLAM and related polymorphic sequences are found in FSHD permissive 

4qA haplotypes.  Non-FSHD permissive haplotypes include the nearly identical sequences on 

chromosome 10q which lack the polyadenylation signal, 4qA haplotypes that have pLAM but 

lack the polyadenylation signal, and 4qB haplotypes which lack pLAM altogether.  These non-

permissive haplotypes are not known to result in FSHD despite hypomethylation of the 

contracted array (Lemmers et al. 2010a). 

Most individuals have 11-100 D4Z4 repeats in the array, but contraction of the array to 

10 or less copies on a permissive 4qA haplotype results in FSHD1 (MIM158900) (Lemmers et 

al. 2010a).  FSHD1 is the most common form of FSHD, accounting for 95% of cases (Rieken et 

al. 2021).  Contraction length of the D4Z4 array is correlated with  disease severity but does not 

explain all the variability.  Individuals with 1-3 D4Z4 repeats usually have severe disease, 

individuals with 4-7 repeats typically have intermediate disease manifestations, and individuals 

with 8-10 repeats are usually mildly affected (Salort-Campana et al. 2012; Statland and Tawil 

2014; Statland et al. 2015).  FSHD2 (MIM 158901) is phenotypically identical to FSHD1, but 

has a digenic mechanism involving both a permissive 4qA haplotype and mutation in one of 

several chromatin modifier genes (SMCHD1, DNMT3B, and LRIF1) (Lemmers et al. 2012; van 

den Boogaard et al. 2016; Sacconi et al. 2019; Hamanaka et al. 2020).  The combined permissive 

4qA haplotype and additional mutation in a chromatin modifier gene, results in hypomethylation 

of the D4Z4 array and expression of the DUX4 gene, even without a full contraction of the array.  

However, most FSHD2 patients have 9-20 D4Z4 repeats in the array suggesting that repeat 

length is an important factor in pathogenesis in addition to hypomethylation due to a mutation in 

the second gene (de Greef et al. 2009; Rieken et al. 2021).  
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Analysis of the FSHD-related D4Z4 array on 4q is complicated by the large size of the 

array, a nearly identical array on telomeric chromosome 10q, and the presence of divergent 

D4Z4 arrays scattered throughout the genome (Winokur et al. 1994; Lyle et al. 1995; Leidenroth 

et al. 2012).  The gold-standard diagnostic test for FSHD1 is Southern blot after restriction digest 

which can differentiate the chromosome 4q and 10q D4Z4 arrays and estimate their length 

(Zampatti et al. 2019).  More recently, molecular combing and optical mapping techniques have 

emerged to estimate the size of the array (Vasale et al. 2015; Nguyen et al. 2017; Dai et al. 

2020).  These methods represent a significant advance, but like Southern blotting they are 

technically demanding and are only available at a few select laboratories.  Neither method 

provides detailed information about the methylation state or background haplotype (4qA/4qB) 

without additional testing.  Epigenetic analysis using targeted bisulfite sequencing can 

differentiate between FSHD and healthy controls using a direct measurement of methylation in 

sub-regions of the D4Z4 array and has been proposed as a novel diagnostic tool that does not 

require determination of the length of the array (Roche et al. 2019; Gould et al. 2021).  Genetic 

testing is further complicated by relatively common translocations between the 4q and 10q 

arrays, duplication arrays, and somatic mosaicism (Rieken et al. 2021; Lemmers et al. 2022).  

Emerging long-range sequencing technologies allow for sequencing across complex 

repetitive regions and address existing gaps in genetic analysis for FSHD.   Recent publication of 

the first complete genome relied heavily on these new long-range sequencing tools to 

successfully sequence highly repetitive centromeric and telomeric sequences including both 4q, 

10q, and other D4Z4 arrays (Nurk et al. 2022).   Nanopore sequencing is a single-molecule long-

range sequencing tool that can routinely produce read lengths of 30 kb or more (Deamer et al. 

2016).  Nanopore sequencing has been successfully used to sequence the 4q D4Z4 array from a 
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BAC clone, but an attempt to sequence the array from genomic DNA as part of a whole genome 

analysis resulted in only a small number of full-length reads from the D4Z4 array limiting utility 

of this technique (Mitsuhashi et al. 2017).  Nanopore Cas9-Targeted Sequencing (nCATS) is a 

recently developed tool to enrich target sequences for nanopore sequencing allowing marked 

increase in read depth for targeted sequences (Gilpatrick et al. 2020), and has been proposed as a 

novel tool to sequence the D4Z4 array in FSHD (Hiramuki et al. 2022).  We used nCATS as a 

comprehensive tool for genetic analysis of FSHD to determine the length of the 4q and 10q 

D4Z4 arrays, differentiate the 4q from 10q arrays, determine A/B haplotype, identify divergent 

D4Z4 elsewhere in the genome, and estimate methylation across all CpGs in the array.   

 

RESULTS 

Targeted nanopore sequencing of D4Z4 repeat arrays 

We used multiple guide RNAs (gRNAs) to target centromeric (p13E-11) and telomeric 

(pLAM) sequences flanking D4Z4 arrays on chromosomes 4qA and 10q (Fig. 1A,B).  Human 

peripheral blood DNA was cut with a Cas9 p13E-11/pLAM gRNA mixture, followed by adapter 

ligation and nanopore sequencing on MinION flow cells. Targeted enrichment was observed at 

both 4q and 10q, as well as consistent enrichment peaks on other chromosomes with divergent 

D4Z4 arrays (Fig. 1C).  We determined the size of the D4Z4 array in subjects with FSHD1 and 

FSHD2 with a range of 3-19 D4Z4 repeats on the 4q array (Table 1, Supplemental Table S1). 

The average 4q/10q on-target percentage of total reads was 0.7% from eight MinION libraries 

using the p13E-11/pLAM gRNA mixture (Table 1, Supplemental Table S2).  FSHD1 

participant P2 had a known 4qA 6U D4Z4 allele confirmed with multiple 17.5 kb, p13E-11 to 

pLAM, full length, cut-to-cut reads covering the full array (39 6U reads, Table 1, Fig. 1D). This 
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Table 1.  Read depth and targeting efficiency from nanopore Cas9 targeted sequencing in FSHD1 and FSHD2 participants and healthy controls 

 
Participant 

ID 

Total 
Mapped 

Reads All On-target Reads  4q On-target Reads  10q On-target Reads  
D4Z4 On-target 
Reads (3.3kb)  Divergent D4Z4 Reads 

  Total % p13-pLAM % D4Z4  p13 pLAM Full Array  p13 pLAM Full Array  4q 10q  Reads % Total  

Cas9 gRNA:p13E-11+pLAMa                 
P1 35,019 392 1.1% -  91 78 68 (6U) 

 
109 114 38 (11U) 

34 (13U) 

 
- - 

 
16,368 46.7% 

P2 30,954 207 0.7% -  64 70 39 (6U) 
 

35 38   5 (13U)  
 

- - 
 

17,631 57.0% 
P3 116,981 613 0.5% -  137 183 78 (6U) 

 
143 150    36 (9U)  

 
- - 

 
42,885 36.7% 

P4 77,047 319 0.4% -  83 107 50 (6U) 
 

59 70   7 (13U) 
 1(19U) 

 
- - 

 
23,604 30.6% 

P5 18,256 179 1.0% -  62 36  15 (9U-S) 
 10 (9U-L) 

 
56 25 0 

 
- - 

 
8,381 45.9% 

P6 27,317 139 0.5% -  48 54   36 (3U) 
 

14 23   1 (13U)  
 

- - 
 

9,044 33.1% 
P7 53,538 385 0.7% -  30 34 4 (19U) 

 
171 150    63 (8U) 

