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Abstract  14 
Epigenetic researchers often evaluate DNA methylation as a mediator between social/environmental 15 
exposures and disease, but modern statistical methods for jointly evaluating many mediators have not 16 
been widely adopted. We compare seven methods for high-dimensional mediation analysis with 17 
continuous outcomes through both diverse simulations and analysis of DNAm data from a large national 18 
cohort in the United States, while providing an R package for their implementation. Among the 19 
considered choices, the best-performing methods for detecting active mediators in simulations are the 20 
Bayesian sparse linear mixed model by Song et al. (2020) and high-dimensional mediation analysis by 21 
Gao et al. (2019); while the superior methods for estimating the global mediation effect are high-22 
dimensional linear mediation analysis by Zhou et al. (2021) and principal component mediation analysis 23 
by Huang and Pan (2016). We provide guidelines for epigenetic researchers on choosing the best method 24 
in practice and offer suggestions for future methodological development.  25 

 26 

Introduction 27 
In this study, we review and evaluate the available methods for performing mediation analysis when the 28 
mediators are high-dimensional DNA methylation (DNAm) measurements. DNAm is an epigenomic 29 
mechanism describing when a methyl group binds to the DNA, which occurs predominantly at cytosine-30 
guanine dinucleotides, called “CpG sites.” DNAm has an important role in regulating gene expression 31 
across the entire genome, and is particularly impactful at CpG sites in the promoter regions of genes, 32 
where it can inhibit the binding of enzymes needed for transcription1.   33 

Recent advancements in technology have made it possible to collect DNAm data on a massive 34 
scale2. Indeed, microarray technologies have enabled the measurement of over 850,000 CpG sites 35 
simultaneously2, encouraging broad research on DNAm in the etiology of disease; and studies taking 36 
advantage of these tools have identified DNAm as a risk factor in obesity3,4, type II diabetes5 and 37 
cardiovascular conditions6,7. At the same time, however, DNAm has also been linked to exposures such as 38 
diet8, smoking9, alcohol10, air pollution11, and socioeconomic status (SES)12,13, which has prompted 39 
research on whether the effects of these exposures on health outcomes could be transferred by changes in 40 
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DNAm. Effect transmission of this nature is called mediation, and it has become popular in epigenomic 41 
research to treat DNAm as a high-dimensional mediator between environmental exposures and human 42 
disease14. 43 

As an example of such an analysis, our previous work15,16 examined the association between low 44 
SES and glycated hemoglobin (HbA1c) in the Multi-Ethnic Study of Atherosclerosis (MESA), a United 45 
States population-based longitudinal study17. Indicators of SES, such as education level, are strong 46 
predictors of type II diabetes18, while HbA1c is an important risk factor of cardiovascular disease and a 47 
critical biomarker in type II diabetes diagnosis19–21. Since education level is also associated with 48 
DNAm12,13,22, and DNAm itself with HbA1c level23, we hypothesized that if low education results in 49 
greater HbA1c, part of that effect could be mediated by DNAm (Fig. 1). In the current study, we revisit 50 
this hypothesis for the purpose of illustration. Our sample from MESA has 963 individuals and includes 51 
DNAm measurements at 402,339 CpG sites, none of which we know for certain are related to education 52 
or HbA1c in advance. 53 

 54 

 55 
Fig. 1. Proposed causal mechanism in which the effect of low education on HbA1c is mediated by DNAm 56 
 57 
 The standard statistical tool for addressing such a hypothesis is mediation analysis. Formally, 58 
mediation is when an exposure, say A, affects an outcome, Y, in part through its effect on a single 59 
mediating variable M. When M is a mediator of the A to Y association, the total effect of A on Y has two 60 
components: an indirect effect, from A affecting M and M affecting Y, and a direct effect, from A affecting 61 
Y independently of M. In the “traditional mediation analysis” approach proposed by Baron and Kenny 62 
(1986), the associations from this mechanism could be measured by fitting a few regression models: one 63 
for the effect of A on M (the mediator model), one for the effects of A and M on Y (the outcome model), 64 
and sometimes a third model for the total effect of A on Y, M ignored24–26. The more recently developed 65 
“causal mediation analysis,” based on the counterfactual approach27,28, has established conditions under 66 
which the parameters of these models can be interpreted as causal effects29. The causal  approach is more 67 
flexible when Y or M are binary and when there is A-M interaction in the outcome model30.  68 
 69 

 70 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.10.23285764doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.10.23285764
http://creativecommons.org/licenses/by-nc-nd/4.0/


While standard examples of mediation consider only one exposure, one mediator, and one 71 
outcome31,32, there has been growing interest in methods for mediation that can handle many potential 72 
mediators at once. Epigenetic studies have felt this need especially, as DNAm is usually measured at 73 
several hundred thousand CpG sites with little prior knowledge of their importance. In settings such as 74 
this, a naïve strategy would be to evaluate the potential mediators one at a time, each with their own pair 75 
of models; but if the mediators are correlated this approach is inefficient, and the resulting estimates are 76 
potentially biased due to confounding from the excluded co-mediators31. Instead, so that we leverage 77 
these correlations rather than ignore them, the preferred approach is to assess the mediators jointly, in a 78 
single multivariable model. Although several methods for fitting such a model have been presented in the 79 
literature, none of them are widely used in analyzing DNAm data, a sign that epigenetic research is still 80 
catching up to recent developments in mediation analysis with high-dimensional mediators.  81 

Our study aims to bridge this gap and guide researchers in epigenetics to use state of the art 82 
methods for mediation analysis with high-dimensional mediators. Despite the recent methodological 83 
developments, there are no clear-cut standards for which methods should be applied in which 84 
circumstances, making it difficult to select the best-suited method for an analysis in advance. While our 85 
prior research examined methods for large scale single-mediator hypotheses31, there is no such work for 86 
methods that can incorporate many potential mediators at once. Our study addresses this question first 87 
with an extensive simulation study, directly comparing the performance of sevesn different methods for 88 
mediation with high-dimensional mediators across a spectrum of settings. Along with metrics related to 89 
identification of key mediators and estimation of mediation effect, we include a computation time 90 
comparison to evaluate the scalability of the methods to large datasets. Next, to assess the utility of these 91 
methods on real data, we apply the same seven methods—plus two additional methods adapted from 92 
them—on the data from MESA to evaluate the mediating role of DNAm in the association between low 93 
education level and HbA1c. Our study is the first to address this critical gap in the epigenetic mediation 94 
literature, both by providing clarity on the methods available and by assessing their strengths and 95 
weaknesses under different settings. Moreover, although the analysis is centered around DNAm, the 96 
methods we deploy are not specific to epigenetics, and our results and guidelines should be similarly 97 
useful for researchers studying high-dimensional mediation problems in other fields. We include, 98 
supplementary to our study, an R package for implementing the methods, called “hdmed,” so that 99 
researchers have access to a centralized resource they can draw from in their own high-dimensional 100 
mediation analyses. 101 

 102 

Notations and General Framework 103 
Before proceeding, it will be useful to provide an overview of the relevant mediation model and 104 

to summarize the types of methods which have become available. To begin, suppose we have a dataset of 105 
n individuals: an exposure Ai, a continuous outcome Yi, and continuous mediators Mi measured for the ith 106 
person, i varying from 1 to n. We write Mi in bold to indicate its status as a vector—in this case, a set of p 107 
mediators Mi

(j), j varying from 1 to p. Let Ci be a vector of q covariates. When p is greater than 1, we can 108 
use the regression models  109 

𝐸𝐸[𝑌𝑌𝑖𝑖|𝐴𝐴𝑖𝑖 ,𝑴𝑴𝑖𝑖 ,𝑪𝑪𝑖𝑖] = 𝛽𝛽𝑎𝑎𝐴𝐴𝑖𝑖 + 𝜷𝜷𝒎𝒎𝑻𝑻 𝑴𝑴𝑖𝑖 + 𝜷𝜷𝒄𝒄𝑇𝑇𝑪𝑪𝑖𝑖  (1) 110 
and 111 

𝐸𝐸[𝑴𝑴𝑖𝑖|𝐴𝐴𝑖𝑖 ,𝑪𝑪𝑖𝑖] = 𝜶𝜶𝒂𝒂𝐴𝐴𝑖𝑖 + 𝜶𝜶𝒄𝒄𝑪𝑪𝑖𝑖  (2) 112 
to estimate the mediating role of Mi in the causal pathway between the exposure and outcome33. Model 113 
(1) is the outcome model and model (2) is the mediator model. In model (1), βm is a p-vector in which the 114 
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jth component, (βm)j, is the linear association of jth mediator with Yi adjusting for the other variables; while 115 
βa is the association between Ai and Yi adjusting for mediators and covariates. In model (2), αa is a p-116 
vector of the associations between the exposure and each mediator, (αa)j; and 𝜶𝜶𝒄𝒄 is a matrix with the 117 
mediator-covariate associations. Also note that in model (1), we have assumed there is no interaction 118 
between Ai and Mi, which is beyond the scope of our present study. 119 

The parameters of these models underly the causal effects of interest. Under certain 120 
assumptions27,33, the direct effect of Ai on Yi is βa, the global indirect effect (or global mediation effect) of 121 
Ai on Yi through Mi is αa

Tβm, and the total effect of Ai on Yi is βa + αa
Tβm. Another quantity of interest is 122 

the proportion mediated, defined as the ratio of the global indirect effect to the total effect, which 123 
measures the degree to which the Ai to Yi pathway is mediated by Mi. We may also seek to measure the 124 
product terms (αa)j(βm)j, which measure the contribution of the jth mediator to the global indirect effect, 125 
since summing these for j from 1 to p yields αa

Tβm. However, we emphasize that (αa)j(βm)j cannot be 126 
interpreted as a causal effect through the jth mediator on its own, since we have made no assumptions 127 
about the causal ordering of the mediators and can only formally treat them as a joint system. Instead, we 128 
call (αa)j(βm)j the mediation contribution, and describe the jth mediator as active if its contribution is not 129 
zero.  130 
 If the potential mediators are uncorrelated, conditional on the exposure and covariates, or if p is 131 
reasonably small relative to n, then it is trivial to fit the above models using linear regression. However, if 132 
the mediators are correlated and p is large, the estimates from model (1) may have extremely high 133 
variance; and if p is so large as to exceed n, the linear regression model cannot even be fitted. These 134 
concerns are relevant to us because DNAm measurements tend to be correlated, while the number of sites 135 
that we have measurements on exceeds the number of samples. Addressing these issues has been a focus 136 
of the mediation literature, with authors using penalized regression34–38, dimension reduction39–41, 137 
Bayesian inference15,42, and latent variables43 to make the outcome model statistically tractable.   138 
 We provide a graphical depiction of eleven available methods in Fig. 2, dividing them into three 139 
different groups. Each method is described in greater detail in the Methods section and up to nine of them 140 
are included in the analysis. In the first group, we consider methods that fit the above pair of models 141 
explicitly, allowing one to estimate αa

Tβm, the global indirect effect, simply by summing the estimated 142 
mediation contributions. These include high-dimensional mediation analysis (HIMA) by Zhang et al. 143 
201634, high-dimensional mediation analysis (HDMA) by Gao et al. 201935, mediation analysis via fixed 144 
effect model (MedFix) by Zhang 201936, pathway least absolute shrinkage operator (pathway LASSO) by 145 
Zhao and Luo 202237, the Bayesian sparse linear mixed model (BSLMM) by Song et al. 202015, and the 146 
Gaussian mixture model (GMM) by Song et al. 202142. In the second group, we consider methods that 147 
can estimate αa

Tβm “directly”; in other words, without needing to fit the original pair of models explicitly. 148 
These have the drawback of being unable to identify specific active mediators because they do not 149 
provide estimates of the mediation contributions. They include principal component mediation analysis 150 
(PCMA) by Huang and Pan 201639, sparse principal component mediation analysis (SPCMA) by Zhao et 151 
al. 202040, and high-dimensional linear mediation analysis (HILMA) by Zhou et al. 202138. Last, in the 152 
third group, we consider methods that make no attempt to estimate the mediation effects as originally 153 
proposed, but instead reconceptualize the mediation framework with newly-defined parameters based on 154 
latent variables. This group includes the methods high-dimensional multivariate mediation analysis 155 
(HDMM) by Chén et al. 201841 and latent variable mediation analysis (LVMA) by Derkach et al. 202143. 156 
Within this comparative structure, we evaluate methods from all three groups, identifying their strengths 157 
and weaknesses across a wide range of simulation settings and analysis of DNAm data from MESA.  158 
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 159 
 160 
 161 

Fig. 2. Methods for mediation analysis with high-dimensional DNAm data. Figure describes eleven methods for 162 
mediation analysis that can be applied to high-dimensional DNA methylation data, each of which is described in 163 
greater detail in the Methods section. Seven of these methods are included in the simulation study and nine in the 164 
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observed DNAm data analysis with MESA. Group 1 methods fit the outcome model explicitly using penalized 165 
regression or Bayesian regresion; Group 2 methods obtain the global mediation effect without fitting the original 166 
outcome model explicitly; and Group 3 methods measure mediation through latent variables. 167 

 168 

Results 169 

Simulation Results 170 
We begin by comparing the performance of the methods using simulations, where we know and 171 

can control the true values of the parameters. On simulated data with 2,000 (potential) mediators and 172 
either 1,000 or 2,500 observations, we consider (1) a baseline setting, where the mediators are moderately 173 
correlated and their signals are sparse; (2) a high-correlation setting, where the correlations between 174 
mediators are enhanced compared to (1); and (3) a non-sparse setting, where every mediator has at least 175 
some mediation signal but some of the signals are systematically larger. In Settings (1) and (2), 60 176 
random mediators have (αa)j only sampled from a Normal(0,1), 60 have (βm)j only sampled from a 177 
Normal(0,1), and 20 have both, with the remaining entries of αa and βm fixed at zero. In Setting (3), we 178 
use a similar scheme, but sample the previously zero (αa)j and (bm)j from a Normal(0,0.22). Our 179 
simulations also vary the strength of the signals within each of these settings by changing the proportion 180 
of variance that is explained by the associations. We do so by changing PVEA, the proportion of variance 181 
in each mediator that can be explained by A, among those mediators that are affected by A; PVEIE, the 182 
proportion of variance of Y that is explained by the total mediation effect; and PVEDE, the proportion of 183 
variance of Y that is explained by the direct effect of A on Y. Results for varying PVEIE are presented here 184 
while results for varying PVEDE and PVEA are included in the supplement (Supplementary Figs 1-4). In 185 
addition to the high-dimensional mediation methods, we include a one-at-a-time method44 in which the 186 
mediators are assessed individually using linear regression. We evaluate the methods by their true 187 
positive rate (TPR) for detecting active mediators, their mean squared error (MSE) for estimating the 188 
contributions of active and inactive mediators, and their percent relative bias for estimating the global 189 
indirect effect. See Methods for more details. 190 
 191 
True positive rate 192 

Fig. 3 compares the TPR detecting active mediators of the Group 1 methods and the one-at-a-time 193 
method. The value shown is the mean TPR over 100 simulated datasets and a 95% empirical confidence 194 
interval (CI). On each dataset and for each method, thresholding was used to keep the false discovery rate 195 
(FDR) below 10%. For the non-sparse setting, we show the TPR for detecting mediators whose (αa)j and 196 
(βm)j were both sampled from Normal(0,1) rather than Normal(0,0.22). We include the Group 1 methods 197 
HIMA, HDMA, MedFix, pathway LASSO, and BSLMM. We focus on TPR but not false positive rate 198 
(FPR) because the FDR correction was highly conservative, the mean FPR ranging from 0 to 5.1x10-4 199 
across all settings and methods.  200 

For a sample size of 2,500 and a PVEIE of 0.10, the most powerful method in the baseline setting 201 
was BSLMM (mean TPR: 0.45; CI: 0.25 - 0.63), whose average TPR was 40% higher than that of the 202 
second-best method, HDMA. BLSMM also performed best when PVEIE was 0.05 (mean TPR: 0.25; CI: 203 
0.02 - 0.48), but to a lesser degree, outperforming HDMA by only 13%. BSLMM remained the best 204 
method, and HDMA the second best, no matter the signal strength or the degree of correlations, but 205 
performed poorly when the signals were non-sparse. In the setting with 1,000 observations, PVEIE set to 206 
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0.05, and non-sparse signals, the best-performing method was HIMA (mean TPR: 0.09; CI: 0.05 - 0.10), 207 
its average TPR 3.3 times higher than that of BSLMM, which performed worst.  208 
 209 