34 (12U) 

 
- - 

 
13,583 25.4% 

P8 52,066 254 0.5% -  33 42 11 (16U) 
 1 (26U) 

 
87 92 39 (10U) 

 1 (25U) 

 
- - 

 
20,093 38.6% 

Cas9 gRNA:p13E-11a                 
P2 30,734 77 0.3% -  27 0 0 

 
50 0 0 

 
- - 

 
42 0.1% 

Cas9 gRNA:D4Z4b                 
C1 9,042 2,741 - 30.3%  - - - 

 
- - - 

 
1,077 1,664 

 
512 5.7% 

C2 10,345 2,555 - 24.7%  - - - 
 

- - - 
 

1,424 1,131 
 

321 3.1% 
P9 6,431 410 - 6.4%  - - - 

 
- - - 

 
217 193 

 
138 2.1% 

P10 1,418 476 - 33.6%  - - - 
 

- - - 
 

258 218 
 

66 4.7% 
P1 6,977 826 - 11.8%  - - - 

 
- - - 

 
372 454 

 
246 3.5% 

P1 3,348 339 - 10.1%  - - - 
 

- - - 
 

162 177 
 

117 3.5% 

Cas9 gRNA:p13E-11+pLAM+D4Z4                
P9a 116,799 3,582 0.5% 2.6%  115 210 40 (6U) 

 
107 109 0 

 
1,524 1,517 

 
37,467 32.1% 

P10a 39,605 1,979 0.7% 4.3%  63 91 42 (6U) 
 

55 50 8 (13U) 
 

888 832 
 

16,052 40.5% 
C3c 9,952 1,219 0.2% 12.0%  3 10 0 

 
5 4 0 

 
806 391 

 
4,152 41.7% 

Ultra -Long kit V14d                  
C4 6,140,482 253 0.004% 0.037%  74 51 14 (16U) 

4 (41U) 

 
62 66 10 (20U) 

5 (21U) 

 
- - 

 
- - 

aSequencing on MinION R9.4.1 flowcell;  b Sequencing on Flongle R9.4.1 flowcell; c Sequencing on MinION R10.4.1 flowcell; dSequencing on PromethION 10.4.1 flowcell.  
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enrichment was reproducible in participants P1, P3, and P4, with 50, 68, and 78 reads confirming 

the presence of their 4qA 6U D4Z4 alleles. Two additional FSHD1 participants had their 

pathogenic 4qA alleles confirmed, including an 8.0 kb 3U allele (P6) and compound 

heterozygous 9U alleles from participant P5, who was heterozygous for a 27.6 kb 4qAS 9U 

allele and a 29.0 kb 4qAL 9U allele. In FSHD2 participants P7 and P8, we identified 60.1 kb 

(19U) and 50.2 kb (16U) p13E-11 to pLAM reads spanning their shortest 4qA allele, 

 

Figure 1. Cas9-targeted nanopore sequencing of D4Z4 repeats.   (A) Schematic of D4Z4 repeat arrays found in sub-telomeric 
regions of human chr4q and 10q. A 6U D4Z4 array is shown on the permissive 4qA haplotype, and blue/red shading of repeats 
indicates CpG methylation. (B) Locations of Cas9-guide RNA cleavage sites at the centromeric (p13E-11) end, telomeric (pLAM) 
end, and within each repeat (D4Z4). Steps used in the sequencing pipeline for identifying targeted reads are shown. (C) Read depth 
Manhattan plots from two FSHD1 participants (P1, P5) mapped to the T2T CHM13 v2.0 reference genome (log2 scale, minimum 
depth = 2 reads, summarized in 2 kb, non-overlapping windows). Colors indicate reads mapped to the chr4q (blue) and 10q (green) 
D4Z4 arrays, as well as divergent DUX4 clusters (purple). (D) IGV browser alignments of targeted reads from FSHD1 participant 
P5 with a 4qA 6U contraction. The D4Z4/BlnI/XapI ratio shows the number of 3.3 kb D4Z4 repeats contained with the aligned 
reads and the number of 10q-specific (BlnI) and 4q-specific (XapI) restriction sites found within those repeats. The lower panel 
shows alignments to a divergent D4Z4 repeat cluster on chr22. 
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respectively.  In each of the eight samples, we identified reads that spanned 4qA or 10q D4Z4 

arrays (Table 1).  Full-length reads spanning shorter arrays were recovered at greater efficiency, 

consistent with a size bias operating at the nanopores. During the mapping of reads to the 

Telomere-to-Telomere (T2T) CHM13v2.0 reference genome, minimap2 was able to distinguish 

between highly similar 4q and 10q D4Z4 reads. This was demonstrated by the ratio of 4q-

specific (XapI) and 10q-specific (BlnI) restriction sites in reads aligned to the 4q and 10q D4Z4 

repeat arrays (Fig. 1D).   

The additional enriched peaks outside of 4q and 10q telomeres (Fig. 1C) mapped to 

regions annotated in the T2T reference genome as LSAU-beta-satellite (BSAT) composite 

repeats that included homologous D4Z4 repeats (Hoyt et al. 2022).  The location of these reads 

suggested targeting by the pLAM guide RNAs adjacent to divergent D4Z4 sequence, particularly 

in clusters of LSAU-BSAT repeats (Fig. 1D). The 20 largest genomic regions with LSAU-BSAT 

annotations (average span = 200 kb, range 20 kb – 621 kb, total span = 4.0 Mb; Supplemental 

Table S3) accounted for, on average, 39.2% of the total reads, ranging from 25.4 to 57.0% 

(Table 1, Divergent D4Z4 Reads).  We confirmed that these reads were due to Cas9 cleavage at 

pLAM-related targets by removing the pLAM guide RNAs from a second library prepared from 

participant P2. This library retained the on-target p13E-11 reads but eliminated the LSAU-BSAT 

region reads (Table 1).  

The high percentage of near-target reads at divergent D4Z4 arrays implied pLAM gRNAs 

were effectively cleaving multiple targets per genome equivalent. This suggested that a single 

gRNA designed within the D4Z4 repeat may yield a high percentage of monomer-sized, 3.3 kb 

D4Z4 reads arising from the 4q and 10q telomeres. We generated six additional libraries using a 

single D4Z4-gRNA (Fig. 1B) and observed a high yield of on-target, 3.3 kb monomer-sized, 
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D4Z4 reads using the smaller Flongle flow cell (average = 19.5% on-target D4Z4 reads, Table 

1). The ratio of monomer (3.3 kb) to dimer (6.6 kb) D4Z4 reads averaged 19:1, indicating almost 

complete cleavage of the D4Z4 arrays by the D4Z4 Cas9-gRNA complex.  Three additional 

samples had p13E-11/pLAM and D4Z4 gRNA libraries prepared separately and combined for 

sequencing onto single MinION flow cells. These mixed libraries (p13E-11/pLAM and D4Z4) 

showed comparable yields for their component gRNA targets (Table 1). Finally, we compared 

the yield of targeted reads from the nCATs libraries sequenced on single MinION flow cells to a 

public dataset derived from a peripheral blood DNA library using ultra-long protocols and 

sequenced on three PromethION flow cells. This library had a total read yield 120X greater than 

our average MinION nCATs library, and a total Gigabase yield that was 450X greater (Table 1, 

sample C4). Despite this large difference in the overall yield of the PromethION dataset, 

comparable reads counts localized to the 4q and 10q D4Z4 arrays (Table 1) suggesting that the 

lower cost nCATs methodology is currently on par with whole genome nanopore sequencing for 

specifically studying the D4Z4 regions. 

 

D4Z4 arrays have asymmetric CpG methylation gradients 

To evaluate the extent of hypomethylation that occurs as a result of contraction of the 

D4Z4 array, we extracted 5-methyl CpG (5mC) base modification calls from the nanopore reads. 