Fig. 3. True positive rate for detecting mediation signals at a false discovery rate of 10%. Value shown is the 210 
mean TPR across 100 simulated data replicates, with intervals representing the inner 95% range. In the baseline and 211 
high-correlation-among-mediators settings, TPR is for distinguishing mediators which contribute to the global 212 
mediation effect from those which do not, whereas in the non-sparse setting, TPR is for distinguishing mediators 213 
whose contributions were sampled from a high-variance distribution from those whose contributions were sampled 214 
from a low-variance distribution. False discovery proportion was capped below 10% by a proper choice of the p-215 
value threshold (one-at-a-time, HIMA, HDMA, MedFix), posterior inclusion probability threshold (BSLMM), or 216 
method tuning parameter (pathway LASSO).  217 
 218 
Estimation of contributions of active mediators 219 
Next, we assess the MSE of the methods for estimating mediation contributions, relative to the one-at-a-220 
time approach. In Fig. 4, we show the relative MSE (rMSE) for estimating mediation contributions 221 
among the mediators that were either active (in the baseline and high-correlation settings) or had (αa)j or 222 
(βm)j sampled from the larger-variance distribution (in the non-sparse setting). In the baseline setting with 223 
2,500 observations, the best-performing method when the mediation signal was strong was BSLMM, 224 
whose mean rMSE of 0.59 (CI: 0.13 - 1.51) was 24% lower than that of HDMA, the second-best method. 225 
However, when the PVEIE was reduced to 0.05 or the sample size reduced to 1,000, the best-performing 226 
method was either HDMA or MedFix, with MedFix (mean rMSE: 0.79; CI: 0.31 - 1.53) performing 61% 227 
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better than BSLMM after reducing both. Similar trends were observed for the high-correlation and non-228 
sparse settings.  229 
 230 

Fig. 4. MSE in estimating mediation contributions of active mediators, relative to one-at-a-time method. Y-231 
axis is on a log10 scale. Value shown is the mean of the relative mean-squared error for estimating mediation 232 
contributions among active mediators (relative to the one-at-a-time approach) across 100 simulated data replicates, 233 
with intervals representing the inner 95% range. For baseline and high-correlation-between-mediators settings, 234 
active mediators which contribute to the global mediation effect, whereas in the non-sparse setting, active mediators 235 
are those whose contributions were sampled from a distribution with large variance instead of small.   236 

 237 
Estimation of contributions of inactive mediators 238 

Figure 5 shows the rMSE among the mediators that either were not active (in the baseline and 239 
high-correlation settings) or had (αa)j or (βm)j sampled from the smaller-variance distribution (in the non-240 
sparse setting). We exclude pathway LASSO from Fig. 4 because for the baseline and high-correlation 241 
settings it had rMSEs of exactly zero. The reason for this is that pathway LASSO tended to be highly 242 
conservative and successfully assigned inactive mediators to have no effect. As for the other methods, in 243 
the baseline setting with 2,500 samples, MedFix performed the best when PVEIE was 0.10, with a mean 244 
rMSE of 1.8x10-3 (CI: 1.9x10-4 - 6.4x10-3), which was 46% lower than the mean rMSE for the second-best 245 
method, HIMA. In contrast, HIMA was the best-performing method when signal was weakened to a 246 
PVEIE of 0.05, attaining a mean rMSE of 2.8x10-4 (CI: 0.0 - 1.3x10-3), which was 94% lower than that of 247 
the second-best, MedFix. Results were similar when the correlations between mediators were heightened 248 
and when the sample size was reduced. In the settings where mediation signals were non-sparse, the best-249 
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performing method was always HIMA, which had a mean rMSE of 3.7x10-2 (CI: 1.1x10-2 - 6.5x10-2) 250 
when PVEIE was 0.10 and there were 2,500 observations, 2% lower than that of MedFix.  251 
 252 

Fig. 5. MSE in estimating mediation contributions of inactive mediators, relative to one-at-a-time method. 253 
Y-axis is on a log10 scale. Value shown is the mean of the relative mean-squared error for estimating mediation 254 
contributions among inactive mediators (relative to the one-at-a-time approach) across 100 simulated data replicates, 255 
with intervals representing the inner 95% range. For baseline and high-correlation-between-mediators settings, 256 
inactive mediators are those which do not contribute to the global mediation effect, whereas in the non-sparse 257 
setting, inactive mediators are those whose contributions were sampled from a distribution with small variance 258 
instead of large.   259 

 260 
Estimation of global indirect effect 261 

Lastly in Fig. 6, we show the percent relative bias for estimating αa
Tβm, the global indirect effect. 262 

We use the same methods as in Figures 3 to 5 along with the Group 2 methods PCMA and HILMA, 263 
which obtain an estimate of the global indirect effect without needing to directly fit the original mediation 264 
model. (The Group 2 method SPCMA is excluded for computational reasons.) In the baseline setting with 265 
2,500 samples, the best performer when PVEIE was 0.10 was HILMA, whose mean relative bias of 9% 266 
(CI: 0.6% - 20.8%) was 40% lower than that of HDMA, the second-best. Next, when the PVE was 267 
reduced to 0.05, the best-performing method was MedFix (mean relative bias: 20.5%; CI: 1.0% - 43.8%), 268 
which outperformed HILMA by only 7%. We observed similar results for a sample size of 1,000 and 269 
high-correlations. In the non-sparse settings, where the biases tended to be much higher, the best 270 
performing methods were either PCMA or HDMA.  271 
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 272 
 273 

Fig. 6. Percent relative bias in estimated global indirect effect. Value shown is the mean of the percentage 274 
relative bias in estimating the global mediation effect across 100 simulated data replicates, with intervals 275 
representing the inner 95% range.  276 
 277 
Scalability 278 
 We evaluated the scalability of the methods by running them 30 times on a common computing 279 
platform, and recording their run time (Table 1). This was done in both a small data setting (n = 100, p = 280 
200) and a big data setting (n = 1,000, p = 1,000). On the larger dataset, the methods MedFix, HDMA, 281 
and PCMA posed insignificant computational burden; whereas BSLMM took an average of 40.1 minutes 282 
per run (assuming 30,000 posterior samples), HILMA an average of 40.9 minutes per run, pathway 283 
LASSO an average of 192.6 minutes per run, and SPCMA an average of 842.5 minutes per run (assuming 284 
100 principal components). Run times were substantially lower in the smaller dataset, the slowest method, 285 
pathway LASSO, only taking an average of 18.71 minutes. The memory consumption of the methods is 286 
included in Supplementary Table 1.  287 
 288 
 289 
 290 
 291 
 292 
 293 
 294 
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 295 
 296 
Table 1. Computation time comparison for high-dimensional mediation analysis methods 297 

Method 
n = 100, p = 200 n = 1,000, p = 2,000 

Mean Interquartile Range Mean Interquartile Range 
BSLMM 39.17s  (38.84s - 39.54s) 40.14m  (39.74m - 40.34m) 
HDMA 1.40s  (1.37s - 1.40s) 29.76s  (29.55s - 29.92s) 
HDMM 24.85s  (24.80s - 24.89s) 12.36m  (12.33m - 12.37m) 
HILMA 24.42s  (24.13s - 24.63s) 40.85m  (38.22m - 40.65m) 
HIMA 0.25s  (0.25s - 0.25s) 3.55s  (3.47s - 3.62s) 

MEDFIX 0.61s  (0.60s - 0.61s) 7.33s  (7.22s - 7.42s) 
PCMA 2.77s  (2.74s - 2.79s) 58.97s  (58.08s - 59.35s) 

PLASSO 18.71m  (18.19m - 19.23m) 192.62m  (188.10m - 195.83m) 
SPCMA 16.05m  (15.94m - 16.04m) 842.54m  (827.26m - 855.21m) 

Methods were run 30 times each on a single core of an Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz processor.  298 
 299 

DNAm data analysis results from MESA 300 
For our real data analysis, we applied the methods on a dataset with high-dimensional epigenetic 301 

mediators. Our exposure of interest was low SES—measured by educational attainment below a four-year 302 
degree—while our outcome variable was HbA1c level and our potential mediators were DNAm 303 
measurements at 402,339 CpG sites. Since the methods are incapable of handling so many CpG sites at 304 
once, we reduced our scope to only include the 2,000 sites with the strongest association with low SES. 305 
This was based on a linear mixed-model adjusting for age, sex, race, and the estimated proportions of 306 
residual non-monocytes as fixed effects and methylation chip and position as random effects. Our final 307 
dataset contained these 2,000 CpG sites and 963 samples. HbA1c, DNAm, and all other continuous 308 
variables were standardized prior to analysis. 309 
 310 
Identification of noteworthy CpG sites 311 

We identified CpG sites that potentially mediated the relationship between low SES and HbA1c 312 
using the Group 1 methods HIMA, HDMA, MedFix, pathway LASSO, and BSLMM. In HIMA, HDMA, 313 
MedFix, and pathway LASSO, which involve feature selection, we describe a CpG site to be “active” if 314 
its estimated mediation contribution is not zero; whereas in BSLMM, we do so if the estimated posterior 315 
inclusion probability is not zero (see Methods). We also included a one-at-a-time method in which the 316 
CpG sites were assessed individually with linear mixed models, identifying active mediators with the 317 
joint significance test44. Out of 2,000 CpG sites, HIMA found 3 sites to be noteworthy, HDMA found 11, 318 
MedFix found 3, pathway LASSO found 141, and BSLMM found 3, amounting to 144 unique CpG sites 319 
in total. The one-at-a-time method identified zero CpG sites as noteworthy at an FDR threshold of 10%. 320 
Eleven CpG sites were identified as noteworthy by at least two of the methods (Table 2). Among these 321 
11, the estimated mediation contributions were similar across methods in direction and size except for 322 
BSLMM, for which the estimates were an order of magnitude smaller than the others but in the same 323 
direction.  324 

 325 
 326 
 327 
 328 
 329 
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 330 
 331 

 332 
Table 2. Estimated contributions of noteworthy CpG sites on the mediation pathway between low 333 
education and HbA1c 334 

CpG Name Chromosome 
Nearby 
Gene(s) 

USCS 
RefGene 

Group 

Univariate  
(0 sites 

identified) 

HIMA  
(3 sites 

identified) 

HDMA  
(11 sites 

identified) 

MedFix  
(3 sites 

identified) 

Pathway 
LASSO 

(141 sites 
identified) 

BSLMM 
(3 sites 

identified) 
cg10508317 17 SOCS3 Body 3.48 x10-2 1.59 x10-2* 3.56 x10-2* 2.90 x10-2* 2.35 x10-2* 0.25 x10-2 
cg01288337 14 RIN3 Body 3.35 x10-2 1.47 x10-2* 2.82 x10-2* 2.70 x10-2* 4.43 x10-2* 0.21 x10-2 
cg10244976 16 LMF1 Body 3.00 x10-2 0 2.78 x10-2* 0 2.23 x10-2* 0.19 x10-2 
cg07516252 14 REC8 TSS200 2.72 x10-2 0 2.24 x10-2* 0 2.26 x10-2* 0.26 x10-2 

cg07571519 10 
C10orf105; 

CDH23 3'UTR; Body 2.53 x10-2 0.33 x10-2* 3.67 x10-2* 1.47x10-2* 2.81 x10-2* 0.21 x10-2 
cg23079012 2 LINC00299 Body 2.27 x10-2 0 1.99 x10-2* 0 1.98 x10-2* 0.29 x10-2 
cg01587454 8 DCAF4L2 1stExon 1.77 x10-2 0 2.10 x10-2* 0 1.99 x10-2* 0.38 x10-2 
cg27527503 4 HADH TSS1500 1.75 x10-2 0 1.86 x10-2* 0 1.27 x10-2* 0.23 x10-2 
cg25891647 11 GRAMD1B Body -1.27 x10-2 0 -3.42 x10-2* 0 -3.02 x10-2* -0.33 x10-2 
cg08473752 17 NLK Body -0.70 x10-2 0 -2.34 x10-2* 0 -2.32 x10-2* -0.22 x10-2 
cg12644059 15 BLM N/A1 -0.03 x10-2 0 -2.31 x10-2* 0 -1.84 x10-2* -0.22 x10-2 

*Selected as noteworthy by given method 335 
1CpG site cg12644059 is 3.240kb from the final base pair of the BLM gene 336 
Table includes all CpG sites that were selected as having a noteworthy mediation contribution by at least two of the 337 
implemented methods out of 2,000 CpG sites in total. Criteria for CpG identification varied by method. All 338 
estimates are adjusted for age, sex, race, and the estimated proportions of residual non-monocytes as fixed effects, 339 
along with methylation chip and position as random effects to address potential batch effects. Note that for HIMA, 340 
HDMA, MedFix, and pathway LASSO, which fit high-dimensional regression models, we used additional pre-341 
screening to reduce the number of mediators in advance to only n/log(n) ≈ 141 CpG sites, which is the approach 342 
recommended by the HIMA and HDMA authors and helps with statistical and computational efficiency (see 343 
Methods). Pathway LASSO selected all of these 141.  344 

 345 
Some of these CpG sites were on or nearby genes that are potentially related HbA1c. Site 346 

cg10508317 is in the body of the SOCS3 gene, for which a rich body of literature has established links 347 
between overexpression and insulin resistance45. The same site has also been identified in MESA as a 348 
mediator between adult SES and BMI46 and adult SES and HbA1c31 based on previous one-at-a-time 349 
analyses. Site cg01288337, in the body of the RIN3 gene, has been identified in MESA as a potential 350 
mediator between adult SES and HbA1c based on one-at-a-time analysis as well31. The RIN3 gene itself is 351 
proximal to the SLC24A4 gene, both of which have been linked to brain glucose metabolism in human 352 
population studies47. In addition, site cg27527503 is in the promoter region of the HADH gene, which is 353 
differentially expressed with respect to diabetes status48 and is a primary driver of hyperinsulinism49 and 354 
hyperinsulinaemic hypoglycemia (low blood sugar due to excess insulin)50. A Venn diagram of genes 355 
identified by the methods is included in Supplementary Fig. 5, and results for every noteworthy CpG site 356 
are listed in Supplement File 1.  357 
 358 
Global mediation through DNAm 359 

Next, we estimated the direct effect of low education on HbA1c, the global indirect effect of low 360 
education on HbA1c through DNAm, and the total effect of low education on HbA1c using the Group 1 361 
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methods HIMA, HDMA, MedFix, pathway LASSO, and BSLMM, as well as the Group 2 methods 362 
PCMA, SPCMA, and HILMA (Table 3). Results across methods varied considerably, with the estimated 363 
global indirect effect ranging from 0.03 in HILMA to 0.17 in SPCMA. The estimated total effect ranged 364 
from 0.02 (HILMA) to 0.198 (HIMA, HDMA, and MedFix). While HILMA appeared to be an outlier, 365 
some of the other methods were consistent, with HDMA, BSLMM, P- LASSO, PCMA, and SPCMA all 366 
estimating the global indirect effect to be close to 0.15. The variability in the estimated indirect effect and 367 
estimated total effect led to variability in the proportion mediated as well, from 17.1% in HIMA to 100% 368 
in HILMA.  369 
 370 
Table 3. Estimated effects in the mediation mechanism from low education to DNAm to HbA1c 371 

Method Estimated Global 
indirect Effect 

Estimated Direct 
Effect  

Estimated Total 
Effect 

Estimated Proportion 
Mediated 

HIMA 0.03 0.16 0.20 0.17 
HDMA 0.13 0.07 0.20 0.65 
MedFix 0.07 0.13 0.20 0.36 
BSLMM 0.14 0.05 0.18 1.00 