The methylation status of individual p13E-11 to pLAM cut-to-cut reads was summarized at the 

D4Z4 repeat level, using approximately 320 CpG dinucleotides per 3.3 kb repeat. The results 

were quantified as the percentage of 5mC per D4Z4 repeat and the distributions for 4qA and 10q 

arrays from FSHD1 participants P1 and P3 are shown as box plots in Fig. 2A.  Repeat-level 

methylation increases in a step-wise fashion from the centromeric (p13E-11) to telomeric 
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(pLAM) repeat for 6U, 9U, 11U, and 13U arrays. Smoothed methylation frequency plots and 

single-molecule methylation plots (Fig. 2B) using the same data displayed a characteristic 

striped methylation pattern within each repeat indicating a recurring pattern of higher and lower 

methylation, and a gradual, step-wise methylation increase across the arrays. 

To examine the methylation levels of longer D4Z4 arrays in individuals with FSHD1, we 

aggregated the p13E-11 or pLAM reads from non-contracted 4qA alleles. The results showed 

 

Figure 2. CpG methylation gradients traverse chr4q and 10q D4Z4 arrays. (A) Methylation levels of p13E-11 to pLAM 
targeted reads summarized as % 5mC sites per D4Z4 repeat (3.3 kb KpnI-to-KpnI region with ~320 CpG sites per repeat).  Repeat 
numbering begins at the centromeric end (p13E-11) and is reversed for the chr4 pLAM (telomeric) reads. (B) Single-read plots 
of targeted reads from (A) using modbamtools with unmethylated CpGs represented in blue and 5-methyl CpGs in red.  The 
schematic representation of D4Z4 repeats shows DUX4 exons 1 and 2 and the CTCF insulator region, and the green stripe 
indicates the 10th centromeric D4Z4 repeat. (C) Alignments and methylation plots of untargeted reads (R10.4.1_e8.2 nanopores) 
from a control subject (C4) mapped to the 4qB 16U haplotype, the 4qA 43U haplotype, the 10q 20U haplotype, and the 10q 21U 
haplotype. The grey stripe delineates the start of the syntenic telomeric region shared between 4q and 10q, and the green stripe 
marks the 10th repeat. 
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that the centromeric end (p13E-11) had higher levels of methylation and a steeper increase than 

the shorter arrays, while the telomeric end (pLAM) had a uniformly high level of methylation 

with a slight gradual decrease distally (Fig. 2A,B). To ensure that these patterns were not 

specific to individuals with FSHD1, we also analyzed whole-genome data from a publicly 

available healthy control (C4) sequenced on high-density PromethION flow cells, where both 

alleles on chromosome 4 and 10 could be resolved. The whole genome nanopore data allowed us 

to assemble reads across the entire syntenic chromosome 4 and 10 region, and asymmetric 

methylation gradients were observed on all four haplotypes: the 4qB 16U, 4qA 42U, 10q 20U, 

and 10q 21U (Fig. 2C). The data confirmed the presence of an asymmetric methylation pattern 

in this control individual, indicating that these asymmetric methylation gradients are not specific 

to FSHD1. 

 

Methylation gradient modeling and methylation spreading 

Despite the consistent gradient from low methylation in the proximal end of the array and 

higher methylation in the distal end, we observed a high level of variability in overall 

methylation between reads and within reads from one repeat to the next (Fig. 3A).  To better 

capture variation in the methylation gradient, we used a linear mixed-effects model (LMM) 

based on read-level D4Z4 repeat unit methylation as the repeated measure. The LMM estimated 

the %5mC level from the first D4Z4 repeat (intercept) and the change per repeat (slope).  For 

participant P1, the LMM estimated an intercept of 9.7% 5mC at the first D4Z4 unit with an 

increase in 3.7% 5mC per D4Z4 repeat (slope) using 68 full 4qA 6U reads (Fig. 3A).  The LMM 

also allowed for the calculation of separate intercepts and slopes for individual reads, and these 

read-level regression lines are plotted with their measured repeat-level %5mC (Fig. 3A). The 4q 
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and 10q arrays from FSHD1 participants with full-length reads (4q: 3U, 6U, 9U and 10q: 9U, 

 

Figure 3. Methylation gradient modeling.  (A) Intercept and slope estimates from p13E-11 to pLAM 4qA 6U reads from 
participant P1. The red line is the model estimate and the thin lines are the individual read estimates with a color scale for read-
level total % 5mC. The right panel shows the observed D4Z4 methylation frequencies for each read (points) with their individual 
read estimates. The 68 plots are ordered by read-level % 5mC. (B) Intercept and slope estimates as in (A) from FSHD1, FSHD2 
participants, and control subject C4 (see Table 2). (C) Model for gradient formation via basal methylation followed by asymmetric 
spreading. (D) Predicted D4Z4 methylation levels from simulated basal methylation and spreading (red points) compared to 
observed values (blue points, mean methylation per repeat, data from (B)). In the lower panel, the basal methylation and spreading 
parameters were reduced by a factor of 2. 
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11U, 13U) had intercepts from 9.6 to 26.1% and slopes from 1.9 to 3.9% (Table 2, Fig. 3B). 

FSHD2 participants (4q:16U, 19U and 10q 8U, 10U, 12U) showed intercepts ranging from 9.1 to 

14.3%, similar to FSHD1 participants, but showed lower slopes, ranging from 0.7 to 1.6% 

(Table 2, Fig. 3B).  

Variation in the overall per read methylation was evident, as well as a trend for increased 

methylation of the first D4Z4 repeat with longer arrays (Fig. 3B, Table 2).  Centromeric (p13E-

11) reads from longer arrays had the highest intercepts, including the >10U, 4q reads from 

FSHD1 participants (52%) and the 16U to 42U arrays from the control subject, which ranged 

from 32.7 to 48.5%. Telomeric reads (pLAM) from the longer arrays consistently showed 

negative slopes, ranging from -1.1 to -0.2, suggesting a tapering from the high %5mC levels seen 

for internal repeats in very large arrays.  

These patterns suggested a simple model combining basal D4Z4 methylation and 

spreading that could lead to the formation of asymmetric gradients. Fig. 3C shows a model based 

on ad hoc parameters for basal methylation rates (8% per D4Z4 repeat) and asymmetric 

spreading (a directional rate of 95% distal spreading versus 80% proximal spreading) that results 

in asymmetric gradient formation. We used these parameters to simulate D4Z4 methylation 

levels for different length arrays.  The modeled findings were consistent with the observed 

median D4Z4 repeat levels from FSHD1 and control participants, including the tapering of 

methylation in the longer arrays (Fig. 3D). When the basal parameter was reduced by a factor of 