Pathway LASSO 0.13 0.05 0.18 0.74 
PCMA 0.15 0.02 0.17 0.91 

SPCMA 0.17 0.00 0.17 1.00 
HILMA 0.03 0.00 0.03 1.00 

All estimates are adjusted for age, sex, race, and the estimated proportions of residual non-monocytes as fixed 372 
effects, along with methylation chip and position as random effects to address potential batch effects. We provide 373 
only point estimates, not interval estimates, because some of the methods are either not capable of producing 374 
interval estimates or do not provide the code for producing them in their software. For HIMA, HDMA, and MedFix, 375 
which as coded do not directly provide estimates of the direct effect, we first estimate the total effect by fitting the 376 
outcome model with the CpG sites omitted, then estimate the direct effect by subtracting the indirect effect from the 377 
total effect. Note also that, for HIMA, HDMA, MedFix, and pathway LASSO, we used additional screening to 378 
reduce the number of mediators in advance for the sake of statistical and computational efficiency, so only n/log(n) 379 
≈ 141 CpG sites were seen by the multivariate model rather than 2,000 (this approach is recommended by the HIMA 380 
and HDMA authors). 381 
 382 
Additional Findings 383 
 In addition to estimating the global indirect effect, method SPCMA is also able to identify 384 
potentially-mediating CpG sites in groups. It does so by linearly combining the mediators using sparse 385 
principal component-defined weights, then evaluating the resulting principal components as mediators 386 
themselves40. However, out of 100 computed principal components, only three of them had significant 387 
mediation contributions after 10% FDR correction, the first representing a linear combination of 762 CpG 388 
sites, the second a combination of 782 sites, and the third a combination of 797 sites. Since the 389 
transformed mediators are functions of so many CpG sites at once, one cannot make claims about which 390 
particular CpG sites are active mediators, but the method still provides insight to whether there is 391 
statistical mediation at all.  392 
 We finish our analysis by deploying HDMM, a method from Group 3. Unlike the methods in 393 
Groups 1 and 2, HDMM cannot be used to estimate the global indirect effect from the proposed mediation 394 
structure, nor to estimate the mediation contributions of specific CpG sites. Rather, HDMM uses a 395 
likelihood-based approach to compute “directions of mediation”, which are weights that can be used to 396 
linearly combine the observed mediators into unobserved, latent mediators that replace the observed 397 
mediators in the mediation models (similar to PCMA). The estimated effect of the first latent mediator on 398 
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average HbA1c was 0.13, the estimated total effect 0.71, and the proportion mediated 0.715. The three 399 
CpG sites with the largest directions of mediation were cg01288337 (0.36) on the RIN3 gene, 400 
cg16162970 (-0.22) near the PACS2 gene, and cg25891647 (-0.21) on the GRAMD1B gene; the first and 401 
last of which were among the 11 CpG sites identified by other methods in Table 2. Although the size and 402 
direction of these estimates are not interpretable, they offer evidence that these CpG sites are potentially 403 
involved in mediation.  404 
 405 

Discussion 406 
In this study, we reviewed and evaluated statistical methods for performing mediation analysis with high-407 
dimensional DNAm data, so that researchers in epigenetics have the information they need to choose the 408 
most appropriate method for their data sample, subject matter, and research objectives. In extensive 409 
simulations, we found that the most powerful method for identifying active mediators was generally 410 
BSLMM, with HDMA close behind; though the former performed poorly in settings where the mediation 411 
signals were non-sparse. No method was uniformly better than the others at estimating the mediation 412 
contributions, though pathway LASSO was always the weakest. For estimating the global indirect effect, 413 
the best-performing method was HILMA in sparse mediation settings and PCMA or HDMA in non-414 
sparse settings. Our scalability comparison revealed that HIMA, HDMA, MedFix, and PCMA were easily 415 
scalable to large datasets (e.g., n = 1,000 and p = 2,000), whereas SPCMA and pathway LASSO were 416 
extremely computationally costly. 417 

On DNAm data from MESA, 11 CpG sites were selected by at least two of the methods as 418 
mediators between low SES and HbA1c level. Of the many genes related to these sites, SOCS3, RIN3, 419 
and HADH have the strongest potential biological connections to HbA1c45,47,48,50–52, which contributes to 420 
the already rich literature on DNAm as a mediator between the exposome and health outcomes. 421 
Moreover, the methods generally produced similar estimates of the mediation contributions, with the 422 
exception of BSLMM. It is possible that since BSLMM is non-sparse, the estimated mediation 423 
contributions end up severely shrunken compared to the methods which directly select features. 424 

Estimates of the global indirect effect were highly variable. Part of this can be explained by the 425 
fact that HDMA, MedFix, HIMA, and pathway LASSO are sparse models that can set mediation 426 
contributions to be exactly zero, resulting in a rigid and unstable estimation of the global indirect effect. 427 
The method HILMA, which is built specifically for estimating the global indirect effect and direct effect, 428 
produced estimates that were sharply different than the other methods, possibly because our simulations 429 
indicated that it struggled in non-sparse mediation settings.  430 

In practice, the optimal method for mediation analysis with high-dimensional mediators will 431 
depend both on the data and the objective. If the goal is to identify specific CpG sites that are involved in 432 
mediation, one preferred method may be HDMA, which performed well at detecting active mediators in 433 
our simulations and was not overly conservative when applied to the observed data. If one’s focus is the 434 
global indirect effect, our simulations suggested that the optimal method is HILMA; but considering the 435 
variability we observed in our DNAm analysis, it may be worthwhile to apply BSLMM and HDMA as 436 
well to ensure the results are robust. If the results of multiple methods disagree substantially, it may be 437 
difficult to say with confidence which is closest to the truth, and the estimates should be interpreted with 438 
caution. Next, if there is interest in latent, unmeasured mediators, either HDMM or LVMA is worth 439 
attempting, though HDMM is computationally simpler. A detailed decision tree for selecting the optimal 440 
method is included in Fig. 7.   441 

 442 
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 443 
 444 

Fig. 7. Decision tree for selecting a high-dimensional mediation analysis. 445 
 446 

Some strengths of our study include its broad coverage of the available methods, the breadth of 447 
its simulation settings, and the comprehensive set of evaluation criteria. Our analysis of real DNAm data 448 
is especially essential because it elucidates the potential limitations of using these methods in practice, as 449 
it is impossible to incorporate the full complexity of real data sources into contrived simulation settings. 450 
However, our study also has weaknesses. First, since DNAm measurements and HbA1c data were 451 
collected concurrently, and represent only single time points, we cannot interpret the parameters we have 452 
estimated as causal effects. Nor can we interpret the mediation contributions estimated in Table (2) as 453 
causal, since DNAm was correlated across CpG sites and we have made no assumptions about their 454 
causal ordering. Moreover, although it would be optimal to address our research question longitudinally, 455 
with measurements at multiple time points, there is a dearth of mediation analysis methods which can 456 
handle that type of data, and longitudinal mediation analysis with high-dimensional mediators should be a 457 
focus of future methodological development. Second, we limited our analysis to the situation that Y and 458 
M are continuous, that M and A do not interact, and that only one A is of interest. However, we note that 459 
the methods HIMA and HDMA can also be applied to identify active mediators when Y is binary, while 460 
PCMA can be applied to infer the global indirect effect when there is A-M interaction in the outcome 461 
model. MedFix, along with the simultaneously-proposed MedMix (mediation analysis with mixed effect 462 
model by Zhang (2021)) can be applied when both the exposures and mediators are high-dimensional, 463 
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while Huang and Vanderweele (2014) proposed a variance component test of the global indirect effect 464 
when only A is high-dimensional53. As the landscape of methods for high-dimensional mediation analysis 465 
continues to expand, future review studies should consider exploring additional mediation settings (in 466 
presence of non-linearity, interaction) for which statistical methods are continuing to become available. 467 

 468 

Methods 469 

Mediation Model with Multiple Mediators 470 
Let M be a set of p variables, M(1), M(2), to M(p), each a potential mediator in the causal pathway between 471 
A and Y. We assume that the ordering of the potential mediators is arbitrary and that Y is continuous. 472 
Given a dataset of n individuals, with Ai, Yi, Mi, and q covariates Ci measured for each subject i, we can 473 
evaluate the mediating role of M with the models 474 

𝐸𝐸[𝑌𝑌𝑖𝑖|𝐴𝐴𝑖𝑖 ,𝑴𝑴𝑖𝑖 ,𝑪𝑪𝑖𝑖] = 𝛽𝛽𝑎𝑎𝐴𝐴𝑖𝑖 + 𝜷𝜷𝒎𝒎𝑻𝑻 𝑴𝑴𝑖𝑖 + 𝜷𝜷𝒄𝒄𝑇𝑇𝑪𝑪𝑖𝑖  (1) 475 
and 476 

𝐸𝐸[𝑴𝑴𝑖𝑖|𝐴𝐴𝑖𝑖 ,𝑪𝑪𝑖𝑖] = 𝜶𝜶𝒂𝒂𝐴𝐴𝑖𝑖 + 𝜶𝜶𝒄𝒄𝑪𝑪𝑖𝑖 .  (2) 477 
We refer to these as the outcome and mediator models. Bolded terms distinguish vectors from 478 

scalars. Under certain assumptions, the parameters of this model can be used to derive causal effects of 479 
interest: Namely, in addition to the baseline assumption of temporality, we assume (1) that there is no 480 
unmeasured confounding in the exposure-outcome association after conditioning on C, (2) that there is no 481 
unmeasured confounding in the mediator-outcome associations after adjusting for the exposure and C, (3) 482 
that there is no unmeasured confounding of the exposure-mediator associations after conditioning on C, 483 
and (4) that the measured confounders of the mediator-outcome associations are not caused by the 484 
exposure (which would make those confounders mediators themselves). In these circumstances only can 485 
βa be interpreted as the natural direct effect of A on Y, αa

Tβm the natural indirect effect of A on Y through 486 
M, and βa + αa

Tβm the total effect of A on Y33.  We say a mediator M(j) is active if (αa)j(βm)j is not zero, 487 
since it contributes mathematically to the indirect effect, but this contribution itself cannot be formally 488 
interpreted causally unless the mediators are independent conditional on A and C. Extensions of this 489 
framework cover cases when Y is binary, when M is binary, or when the outcome model requires an 490 
interaction effect between M and A33.  491 
 A summary of the methods that can evaluate M as a mediator is provided in Table 4, using the 492 
above pair of models as a frame of reference. We describe each of the methods in greater detail in the 493 
following three sections.  494 
  495 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.10.23285764doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.10.23285764
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 4. Methods Summary.  496 

Name and 
Author 

Estimation of 
global 

indirect effect 

Estimation 
of mediation 
contributions Mediator identification Y Data Type Summary 

Group 1 Methods 
HIMA; Zhang, 
2016 

Point 
estimation 

Point 
estimation 

Yes Continuous or 
binary 
 

Fits the outcome model with the minimax concave penalty. Requires subsequent 
fitting of ordinary least squares regression to test the statistical significance the 
mediation contributions. 

HDMA; Gao, 
2019 

Point 
estimation 

Point, 
interval 
estimation 

Yes Continuous or 
binary 
 

Fits the outcome model with the de-sparsified LASSO penalty.  

MedFix; Zhang, 
2021 

Point 
estimation 

Point, 
interval 
estimation 

Yes Continuous 
 

Fits the outcome model with the adaptive LASSO penalty. Can also be applied 
when the exposure is high-dimensional in addition to the mediators. 

Pathway LASSO 
Zhao and Luo, 
2022 

Point 
estimation 

Point 
estimation 

Yes Continuous 
 

Fits the outcome model and mediator models with a jointly penalized likelihood, 
directly applying shrinkage to the mediation contributions (αa)j(βm)j. 

BSLMM; Song, 
2020 

Bayesian 
point, 
interval 
estimation 

Bayesian 
interval 
estimation 

Yes Continuous Bayesian mixed-model in which the mediator-outcome associations (βm)j and the 
exposure-mediator associations (αa)j are assumed to independently follow sparse 
normal distributions. 

GMM; Song, 
2021 

Bayesian 
point, 
interval 
estimation 

Bayesian 
interval 
estimation 

Yes Continuous 
 

Bayesian mixed-model in which the mediator-outcome associations (βm)j and the 
exposure-mediator associations (αa)j are assumed to jointly follow a sparse 
multivariate normal distribution. 

Group 3 Methods 
PCMA; Huang 
and Pan, 2016 

Point, 
interval 
estimation 

No No Continuous or 
binary 
 

Applies principal component analysis on the mediator model residuals, 
transforming the mediators so they are independent. Can be applied when there is 
A-M interaction in the outcome model.  
 

SPCMA; Zhao, 
2019 

Point, 
interval 
estimation 

No Identifies whether 
subsets of the mediators 
are jointly active 

Continuous 
 

Similar to PCMA but applies sparse PCA, resulting in transformed mediators that 
are more interpretable.  

HILMA; Zhou, 
2020 

Point, 
interval 
estimation 

No No Continuous 
 

Uses a debiased penalized regression approach to directly estimate the global 
indirect effect αa

Tβm. Can be applied for multiple exposures simultaneously.  

Group 3 Methods 
HDMM; Chen, 
2018 

No No Nonspecifically 
identifies groups of 
active mediators 

Continuous 
 

Estimates “directions of mediation” by which the observed mediators can be 
linearly combined to form latent mediators. The latent mediators replace the true 
mediators in the analysis.  

LVMA; 
Derkach, 2019 

No No Identifies inputted 
mediators associated 
with latent mediators 

Continuous or 
binary 
 

Reformulates the causal structure of the mediation problem. Assumes that M itself 
is not responsible for mediation, but rather that the effect of A on Y is mediated by 
latent, unmeasured factors, F, which also cause changes in M.  

497 
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Group 1 Methods  498 
This group of methods can estimate both the global indirect effect αa

Tβm and the mediator-specific 499 
contributions (αa)j(βm)j, j from 1 to p. 500 
 501 
HIMA 502 
High-dimensional mediation analysis (HIMA), proposed by Zhang et al. (2016), is a penalized regression 503 
approach with two main steps: First, the outcome model is fitted with a minimax concave penalty54, 504 
performing feature selection on the mediators by setting some of them to have no effect on Y34. Then, 505 
among the remaining mediators, they fit the mediator models individually using ordinary regression. The 506 
authors test the significance of (αa)j(βm)j by applying Bonferroni correction to the maximum of the (βm)j 507 
and (αa)j p-values. To obtain p-values for the (βm)j estimates, the authors re-fit the reduced outcome 508 
model by ordinary least squares, which statistically may be overconfident. The authors also recommend 509 
an initial screening step to reduce the number of mediators at the start, as the outcome model will still be 510 
unstable if p is extremely large compared to n.  511 
 512 
HDMA 513 
High-dimensional mediation analysis (HDMA), proposed by Gao et al. (2019), is the same as HIMA 514 
except for its penalty function, replacing the minimax concave penalty with the recently-proposed de-515 
sparsified LASSO35,55. The advantage of this penalty is that the resulting estimates of βm are 516 
asymptotically normal, so one can test their statistical significance without needing to subsequently apply 517 
ordinary least squares. HDMA is also less biased than HIMA when the mediators are highly-correlated.  518 
 519 
MedFix 520 
Mediation analysis via fixed effect model (MedFix) is another extension of HIMA, proposed by Zhang 521 
(2021)36. MedFix was originally proposed for a setting where there are not only multiple mediators, but 522 
also multiple exposures, which it handles by applying adaptive LASSO to both the outcome model and 523 
the mediator models. If there is only one exposure, feature selection in the mediator models is not 524 
necessary, and applying MedFix is analogous to applying HDMA except with adaptive LASSO instead of 525 
debiased LASSO.  526 
 527 
Pathway LASSO 528 
Pathway LASSO is another penalized regression approach, proposed by Zhao and Luo (2022)37. Whereas 529 
HIMA, HDMA, and MedFix use a two-step design—the outcome model and mediator models fitted 530 
separately—this method fits the models all together, with a jointly penalized likelihood. The penalty not 531 
only applies shrinkage to the mediator-outcome associations, like the other methods, but also to the 532 
exposure-mediator associations and the mediation contributions.  533 
 534 
BSLMM 535 
The Bayesian sparse linear mixed model (BSLMM) is a Bayesian approach proposed by Song et al. 536 
(2020)15. The model assumes αa and βm are random vectors, both independently following mixtures of 537 
normal distributions. Most of the effects are presumed to be small, owing to a normal distribution with 538 
mean zero and small variance, while the others are allowed to be larger, resulting from a normal 539 
distribution with higher variance. We estimate the effects with their posterior mean, and we distinguish 540 
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active mediators from inactive with their posterior inclusion probability of belonging to the distribution 541 
with higher variance.  542 
 543 
GMM 544 
The Gaussian mixed model (GMM), proposed by Song et al. (2021), is an extension of BSLMM in which 545 
the (αa)j, (βm)j pairs are treated as correlated, following a mixture of multivariate normal distributions 546 
instead of two independent normal distributions42. Thus, GMM may be more useful than BSLMM if the 547 
true size of each (βm)j is related to the size of the corresponding (αa)j, and vice-versa.  548 
   549 

Group 2 Methods  550 
This group of methods directly estimate the global indirect effect without producing estimates of its 551 
mediator-specific contributions.  552 
 553 
PCMA 554 
Principal component mediation analysis (PCMA), proposed by Huan and Pan (2016), was an early 555 
method for multiple-mediator mediation using principal component analysis (PCA)39. The authors 556 
perform PCA on the residual matrix of the mediator models, then use the p by r loading matrix Q to 557 
transform the matrix M into a new set of mediators, M*, which are uncorrelated conditional on A and C. 558 
The transformed mediators then replace the original mediators in the analysis, and because they are 559 
uncorrelated, the outcome and mediator models can be fit without issue. Although the mediators have 560 
been transformed, and the mediator-specific contributions (αa)j(βm)j no longer correspond to the original 561 
jth mediator, the global indirect effect αa