2, from 8% to 4%, the simulated gradient more closely paralleled the observed methylation 

levels in FSHD2 participants. 
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Table 2: D4Z4 methylation gradient analysis using a linear mixed-effects model to estimate intercept and slope. 
   % Methylated CpG RU1  Change in % methylated CpG per RUa 
Subject ID Chromosome Length D4Z4  Intercept 90% CI  Slope 90% CI 
FSHD1        
P6 chr4qA-S 3U 14.2 10.6 - 17.7  0 -2.1 - 2.1 
P1 chr4qA-S 6U 10.3 7.3 - 13.2  2.8 2.3 - 3.4 
P2 chr4qA-S 6U 15.3 12.0 - 18.5  2.1 1.5 - 2.8 
P3 chr4qA-S 6U 11.5 8.6 - 14.5  2.3 1.8 - 2.8 
P4 chr4qA-S 6U 10.4 7.2 - 13.7  2.9 2.3 - 3.5 
P5 chr4qA-S 9U 10.1 5.6 - 14.5  2 1.3 - 2.7 
P5 chr4qA-L 9U 18 12.8 - 23.2  2.3 1.4 - 3.1 
P3 chr10q 9U 24.9 21.5 - 28.3  2.3 1.7 - 2.8 
P1 chr10q 11U 17.4 15.1 - 19.7  2.2 1.9 - 2.6 
P1 chr10q 13U 25.4 22.0 - 28.8  1.9 1.3 - 2.4 
P1, P2, P3, P4, P5, P6 chr4qA-S >10U, centromeric 46.6 42.5 - 50.7  6.1 5.3 - 6.8 
P1, P2, P3, P4, P5, P6 chr4qA-S >10U, telomeric 76.2 72.1 - 80.3  -1 -1.6 - -0.3 
FSHD2        
P7 chr10q 8U 9.5 6.5 - 12.5  1.2 0.7 - 1.7 
P8 chr10q 10U 11.9 8.6 - 15.2  0.7 0.2 - 1.3 
P7 chr10q 12U 11.8 8.4 - 15.3  0.8 0.2 - 1.3 
P8 chr4qA-S 16U 13.3 8.4 - 18.2  0.5 -0.3 - 1.2 
P7 chr4qA-S 19U 14.4 7.0 - 21.8  0.6 -0.5 - 1.7 
Unaffected Control        
C4 chr4qB 16U, prox 6U 33.7 30.4 - 37.0  6.2 5.6 - 6.8 
C4 chr4qB 16U, distal 6U 64.1 60.7 - 67.4  -1.3 -1.9 - -0.7 
C4 chr10q 20U, prox 6U 29.4 25.9 - 33.0  5.7 5.1 - 6.4 
C4 chr10q 20U, distal 6U 71.4 67.9 - 74.9  -0.5 -1.2 - 0.1 
C4 chr10q 21U, prox 6U 34.5 31.0 - 37.9  5.7 5.1 - 6.4 
C4 chr10q 21U, distal 6U 77.1 73.5 - 80.6  -0.9 -1.6 - -0.2 
C4 chr4qA-L 42U, prox 6U 42.5 38.4 - 46.6  7.1 6.3 - 7.9 
C4 chr4qA-L 42U, distal 6U 89.8 86.3 - 93.4  -1 -1.6 - -0.4 

aRU-repeat unit 
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Fine-scale D4Z4 methylation patterns suggest nucleosome positioning 

In addition to methylation gradients across the D4Z4 array, we observed consistent 

methylation patterns within individual repeats, including areas of low and high methylation.  The 

single-read and smoothed methylation frequency plots of the 4qA 6U haplotype reads from 

participant P1 (Fig. 4A) demonstrate this repeating pattern across the array from R1 to R5.  

Aligning methylation frequencies of individual CpGs within the 6U haplotype from participant 

P1 with the annotated features of the 3.3 kb KpnI-KpnI repeat showed recurring low and high 

methylation levels across repeats R1-R5 (Fig. 4B). The smoothed methylation frequency from 

repeats R1 to R5 showed a consistently rising pattern of methylation with repeat number. The 

CTCF/insulator region were among the least methylated CpG residues, and this region contains 

the DR1 amplicon previously identified as relatively hypomethylated (Hartweck et al. 2013; 

Roche et al. 2019).  CpGs near the DUX4 transcription start site, especially the CpG at 

nucleotide (nt) 1704, had high methylation levels ranging from 28-90%. A phasic methylation 

pattern with ~180 nt periodicity started near this region and propagated through DUX4 exons 1 

and 2 (Fig. 4B). 

D4Z4 3.3 kb reads from an enrichment using the Cas9-gRNA targeting individual D4Z4 

repeats (Fig. 1B, Table 1) were used to examine the fine-scale methylation structure in 

additional FSHD1, FSHD2, and control participants. Although these reads lacked positional 

information for the individual D4Z4 repeat, sequence alignments enabled discrimination between 

4qA, 4qB, and 10q repeats.  Paternally inherited 4qA reads from the 6U haplotype carried by 

participant P1 were distinguishable from the 4qB reads inherited from her mother (Fig. 4C). The 

lower methylation range of these 4qA-specific reads and the intermediate methylation range of 

10q reads from her 11U/13U haplotypes were similar to the repeat-level summaries from full 
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haplotype reads (Fig. 4B,C; Fig. 3B). The 6U haplotype methylation status in her father was 

evident from the bi-phasic profiles of his 4qA-specific reads, emphasizing the distinction in 

repeat-level methylation between small and large arrays. The relative absence of higher 

 

Figure 4. Fine-scale D4Z4 repeat methylation patterns.   (A) Methylation plot of 4qA 6U reads from participant P1 using the 
“smooth_ksmooth” function (smoothness = 10) with single-read plots from modbamtools.  (B) Annotated D4Z4 features including 
DUX4 exons 1 and 2 (mRNA from AF117653.3), the CTCF insulator (Blp1-Blp1 fragment from Ottaviani et al.,2010), BsaAI 
and FseI methylation-sensitive restriction sites, and PCR amplicons commonly used for bisulfite sequencing. A methylartist plot 
shows 322 CpG residues represented as blue (unmethylated) or red (methylated) dots for the R1 and R5 repeats from a subset of 
reads in (A). The middle panel shows the average individual CpG methylation from the 4qA 6U reads in (A) for the 322 CpGs, 
aligned from R1 to R5.  The lower panel shows the methylation frequency plot smoothed as in (A), with the methylation range 
of six CpGs in the DUX4 proximal promoter with the transcription start from Dixit et al. (AF117653.3). (C) Methylation levels 
of individual 3.3 kb D4Z4-cut reads with % 5mC per read on the y-axis. The number of reads and mean/median % 5mC per read 
are shown for each chromosome. Upper plot = FSHD1 trio (affected father, affected daughter, unaffected mother) segregating a 
6U repeat; lower plot = unaffected versus FSHD2 participants. (D) Methylation frequency plots of D4Z4-cut reads from (C), 
smoothed as in (A). (E) % 5mC and Nucleosome Occupancy and Methylation sequencing (NOMe-seq) GpC z-scores plotted for 
the second chr4 D4Z4 repeat (centromeric) using in vivo/in vitro methylation data from the HG002 lymphoblastoid cell line. 
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methylation levels from the two FSHD2 participants was apparent, although the mean and 

median methylation levels of the FSHD2 4qA reads were comparable to the 4qA reads from the 

6U haplotype from FSHD1 participant P1. The smoothed methylation frequency plots of the 4qA 

D4Z4 reads showed that the methylation profiles of FSHD1 and FSHD2 were similar (Fig. 4D). 

This result suggests that reductions overall methylation levels specific for FSHD2 does not alter 

the fine-scale D4Z4 methylation pattern.  From both 4q and 10q profiles, the maintenance of this 

fine-scale pattern with increasing methylation is evident, and the phasic methylation pattern 

beginning near the start of DUX4 exon 1 was seen with repeats from both chromosomes and with 

increasing overall methylation levels. 

The 180-nt periodicity of CpG methylation suggested the possibility that this phasic 

pattern corresponds to nucleosome occupancy.  To test this hypothesis, we examined the D4Z4 

region for nucleosome protection utilizing a nanopore NOMe-seq data set (Nucleosome 

Occupancy and Methylome Sequencing) generated from HG002 lymphoblastoid cells by the 

T2T consortium (Gershman et al. 2022). The CpG methylation frequency in the extended 4qA 

region of the HG002 cell line was comparable to the 4qA 42U allele from peripheral blood of 

control sample C4 and an asymmetric gradient was seen at the centromeric end of the HG002 

array (Supplemental Fig. S1). This methylation gradient was also observed in the profile from 

HG002 PacBio HiFi long-read sequencing, confirming that these methylation gradients can be 

detected with an orthogonal long-read sequencing chemistry. The smoothed frequency plot from 

the 4q centromeric D4Z4 repeat R2 displayed an intermediate level of methylation and a 

smoothed frequency plot displayed a phasic profile similar to the profiles observed in peripheral 

blood (green line, Fig. 4E). The NOMe-seq GpC z-score, which measures the relative protection 

of GpC dinucleotides from in vitro methylation of isolated chromatin with a GpC 
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methyltransferase (Kelly et al. 2012), also showed a ~180 nt GpC phasic pattern across the exon 

1 and 2 region (orange line, Fig. 4E). The GpC z-score valleys were coincident with CpG 

methylation peaks indicating that CpG methylation is higher in more protected regions. The 

endogenous phasic CpG methylation across exon 1 was offset by ~90 nt from the GpC z-score, 

consistent with the methylation status of CpGs in this region influencing the positioning of 

nucleosomes. 

 

Divergent D4Z4 repeats including a paralogous chr22 cluster are highly methylated 

The abundance of pLAM-related reads, as shown in Table 1, facilitated a genome-wide 

analysis of the sequence and methylation status of D4Z4-related sequences. We examined the 

copy number in the T2T reference genome of a 4 kb query sequence encompassing the distal 3.3 

kb D4Z4 repeat with the terminal ~0.3 kb D4Z4 truncation and the flanking ~0.4 kb pLAM 

sequence, including the polymorphic PAS region permissive for DUX4 expression from the 

distal D4Z4 repeat (Lemmers et al. 2010a).  The T2T reference genome contained 13 

occurrences of this full 4 kb sequence, including the two copies on 4q and 10q.  A ~3.1 kb 

sequence that deleted ~0.9 kb beginning at the 5’ KpnI site including the CTCF/insulator region, 

was the most common D4Z4-related sequence with 319 copies (Fig. 5A). Both the full and 5’ 

truncated copies were primarily located in the LSAU-BSAT rich regions of acrocentric 

chromosomes (chr13, 14, 15, 21, and 22) and in the pericentric region of chr1 (Supplemental 

Table S4) and accounted for approximately 98% of the full-length, divergent DUX4 ORFs in the 

T2T reference genome (Supplemental Table S5).  A high methylation state of a full D4Z4-

pLAM sequence from chr22 is shown in Fig. 5B, where a percent-identity plot indicates the 

~90% identity with the D4Z4-4qAS-pLAM region.  
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The T2T reference genome resolved numerous regions that contain segmental 

duplications of FSHD region gene 1 (FRG1) and FSHD region gene 2 (FRG2) (Nurk et al. 

2022). We examined a T2T chr22 region with a divergent D4Z4 cluster that retains paralogous 

sequence through the FRG2 gene and the inverted single D4Z4 repeat found on 4q but absent 

 

Figure 5. Methylation profiles of divergent D4Z4 repeats.   (A) Annotated structure and copy number of the distal 4 kb D4Z4 repeat 
beginning at the 5’ KpnI site through the 4qAS pLAM sequence/b-satellite junction (see Supplemental Table S2 for list of genomic 
locations). (B) Methylation profile of a full-length, divergent D4Z4 repeat found on chr 22. The LASTZ percent identity (PIP) plot shows 
the distribution of sequence identity along the length of this chr22 D4Z4 repeat compared to the distal chr 4qAS D4Z4 repeat. (C) 
Methylation plots of untargeted reads mapping to chr22:9,317,908-9,717,807 region from the C4 control (R10.4.1_e8.2 nanopores). (D) 
Distributions of CpG methylation levels of divergent D4Z4 repeats where each point represents the % 5mC of an individual read within 
the region that aligns completely with a divergent repeat. The C3 sample was sequenced using R10.4.1_e8.2 nanopores. 
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from 10q. The methylation plots reveal a highly methylated state for both full and 5’ truncated 

D4Z4 repeats in this region (Fig. 5C).  A dot plot alignment of the 4q region and the entire ~380 

kb chr22 D4Z4 cluster demonstrates high sequence conservation that extends beyond the FRG2 

paralog (Supplemental Fig. S2).  The divergent D4Z4 repeats in this cluster are interspersed 

with BSAT repeats and can be found in both forward and reverse orientations relative to 4q 

D4Z4 repeats. Moreover, the methylation frequency and single-read plots of the entire ~380 kb 

chr22 D4Z4 cluster support a uniformly high level of methylation without evidence for 

methylation gradients (Supplemental Fig. S2). 

In contrast to arrays on 4q and 10q, methylation levels for these divergent D4Z4 arrays 

were uniformly high.  We conducted an analysis of methylation levels derived from reads aligned 

to the full and 5’ truncated class of divergent repeats across multiple chromosomal regions for 

FSHD1 participant P1, FSHD2 participants P7 and P8, and control participant C3. A total of 

24,645 read alignments (803 full and 23,851 5’ truncated) were utilized and the median 

methylation levels for all four participants ranged from 81% to 94% (Fig. 5D). Notably, there 

were no read alignments with a methylation level below 50%, and only 11 reads demonstrated 

methylation levels below 60%. This observation indicates that the methylation levels of 

divergent D4Z4 repeats were uniformly high in the peripheral blood DNA of both FSHD1 and 

FSHD2 affected participants, as well as unaffected individuals. 

 

 

Methylation gradients are seen in other high CpG ‘continents’ 

To identify whether the methylation gradients identified in the 4q and 10q D4Z4 arrays 

were unique, we conducted a genome-wide search for other regions of comparable CpG density 
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to assess whether these areas harbored similar methylation gradients. A 33 kb sliding window, 

equivalent in size to 10 D4Z4 repeat units, was scanned across the T2T reference genome using a 

step size of 3.3 kb (~1 repeat unit) to rank the genome-wide CpG densities in 33 kb segments. 

CpG density for each individual 33kb segment was plotted against the location of the segment in 

a Manhattan plot with segments showing >7% CpG density highlighted for further analysis (Fig. 

6A).  The 4q and 10q D4Z4 arrays were the two most CpG-dense regions across the genome for 

this window length, with densities of approximately 9.8% for the 33 kb window.  There were 8 

additional regions with 33 kb windows of >7.0% CpG density (Supplemental Table S6). Five 

peaks were from 45S ribosomal DNA (rDNA) array clusters, and unique peaks were seen for the 

 

 

Figure 6. Methylation gradients in other CpG-dense repeat regions. (A) Manhattan plot of CpG density in 33 kb sliding windows (step 
size = 3.3 kb) across the T2T CHM13 v2.0 reference genome. Windows above 7% CpG density are marked as green dots. Alignment and 
methylation plots of untargeted reads from the C4 control (R10.4.1_e8.2 nanopores) mapped to (B) the tRNA cluster on chromosome 1 
and (C) the 5S rRNA cluster on chromosome 1. Mapped reads are anchored by unique flanking sequence and the two ends of the 5S rRNA 
cluster are shown separately. The annotations are the RepeatMasker repetitive element UCSC browser track. 
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chr1 LM-tRNA cluster, the chr1 5S rDNA cluster, and the chr19 SST1 cluster.  Methylation 

plots from the HG002 cell line showed evidence of methylation gradients in the rDNA arrays, 

the chr1 tRNA cluster, and the chr1 5S rDNA cluster (Supplemental Fig. S3).   