Tβm can still be estimated with its original interpretation. The 562 
authors set r to equal p, though this is only possible if p is less than n.  563 
 564 
SPCMA 565 
Zhao et al (2019) proposed sparse principal component analysis (SPCMA) to improve the interpretability 566 
of the results from PCMA40. In PCMA, the transformed mediators are difficult to interpret because they 567 
are sums of all p original mediators; whereas in SPCMA, the loading matrix Q is sparsified, meaning that 568 
each transformed mediator is only a sum of a few of the original mediators. The results are easier to 569 
interpret because, if a specific transformed mediator has a large effect, it can potentially be traced back to 570 
the original mediators which were used to construct it. SPCMA induces bias in its estimation compared to 571 
PCMA, but it can be helpful for identifying groups of mediators which may be active. 572 
 573 
HILMA 574 
High-dimensional linear mediation analysis (HILMA), proposed by Zhou (2020), estimates αa

Tβm with a 575 
complex, de-biased penalized regression approach38. The mathematics of the procedure are beyond the 576 
scope of this text, but the proposed estimator has asymptotic properties for testing whether αa

Tβm is zero, 577 
and can also be applied when there are multiple (but not high-dimensional) exposures. 578 
 579 

Group 3 Methods  580 
The last group of methods is fundamentally distinct from the others: Instead of fitting the original 581 
mediation models (Group 1), or estimating the mediation effect without fitting the models (Group 2), they 582 
reconceptualize the causal structure of the problem to produce results with unique interpretations. Like 583 
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any method, they should only be applied when their assumptions about the causal structure are 584 
reasonable.  585 
 586 
HDMM 587 
High-dimensional multivariate mediation (HDMM), proposed by Chén et al. (2018), is similar to PCMA 588 
in that it uses dimension reduction, but chooses the loading vectors with a likelihood-based approach 589 
instead of PCA41. The loading vectors are referred to as “directions of mediation,” each vector specifying 590 
a linear combination of mediators which contribute to the likelihood of the mediation models. Hence, 591 
HDMM implicitly assumes that there are latent, unmeasured mediating variables that can be represented 592 
as linear combinations of the observed mediators. The results of HDMM are difficult to interpret, but it 593 
can still be useful for identifying whether there is any mediation through M at all, and for identifying 594 
large subsets of mediators that contribute to that mediation.  595 
 596 
LVMA 597 
Latent variable mediation analysis (LVMA), proposed by Derkach et al. (2019), assumes that M itself is 598 
not involved in mediation, but rather, that there are a small number of unmeasured mediators, F, which 599 
transmit the effect of A to Y and which also cause changes in M43. In other words, LVMA assumes 600 
explicitly what HDMM assumes implicitly, and the results of the two methods have a similar structure. A 601 
key feature of LVMA is that the  F → M associations are sparsified, meaning that the method can be used 602 
for detecting relevant mediators in M. An observed mediator would be considered active if it is associated 603 
with a latent mediator that is itself associated with A and Y. 604 
 605 

Simulation study 606 
Simulation settings 607 

We evaluate the above methods with a simulation study. To contrast them under diverse 608 
conditions, we consider three different settings of mediation: (1) a baseline setting in which the mediation 609 
signals are sparse and the (potential) mediators are moderately correlated, (2) a high-correlation setting 610 
with sparse signals, and (3) a moderate correlation setting in which the signals are non-sparse. Within 611 
each of these settings, we also vary the degree of mediation by modifying three parameters: the 612 
proportion of variance in M that is explained by A among those associated with A (PVEA), the proportion 613 
of the variance of Y that is explained by the direct effect (PVEDE), and the proportion of the variance of Y 614 
that is explained by the global indirect effect (PVEIE). For a baseline case, we let PVEA equal 0.20 and 615 
PVEDE and PVEIE both equal 0.10; then, in three additional cases, we sequentially decrease one of these 616 
parameters by half, weakening the signal, and set the other two parameters to their values from the 617 
baseline. Between Settings (1) to (3), this amounted to 12 unique data-generating mechanisms in total. 618 
Each of these was evaluated with a sample size of 1,000 and 2,500, with the number of potential 619 
mediators fixed at 2,000. All combinations of settings are listed below in Table 5.  620 

 621 
 622 
 623 
 624 
 625 
 626 
 627 
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 628 
 629 
Table 5. Complete list of settings in simulation study 630 

Number of potential 
mediators (p) 

Sample 
Size (n) 

Sparsity of 
signals 

Degree of 
correlation 

PVEA PVEIE PVEDE 

2000 2500 Sparse Baseline 0.20 0.10 0.10 
2000 2500 Sparse Baseline 0.20 0.05 0.10 
2000 2500 Sparse Baseline 0.10 0.10 0.10 
2000 2500 Sparse Baseline 0.20 0.10 0.05 
2000 2500 Sparse High 0.20 0.10 0.10 
2000 2500 Sparse High 0.20 0.05 0.10 
2000 2500 Sparse High 0.10 0.10 0.10 
2000 2500 Sparse High 0.20 0.10 0.05 
2000 2500 Non-sparse Baseline 0.20 0.10 0.10 
2000 2500 Non-sparse Baseline 0.20 0.05 0.10 
2000 2500 Non-sparse Baseline 0.10 0.10 0.10 
2000 2500 Non-sparse Baseline 0.20 0.10 0.05 
2000 1000 Sparse Baseline 0.20 0.10 0.10 
2000 1000 Sparse Baseline 0.20 0.05 0.10 
2000 1000 Sparse Baseline 0.10 0.10 0.10 
2000 1000 Sparse Baseline 0.20 0.10 0.05 
2000 1000 Sparse High 0.20 0.10 0.10 
2000 1000 Sparse High 0.20 0.05 0.10 
2000 1000 Sparse High 0.10 0.10 0.10 
2000 1000 Sparse High 0.20 0.10 0.05 
2000 1000 Non-sparse Baseline 0.20 0.10 0.10 
2000 1000 Non-sparse Baseline 0.20 0.05 0.10 
2000 1000 Non-sparse Baseline 0.10 0.10 0.10 
2000 1000 Non-sparse Baseline 0.20 0.10 0.05 

 631 
 632 
Simulated dataset creation 633 

First, to obtain sparse mediation effects for Settings (1) and (2), we assume that 1,920 of the 634 
2,000 coefficients (αa)j and (βm)j are zero and the remaining 80 are standard normal. Twenty of the 635 
nonzero (αa)j and (βm)j are chosen to overlap and have (αa)j(βm)j not equal to zero. To obtain non-sparse 636 
signals for Setting (3), we sample the previously zero coefficients from a normal distribution with mean 637 
zero and standard deviation 0.2. (These parameter vectors are sampled only once, at the start of the 638 
simulations, so that the global mediation effect is held constant, but we shuffle the mediators in each 639 
dataset so that different mediators are assigned the effects each time.) Once we have these, we obtain a 640 
single simulated dataset by sampling Ai from a standard normal distribution, then produce Mi from model 641 
(4) assuming there are no covariates. We add noise to Mi by sampling residuals from a multivariate 642 
normal distribution with mean 0p and variance Σ, where Σ is derived by shuffling and then tuning the 643 
variance-covariance of the observed methylation data (see supplementary section 1). In Settings (1) and 644 
(3), we tune Σ so that the correlations between mediators range from -0.37 to 0.49, and in Setting (2), so 645 
that they range from -0.58 to 0.75. We fix PVEA by scaling Σ appropriately based on αa. Finally, we 646 
define Yi based on model (3) assuming the residuals are Normal(0,σ2), choosing βa and σ2 to yield the 647 
desired PVEDE and PVEIE.  648 
 649 
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Evaluation 650 
We evaluate the methods by applying them to 100 replicates of each setting in Table 5. We omit 651 