Since long-range assembly across the 45kb rRNA arrays remains challenging, we focused 

on assembly and methylation analysis from the chr1 tRNA and 5S rDNA cluster using the 

peripheral blood reads from control C4. The chr1 tRNA has a 7.4 kb LM-tRNA repeat and the 

5S region has a 2.2 kb 5S-rRNA repeat, so we used only reads anchored uniquely into flanking 

sequence for methylation analysis. The LM-tRNA region had a symmetrical gradient on both 

ends of the repeat array (Fig. 6B), while the 5S-rRNA region had asymmetrical gradients (Fig. 

6C), confirming the presence of methylation gradients in repeat segments outside of the 4q and 

10q D4Z4 arrays. Notably, the chr1 LM-tRNA and 5S rRNA clusters were previously identified 

as hypomethylated regions in FSHD2 patients (Mason et al. 2017). 

 

DISCUSSION 

FSHD is one of the most common muscular dystrophies, yet genetic analysis is among 

the most difficult of any monogenetic disorder, due to the complex mechanism combining 

genetic and epigenetic factors with long stretches of repetitive DNA that have close paralogs 

elsewhere in the genome.  Southern blot techniques have been the gold standard for diagnosis 

and research analysis for many years, but recent development of optical mapping, molecular 

combing, and next-generation based bisulfite sequencing techniques are rapidly enhancing our 

understanding of the genetics of FSHD (Vasale et al. 2015; Nguyen et al. 2017; Roche et al. 

2019; Zampatti et al. 2019; Dai et al. 2020; Gould et al. 2021).   
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Recently developed long read sequencing techniques such as nanopore sequencing, have 

opened the door to analysis of highly repetitive DNA in areas of the genome that were previously 

unmappable.  Using these techniques, researchers completed sequencing of a full reference 

human genome for the first time, including mapping of repetitive DNA such as the D4Z4 arrays 

important in FSHD (Nurk et al. 2022). Initial efforts to use nanopore sequencing for FSHD, 

struggled due to lack of read-depth in 4q derived D4Z4 arrays from genomic analyses 

(Mitsuhashi et al. 2017).  Development of strategies to enrich sequences of interest using Cas9-

targeting has led to improved read-depth for regions of interest (Gilpatrick et al. 2020), including 

the D4Z4 array associated with FSHD (Hiramuki et al. 2022)  Nanopore sequencing not only 

opens the door to the full sequencing of the D4Z4 array, but also allows determination of CpG 

methylation in the array, a critical aspect of genetic analysis for FSHD.   

Here we described a refinement of the Cas9 targeting technique that can successfully 

enrich 4q and 10q D4Z4 arrays and provide a comprehensive tool for genetic analysis of FSHD.   

We demonstrated on-target p13E-11-to-pLAM reads enriched to 0.5-1.1% of all mapped reads, 

which provides sufficient read depth for analysis of 4q versus 10q sequences, determination of 

A/B haplotype, and size and methylation status of the array.  Surprisingly, the bulk of off-target 

reads were near-target reads that arise from divergent D4Z4 arrays scattered throughout the 

genome, accounting for 25-57% of total reads.  Exclusion of pLAM guide RNAs from the assay 

removed nearly all of these near-target reads, but did not increase recovery of full-length reads.  

The high read-depth of near-target sequences from pLAM gRNAs suggested high efficiency 

Cas9 cleavage per genome equivalent.  

Our investigation revealed that the use of a single gRNA within the D4Z4 repeat led to a 

substantial retrieval of D4Z4 repeat reads, with up to 30% on-target reads, >95% of which  were 
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3.3 kb monomer, single D4Z4 reads. These findings offer additional support for the high 

efficiency of Cas9 cleavage. While the order of the individual repeats is lost using D4Z4 targeted 

guide RNAs, this assay adds read-depth and maintains the ability to separate 4qA, 4qB, and 10q 

reads, and quantify methylation.  This assay can be done on lower cost Flongle flow cells, 

providing a quick screen to differentiate FSHD and healthy controls.  Furthermore, the retrieval 

of uniform 3.3 kb reads offers a semi-quantitative measure of D4Z4 copy number, as their yield 

is not subject to length-dependent bias commonly seen in nanopore sequencing. A combined 

approach using libraries with p13E-11 and pLAM guide RNAs and libraries with D4Z4 guide 

RNAs on the same MinION flowcell provided adequate read-depth for comprehensive analysis 

and maintained the advantages of both assays. The combined assay provided read-depth 

comparable to non-targeted reads obtained from whole genome sequencing in a healthy control 

based on multiple PromethION flow cells obtained at a substantially higher cost.  

The ability of nanopore sequencing to provide the methylation status of individual CpG 

sites on individual molecules allowed us to observe asymmetric methylation gradients that form 

at the proximal end of D4Z4 repeat arrays and reach a saturation point at approximately the 10th 

repeat. This finding provides a biophysical correlate for why contractions of less than 10 repeats 

are associated with FSHD.  We postulated a simple model for directional barriers to methylation 

spreading across the 4q and 10q arrays that would establish the observed length-dependent, 

asymmetric gradients. While ad hoc, the model predicts both the presence of asymmetric 

methylation gradients and the length-dependent change.   The absence of methylation gradients 

and the uniform hypermethylation observed in paralogous D4Z4 clusters may provide insight to 

elements that restrict or promote methylation spreading.  
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It has been shown that methylation at the single FseI site in the proximal (centromeric) 

D4Z4 repeat is correlated with repeat array size (Lemmers et al. 2015). The authors proposed a 

metric (Delta1 score) based on proximal FseI methylation and a non-linear relationship between 

the cumulative array size, and used this as a marker for disease onset and progression. The 

length-dependent effect modeled by the Delta1 score was confirmed in our study by the use of a 

linear mixed-effect model to estimate the degree of change in the intercept value of the 

methylation gradient with increasing array size.  The Delta1 score is particularly sensitive to 

detecting hypomethylation due to SMCHD1 mutations in FSHD2 individuals due to 

hypomethylation of both 4q and 10q alleles. The hypomethylation effect on all 4q and 10q 

repeats of SMCHD1 mutations seen with single D4Z4 guide RNA libraries and the decreased 

slope of the methylation gradient we observed in FSHD2 individuals provides an alternative 

method for quantifying D4Z4 methylation. Although fitting the intercept and slope using a linear 

mixed-effect model allowed for the quantification of haplotype-specific methylation levels, this 

approach only accounted for a part of the considerable variability in read-level methylation 

observed with different haplotypes. Alternative approaches to quantify this read-to-read variation 

may be useful as metrics for association with clinical markers of disease.  

 Bisulfite sequencing and methylated DNA immunoprecipitation analysis have been 

widely used for high resolution methyl-CpG analysis of the D4Z4 repeat (de Greef et al. 2009; 

Hartweck et al. 2013; Gaillard et al. 2014; Jones et al. 2014). These studies have been recently 

refined with improvements in amplicon specificity for discriminating 4q and 10q alleles, and by 

NGS-based analysis of bisulfite converted amplicons (Huichalaf et al. 2014; Roche et al. 2019; 

Gould et al. 2021). The methyl-CpG patterns observed in our study confirmed several aspects of 

these prior studies, including extended hypomethylation at the 5’ end of the D4Z4 repeat 
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including the CTCF/insulator region and the DR1 region. In a new finding, we identified 

preferential methylation of certain CpGs in close proximity to the DUX4 transcription start site 

and a consistent pattern of methylation across all ~320 individual CpGs within each 3.3 kb 

repeat. This recurrent methylation pattern was independent of 4q or 10q haplotypes, FSHD1, 

FSHD2, or unaffected status, and was evident in both averaged single-CpG methylation 

estimates and kernel-smoothing analysis. Several aspects of this fine-scale methylation pattern 

suggested that it may be related to the chromatin state of the D4Z4 repeat. Two regions of 

relative hypomethylation were consistently observed at positions 100 to 700, overlapping with 

the CTCF/insulator region (Ottaviani et al. 2009), and from 1400 to 1700, corresponding to the 

D4Z4 binding element (DBE) site for YY1/HMGB2/NCL complexes situated in the DUX4 

proximal promoter region (Gabellini et al. 2002). Recent affinity capture of protein complexes 

bound to D4Z4 repeats suggest that these regions may also participate in binding the 

Nucleosome Remodeling Deacetylase (NuRD) and Chromatin Assembly Factor 1 (CAF-1) 

complexes (Campbell et al. 2018).  

A phasic methylation pattern with a periodicity of approximately 180 nts was observed 

starting at the preferentially methylated CpGs near position 1700. This pattern was also detected 

using long-read sequencing data from the HG002 lymphoblastoid cell line, which included 

companion NOMe-seq data to concurrently investigate nucleosome positioning and CpG 

methylation. NOMe-seq data from a proximal D4Z4 repeat with an intermediate level of CpG 

methylation suggested that the phasic CpG methylation signal was consistent with a phased 

nucleosome array in which the more highly methylated CpG peaks were wrapped around 

nucleosomes. Although it is unclear how phased nucleosomes may contribute to DUX4 

repression, we can speculate that the preferentially methylated CpGs near position 1700 may 
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participate in positioning of nucleosomes by localizing NuRD complexes through their methyl-

CpG-binding protein domain 2 (MBD2) subunits to specific methyl-CpGs. Recent studies 

indicate that MBD2 has high affinity for large and densely methylated CpG islands, allowing 

recruitment of NuRD to facilitate nucleosome positioning, histone deacetylation, and chromatin 

compaction (Leighton et al. 2022). Further investigation is required to determine whether the 

fine-scale methylation pattern observed within each D4Z4 repeat is established during 

development or whether it arises from the dynamic turnover of methyl-CpGs, reflecting changes 

in the underlying chromatin state. 

The T2T reference genome enabled us to map near-target reads from the pLAM gRNAs 

to the repetitive regions of acrocentric chromosomes and analyze the methylation state of 

paralogous D4Z4 copies. Our findings were consistent with previous studies, which suggest that 

the D4Z4-4qAS-pLAM sequence is the ancestral form of the D4Z4 retroelement that radiated 

and diverged during primate and human evolution (Lemmers et al. 2010b). The paralogous D4Z4 

sequences we catalogued in the T2T genome uniformly share ~90% nucleotide identity with the 

D4Z4-4qAS-pLAM sequence but with reduced CpG densities of approximately 5.4%. Notably, 

all these paralogous sequences showed high levels of methylation, regardless of length or 

location in the genome, and irrespective of whether the individual had FSHD1, FSHD2, or was 

unaffected. This hypermethylation was also observed in a large 380 kb cluster on chromosome 

22, which has features similar to the 4q D4Z4 region, including an inverted DUX4c paralog 

located before a FRG2 paralog at one end, and a full-length D4Z4-4qAS-pLAM paralog at the 

other end.   

One of the more striking aspects of the 4q D4Z4 array is its extreme CpG density. We 

used this property to scan the genome with a window size of 33 kb for other large regions of 
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extreme density.  The 4q and 10q arrays have a median CpG density of 9.8 and 9.7%, 

respectively, the highest in the genome for this window size, and we identified only 8 other 

genomic regions with densities >7.0%. The next densest region was a chromosome 1 tRNA 

cluster at 7.9% CpG with a 7.4 kb LM-tRNA repeating unit.  This region also displayed 

methylation gradients that stretch over a ~50 kb interval.  Unlike the D4Z4 arrays, these 

gradients appear symmetrical on both ends of the cluster. This tRNA tandem repeat has also been 

shown to contain a conserved CTCF binding site and the repeat unit has features of a genomic 

boundary element (Darrow and Chadwick 2014). We also observed methylation gradients at the 

two ends of the chr1 5S rDNA cluster with of repeating 2.2 kb 5S-rRNA repeat, although in this 

case, the gradients were asymmetric.  Several regions of the 45S rDNA clusters were in this 

extreme CpG density range and there was suggestive evidence of methylation gradients at their 

borders. Notably, both the chr1 LM-tRNA and 5S rDNA cluster have been identified as one of 

the few genomic regions that are hypomethylated in the presence of heterozygous SMCHD1 

mutations (Mason et al. 2017).  This suggests that shared features among these repetitive clusters 

with extreme CpG densities may be utilizing common processes to link CpG methylation to the 

formation of repressive chromatin domains. 

Several limitations are associated with our analysis of targeted sequence and methylation 

analysis of D4Z4 arrays. Our technique improves on the yield of targeted D4Z4 reads from prior 

studies using nanopore sequencing, however, the yield of full-length reads covering the entire 

D4Z4 array needs further improvement.  Our analysis of near-target reads and the D4Z4 gRNA 

targeted reads revealed high Cas9 cutting efficiency, so further design of guide RNAs is not 

likely to improve yield.  The presence of near-target reads from divergent D4Z4 reads 

throughout the genome did not diminish the yield of on-target reads, since the flow cells were 
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still operating at reduced levels of pore occupancy due to a sub-optimal ratio of adaptered 

molecules to available pores, even with high DNA loads.  Because of the complex and repetitive 

nature of the target sequences, our technique requires a certain level of expertise in mapping of 

the target reads to appropriate reference sequences.  Furthermore, cost for the MinION flowcells 

is relatively high.  Improved pore chemistry, basecalling, and base modification accuracy are 

likely to provide additional precision, including sequencing the complementary strand from the 

same molecule.  Optimization for lower cost flowcells such as the Flongle, may also help 

minimize cost and maximize yield.  Our analysis for this study relied on genomic DNA from 

peripheral blood, it remains to be seen whether DNA samples from other tissues will have 

methylation patterns consistent with those observed here.   

 Our Cas9 targeted nanopore sequencing assay provides an important tool for genetic 

analysis of FSHD related D4Z4 arrays.  This technique offers an additional tool for clinical 

diagnosis that can better quantify array length and methylation status, but can also help to 

provide additional genomic information for unusual cases including somatic mosaicism, 4q-to-

10q translocations, and cis D4Z4 duplications which are not uncommon in FSHD clinics 

(Nguyen et al. 2017; Lemmers et al. 2018; Qiu et al. 2020; Rieken et al. 2021). Furthermore, this 

tool opens the door to a more detailed methylation analysis, including analysis of the methylation 

gradient across the array, and methylation patterns within the individual repeats.  Here, we show 

that the chromosome 4q and 10q D4Z4 arrays share a high CpG density and methylation 

gradients that are seen in only a few sites in the genome including tRNA and rRNA clusters, 

each with unique regulation of copy number and gene expression (Hummel et al. 2019; Hori et 

al. 2023). Understanding these unique structures and regulatory mechanisms is especially 

important in light of emerging therapies including antisFfigense knockdown, targeted re-
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methylation, and other approaches of DUX4 transcriptional regulation (Chen et al. 2016; 

Marsollier et al. 2016; Bouwman et al. 2021; Cohen et al. 2021; Himeda et al. 2021; 

Rashnonejad et al. 2021).   

 

METHODS 

Subjects and samples.   

Subjects with clinical history of FSHD and healthy controls were enrolled after consent 

to participation under a University of Utah Institution Review Board approved protocol.  FSHD1 

participants had either confirmed clinical genetic testing or positive family history of FSHD with 

clinical symptoms consistent with FSHD.  FSHD2 participants had pathogenic variants in 

SMCHD1 identified by clinical genetic testing.  Publicly available Oxford Nanopore files were 

downloaded from the Oxford Nanopore Open Data set under an Amazon Web Services S3 

bucket  s3://ont-open-data/cliveome_kit14_2022.05/ for the peripheral blood library prepared 

from a control subject (C4). Genomic DNA was purified from whole blood using standard 

techniques provided by Gentra Puregene Blood Kits (Qiagen, cat # 158389). 