SPCMA, GMM, and LVMA for computational reasons, as they are too computationally costly to deploy 652 
on so many replicates, and omit HDMM because it does not have an estimand that is comparable to the 653 
others. We include a one-at-a-time approach—in which the mediator are assessed individually using 654 
traditional mediation analysis and the joint significance test44—as a baseline for comparison. When 655 
running HIMA, HDMA, MedFix, and pathway LASSO, we pre-screen the mediators to only include the 656 
n/log(n) mediators with the strongest associations with Y adjusting for A, which is the approach 657 
recommended by the HIMA and HDMA authors34,35 (see supplementary section 2 for more details). For 658 
comparison metrics, we use (1) the true positive rate for detecting active mediators, TPR =659 
number of true mediators identified

number of true mediators
; (2) the mean squared error in estimating the mediation contributions of 660 

inactive mediators, MSEInactive = mean𝑗𝑗: Inactive �(𝜶𝜶𝒂𝒂�)𝑗𝑗�𝜷𝜷𝒎𝒎� �𝑗𝑗 − (𝜶𝜶𝒂𝒂)𝑗𝑗(𝜷𝜷𝒎𝒎)𝑗𝑗�
2
; (3) the mean squared 661 

error in estimating the mediation contributions of active mediators, MSEActive =662 

mean𝑗𝑗: Active �(𝜶𝜶𝒂𝒂�)𝑗𝑗�𝜷𝜷𝒎𝒎� �𝑗𝑗 − (𝜶𝜶𝒂𝒂)𝑗𝑗(𝜷𝜷𝒎𝒎)𝑗𝑗�
2
; and (4) the percent relative bias in estimating the global 663 

indirect effect, |𝜶𝜶𝒂𝒂
𝑇𝑇𝜷𝜷𝒎𝒎� −𝜶𝜶𝒂𝒂𝑇𝑇𝜷𝜷𝒎𝒎|
𝜶𝜶𝒂𝒂𝑻𝑻𝜷𝜷𝒎𝒎

× 100. In the non-sparse setting, since all the mediators contribute to the 664 

indirect effect, we consider the “active” ones to be those whose mediator-outcome and exposure-mediator 665 
effects both come from the distribution with higher-variance, and the others inactive. Each metric is 666 
computed for each dataset to the applicable methods, and we report the average and a 95% empirical 667 
confidence interval over the 100 replicates.  668 
 669 
Scalability comparison 670 

We compare the scalability of the methods by assessing their processing time on simulated 671 
datasets of two sizes: one with 100 observations and 200 mediators and one with 1,000 observations and 672 
2,000 mediators. For the larger dataset, we use one of the datasets created for the simulation study, and 673 
for the smaller dataset, we subset the rows and columns of M and the entries in A and Y. Run times are 674 
assessed on a single core of an Intel(R) Xeon(R) Gold 6242R CPU @ 3.10GHz processor. We attempt 675 
each method 30 times and report the mean and interquartile range of the computation times. Since 676 
SCPMA and BSLMM tend to be time-consuming, we approximate their run times by downscaling the 677 
appropriate parameters: In particular, since the desired number of principal components in SPCMA is 678 
100, we use only 2 principal components and scale the computing time by 50; and since the desired 679 
number of posterior samples in BSLMM is 30,000, we draw only 750 samples and scale the result by 40. 680 
Ad hoc experimentation confirmed that the methods were approximately linear with respect to these 681 
inputs.  682 
 683 

Data application with MESA 684 
To demonstrate how these methods can be applied to observed DNAm data, we evaluate the 685 

association between SES and HbA1c and its potential mediation through DNAm. For the exposure, we 686 
use a binary variable that indicates low educational attainment (less than a 4-year college degree); for the 687 
outcome, we use HbA1c, a continuous variable that reflects average three-month blood glucose level. Our 688 
data for this portion come from the Multi-Ethnic Study of Atherosclerosis (MESA), a US population-689 
based longitudinal study17. Out of 6,814 total participants, a random subsample of 1,264 had their DNAm 690 
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measured at 484,882 CpG sites. We limit our analysis to the 963 participants who (1) had methylation 691 
data, (2) had no missing data for the required variables, (3) consented to genetic and phenotypic use 692 
through the database of Genotypes and Phenotypes (dbGaP) (phs000209.v13.p3), and (4) were not on 693 
diabetes medication, which can cause changes in HbA1c (Fig. 6). Standard quality control filters reduced 694 
the number of CpG sites to 402,339. Since it is not statistically or computationally feasible to include so 695 
many mediators at once, we used a screening procedure to reduce that number further, fitting model (6) 696 
below for each mediator separately to choose the 2,000 CpG sites at which DNAm was most strongly 697 
associated with education based on the (αa)j p-value. These 2,000 formed the baseline set of CpGs for our 698 
analysis. DNAm was measured using M-values, defined as the log-2 ratio of the methylated to 699 
unmethylated probe intensities, which has the advantage of occurring on a continuous and unbounded 700 
scale56. For more details see supplementary section 3. A model for the proposed mechanism is given by  701 
𝐸𝐸[HbA1c𝑖𝑖|Education𝑖𝑖 , DNAm𝑖𝑖 , Covariates𝑖𝑖] = 𝛽𝛽𝑎𝑎Education𝑖𝑖 + 𝜷𝜷𝒎𝒎𝑻𝑻 DNAm𝑖𝑖 + 𝜷𝜷𝒄𝒄𝑇𝑇Covariates𝑖𝑖    (5) 702 

and 703 
𝐸𝐸[DNAm𝑖𝑖|Education𝑖𝑖 , Covariates𝑖𝑖] = 𝜶𝜶𝒂𝒂Education𝑖𝑖 + 𝜶𝜶𝒄𝒄Covariates𝑖𝑖 ,  (6) 704 

where the covariates include age, sex, race, and the estimated proportions of residual non-monocytes (i.e., 705 
neutrophils, B cells, T cells, and natural killer cells) as fixed effects and methylation chip and position as 706 
random effects. 707 

Fig. 6. Pre-processing of MESA methylation data. *Participants who consent to genetic and phenotypic data use, 708 
and whose data is available on dbGaP. 709 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2023. ; https://doi.org/10.1101/2023.02.10.23285764doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.10.23285764
http://creativecommons.org/licenses/by-nc-nd/4.0/


We performed mediation analysis on the final dataset of 963 individuals and 2,000 CpG sites. All of the 710 
mediation methods described above were included except for GMM and LVMA, which again were too 711 
costly computationally. Although it is reasonable for some of the methods to include all 2,000 CpG sites 712 
directly in the multivariable model, HIMA and HDMA involve sure independence screening57 to reduce 713 
the number of mediators in advance to n/log(n), where n is the sample size. For the sake of consistency 714 
across the penalized regression methods, we do so with not only HIMA and HDMA, but also MedFix and 715 
pathway LASSO, including only the 141 (963/log(963)) CpG sites most associated with low education (a 716 
direct extension of the initial screening). (Note that, for HIMA and HDMA, this screening is part of the 717 
proposed method, not separate from it, but for MedFix and pathway LASSO the additional screening is 718 
still beneficial for the sake of comparing methods and for statistical and computational efficiency). 719 
Additional pre-screening is not necessary for PCMA, SPCMA, BSLMM, and HILMA, and we include all 720 
2,000 CpG sites directly; however, in HDMM, which cannot accommodate p > n simplistically, we again 721 
use only twice-screened subset of 141 sites. For the sake of comparison with multivariate methods, we 722 
also include a one-at-a-time mediation method based on linear regression and the joint significance test. 723 
For estimating the total effect, the methods PCMA, SPCMA, BSLMM, and Pathway LASSO all produce 724 
estimates of the direct effect, so we can estimate the total effect by summing the estimated direct and 725 
global indirect effects. Since the methods HIMA, HDMA, and MedFix do not produce estimates of the 726 
direct effect, we first estimate the total effect on its own by fitting model (5) with the mediators excluded, 727 
then subtract the estimated global indirect effect from this value to obtain an estimate of the direct effect. 728 
As none of the high-dimensional methods are built to directly handle random effects as covariates, we 729 
regress these out of the outcome variable and potential mediators in advance. For the fixed effect 730 
covariates, HIMA, HDMA, MedFix, and BSLMM allow one to include them directly; whereas in PCMA, 731 
SPCMA, HILMA, HDMM, and pathway LASSO, we regressed them out in advance from the outcome 732 
and mediators. Continuous variables (including HbA1c and the mediators) were standardized for all 733 
methods. All analysis was conducted using R version 4.2.1.  734 
 735 

Data Availability 736 
Data used for the simulation study are available from the authors upon request. Data used in the DNAm 737 
analysis can be obtained through the MESA Data Coordinating Center (https://www.mesanhlbi.org/).  738 
 739 

Code Availability 740 
R scripts for the analysis are available at https://github.com/dclarkboucher/mediation_DNAm. Our R 741 
package “hdmed” can be found at https://github.com/dclarkboucher/hdmed. 742 
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