 

Targeted nanopore sequencing 

 Genomic DNA libraries were generated using the Cas9 Sequencing Kit (Oxford 

Nanopore Technologies, cat # SQK-CS9109).  crRNAs are annealed with tracrRNA (IDT, cat # 

1072532) by combining: 1 µL of 100µM of crRNA pooled oligonucleotides (see Supplemental 

Table S7 for sequences), 1 µL of 100 µM tracrRNA, 8 µL Nuclease-free Duplex buffer (IDT, 

cat # 1072570) and heated to 95oC for 5 min.  Cas9 ribonucleoprotein complexes (RNPs) were 

assembled in a 1.5 mL microfuge tube by mixing: 79.2 µL Nuclease-free water, 10 µL Reaction 
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Buffer, 10 µL annealed crRNA/tracrRNAs, 0.8 µL HiFi Cas9 Nuclease v.3 (IDT, cat # 1081060) 

and incubating at room temperature for 30 min. Genomic DNA was dephosphorylated by 

incubating 3 µL Reaction Buffer, 6 µg genomic DNA and 3 µL of Phosphatase at 37oC for 10 

min in a total volume of 30 µL, followed by 80oC for 2 min. to denature.  Cleavage and dATP-

tailing of the dephosphorylated DNA was performed by adding 10 µL of the Cas9 RNPs, 1 µL 

10 mM dATP, 1 µL of Taq Polymerase and incubating at 37oC for 15 min. in a total volume of 

42 µL, followed by 72oC for 5 min. to inactivate the enzyme. 

Ligation of sequencing adapters to the genomic DNA was performed by combining 20 

µL Ligation Buffer (LNB), 3 µL Nuclease-free water, 10 µL T4 DNA Ligase (LIG) and 5 µL 

Adapter mix (AMX) in a separate microfuge tube.  The adapter mixture was then gently added in 

2 successive aliquots to the sample and incubated at room temp. for 10 min. The Cas9 library 

was purified using AMPure XP (Beckman Coulter, cat # A63881) beads.  80 µL of SPRI dilution 

buffer was added to the library and bound to 48 µL of the beads at room temp. for 10 min.  The 

beads were washed 2x with 250 µL of either Long Fragment Buffer (p13E-11 and pLAM guide 

RNAs) or Short Fragment Buffer (D4Z4 guide RNA).  After a brief drying the beads were 

resuspended in either 13 µL (MinION samples) or 7 µL (Flongle samples) of Elution Buffer 

(EB), incubated at room temp. for 10 min. and transferred to a new microfuge tube.     

Cas9 libraries were loaded onto either MinION Flow Cells (Oxford Nanopore 

Technologies, cat # FLO-MIN106D, version R9.4.1 or FLO-MIN114, version R10.4.1) and run 

on a MinION Sequencing Device (Oxford Nanopore Technologies, cat # MIN-101B) or loaded 

onto Flongle Flow Cells (Oxford Nanopore Technologies, cat # FLO-FLG001) and run on a 

Flongle adapter (Oxford Nanopore Technologies, cat # ADP-FLG001) inserted into the MinION 

Sequencing Device.  The MinION Flow Cells were primed with 1000 µL Flush Buffer (FB) + 
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FLT (Oxford Nanopore Technologies, cat # EXP-FLP002).  12 µL of the Cas9 libraries were 

combined with 37.5 µL Sequencing Buffer (SQB) + 25.5 µL Loading Beads (LB) and loaded 

onto the MinION Flow Cell.  The Flongle Flow Cells were primed with 117 µL Flush Buffer II 

(FBII) + 3 µL FLT (Oxford Nanopore Technologies, cat # EXP-FSE001).  5 µL of the Cas9 

libraries were combined with 15 µL Sequencing Buffer II (SBII) + 10 µL Loading Buffer II 

(LBII) and loaded into the Flongle Flow Cell.  Data collection was controlled using the 

MinKNOW software on a Linux desktop computer through a USB 3.0 port as described for the 

MinION Mk1B IT requirements (Oxford Nanopore Technologies). 

 

Modified basecalling and alignment 

 Read-level modified basecalling was performed on fast5 files producing FASTQ and bam 

output files using the GPU-enabled ONT guppy_basecaller v6.3.8 with the options “--

trim_adapters --trim_strategy dna --do_read_splitting” and the 

dna_r9.4.1_450bps_modbases_5mc_cg_sup.cfg or 

dna_r10.4.1_e8.2_400bps_modbases_5mc_cg_sup.cfg config files, unless otherwise noted. 

FASTQ/A sequences were aligned to the T2T CHM13v2.0 reference genome that included a 200 

kb accessory sequence for the 4qB D4Z4 region from the HG002 chromosome 4 sequence. 

Minimap2 (v2.22) and samtools (v1.12) (Li 2021) was used to generate and process alignments 

using the options “-ax map-ont” and parsing the output with the samtools -F 2304 flag to remove 

secondary and supplementary alignments. Alignments were processed with custom scripts that 

regionally extracted FASTA reads for secondary local alignments to 4q, 10q, and 4qB reference 

sequence using CrossMatch (http://www.phrap.org/phredphrapconsed.html, implementing the 

Smith–Waterman alignment) for scoring mismatches and assigning reads to haplotypes. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.02.17.528868doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.17.528868
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

32 
 

 

CpG methylation analysis 

Reference-based modified basecalling was performed using Megalodon v2.5.0 

(https://github.com/nanoporetech/megalodon) with guppy v.6.4.2 using the Remora modified 

base model. The megalodon options included the remora settings as “--remora-modified-bases 

dna_r9.4.1_e8 sup 0.0.0 5mc CG 1 --mod-map-base-conv m C”, the guppy settings “--guppy-

config dna_r9.4.1_450bps_modbases_5mc_cg_sup.cfg”, and the output settings as “--outputs 

basecalls mappings mod_mappings mods”. Single-read methylation plots were generated with 

modbamtools (https://www.biorxiv.org/content/10.1101/2022.07.07.499188v1) and averaged 

methylation levels from the reference anchored base calls were parsed from the Megalodon 

per_read_modified_base_calls.txt output file. Aggregate modified base counts stored in a 

modified-base BAM files were converted to bedMethyl files using the modbam2bed tool 

(https://github.com/epi2me-labs/modbam2bed). All statistical analyses of methylation levels 

were performed with R version 4.2.1. The linear mixed-effect model analysis used the lme4, 

lmerTest, and broom.mixed packages with the model equation:  fitN <- lmer(met_freq ~ 

(RepeatN * Sample) + (1+RepeatN | read), REML = F), where met_freq was the repeat-level 

methylation value, RepeatN was D4Z4 repeat number (centromeric repeat numbering beginning 

at 0) and read as the nanopore read name.  Kernel smoothing of bedMethyl files was performed 

with the R package smoothr using the smooth_ksmooth function and plotted with ggplot2. 

Analysis files for HG002 5mC CpG and other methylation from ONT and HiFi data sets 

produced by the telomere-telomere consortium were downloaded from the Epigenetic profile 

link at https://github.com/marbl/CHM13 to https://s3-us-west-2.amazonaws.com/human-

pangenomics/index.html?prefix=T2T/CHM13/assemblies/annotation/regulation/. 
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DATA ACCESS 

The nanopore sequencing data generated in this study have been submitted to the NCBI 

Sequence Read Archive (SRA) repository (https://www.ncbi.nlm.nih.gov/bioproject/) under the 

BioProject ID PRJNA940957 (see also Supplemental Table S8).  
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