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Abstract
Genetic dissection of neuropsychiatric disorders can potentially reveal novel therapeutic targets. While
genome-wide association studies (GWAS) have tremendously advanced our understanding, we approach
a sample size bottleneck (i.e., the number of cases needed to identify >90% of all loci is impractical).
Therefore, computationally enhancing GWAS on existing samples may be particularly valuable. Here, we
describe DeepGWAS, a deep neural network-based method to enhance GWAS by integrating GWAS
results with linkage disequilibrium and brain-related functional annotations. DeepGWAS enhanced
schizophrenia (SCZ) loci by ~3X when applied to the largest European GWAS, and 21.3% enhanced loci
were validated by the latest multi-ancestry GWAS. Importantly, DeepGWAS models can be transferred to
other neuropsychiatric disorders. Transferring SCZ-trained models to Alzheimer’s disease and major
depressive disorder, we observed 1.3-17.6X detected loci compared to standard GWAS, among which 27-
40% were validated by other GWAS studies. We anticipate DeepGWAS to be a powerful tool in GWAS
studies.

Introduction
Neuropsychiatric disorders carry high public health burden including tremendous morbidity, mortality,
lessened quality of life, and �nancial costs1,2. For example, schizophrenia (SCZ) is a highly heritable and
debilitating psychiatric disorder affecting about 0.28% of the global population and is associated with
high morbidity, mortality, as well as personal and public health costs3. During the past 15 years, GWAS
have greatly advanced our understanding of the genetic basis underlying these disorders4,5. For example,
SCZ started with 1 locus reaching genome-wide signi�cance in a GWAS with 3,322 cases in 20096 to 287
loci in the most recent meta-analysis5 of ~ 75K cases. The tremendous advancement is largely
attributable to increased sample size, which is of undisputed value in GWAS for many complex
diseases7. However, increasing sample size by another order of magnitude in GWAS becomes
increasingly challenging, particularly for SCZ and other neuropsychiatric disorders. Therefore, enhanced
GWAS on existing samples via computational approaches would be particularly valuable for genetic
dissection of neuropsychiatric disorders.

Standard GWAS associates genotypes with phenotypes usually assumes that all variants are a priori
equally likely to be associated7. This assumption was initially proper as priors were either unavailable or
debated. However, we have now accumulated rich genomic and epigenomic evidence and the
continuation of this assumption may represent a tremendous, missed opportunity to leverage and
integrate standard GWAS results with functional annotations to effectively up-weight variants that are
more likely to play functional roles. For example, GWAS variants have been reported to enrich in
regulatory regions8,9, and explain a larger than expected amount of disease and trait heritability10,11.
Therefore, leveraging functional annotations could enhance statistical power to identify causal variants.
Researchers have employed similar integration ideas for related purposes, including phenotypic
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prediction, gene-gene interaction detection and post-GWAS prioritization of genetic variants and their
target genes12–16 but not for GWAS per se.

Here, we apply machine learning to integrate summary statistics from standard GWAS with functional
annotation information for enhancing GWAS �ndings. Speci�cally, we develop DeepGWAS, a 14-layer
deep neural network to enhance GWAS signals without increasing sample size. The input predictors
include GWAS summary statistics, linkage disequilibrium (LD) information, and brain related functional
annotations. We �rst trained our DeepGWAS model with SCZ GWAS summary statistics, �nding that our
DeepGWAS model outperformed other state-of-the-art machine learning and traditional statistical
methods, including XGBoost17 and logistic regression. Encouraged by these results, we further transferred
our DeepGWAS model trained on SCZ to enhance GWAS for two other neuropsychiatric diseases.

Results
Overview of the DeepGWAS model

DeepGWAS infers the probability of a variant associated with the phenotype of interest by modeling a
vector of 33 input features in a 14-layer fully connected deep neural network ( 1 and Online Methods). In
DeepGWAS models, genetic variants are observations, and for each observation, the input features
include GWAS summary statistics, basic population genetics statistics, and brain-related functional
annotations (Online Methods). Training a DeepGWAS model entails label information (i.e., the binary
label indicating whether a variant is associated with the phenotype of interest). In reality, gold-standard
true labels typically do not exist. Therefore, we recommend training a DeepGWAS model using results
from two GWA studies where the smaller and less powerful GWA study provides the input features while
the more powerful one provides label information. The trained DeepGWAS models can be applied to
enhance the more powerful GWAS (which only provides input features), enhance another GWAS for the
same phenotype, or enhance GWAS for another brain-related disease (for examples, see “DeepGWAS
enhancement reveals hundreds of novel SCZ loci”, “Enhancing AD GWAS” and “Enhancing MDD GWAS”
sections below).

Systematic evaluation of DeepGWAS using SCZ GWAS data

We �rst compared the ability of DeepGWAS to enhance GWAS signals with two alternative methods,
logistic regression and XGBoost17. The former is a classic statistical method, and the latter is a widely-
used machine learning method. Results show that DeepGWAS achieves the best performance at both
variant and locus-level (Fig. 2). Using GWAS summary statistics from 64 SCZ GWAS cohorts5, we were
able to design careful experiments (Table S1 and Table S2) for systematic evaluation. Since neural
networks are prone to a trivial solution due to a highly imbalanced data such as GWAS summary
statistics, DeepGWAS adopts an under-sampling strategy for non-signi�cant variants when selecting a
subset of variants for training (detailed in “Under-sampling insigni�cant variants for model training” in
Supplementary Materials). For logistic regression and XGboost, we consider models trained on the full
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sample of variants as well as models trained on the subset sample of variants as input into the
DeepGWAS model (indicated by “_subset”). Each of the �ve models takes the same 33 features as input.
With the default prediction probability threshold value of 0.5, DeepGWAS achieved �rst place (at variant
level) and second place (at locus level) for capturing true positives and had an overall best and second
best F1 score balancing sensitivity and speci�city at the variant level and locus level, respectively (Fig. 2).
For example, at the locus level, the F1 score of XGBoost (0.07) was less than half that of DeepGWAS
(0.16). Although logistic regression applied to all variants had the highest F1 score, DeepGWAS
approximately doubled the power (TPR: 0.28 vs 0.55). Thus DeepGWAS provided the best balance
between power and overall performance (Fig. 2). At the variant level, DeepGWAS (red curve) outperforms
all other models and is the clear winner in terms of power (TPR) with a range of 40–60%, the only range
where methods have reasonable power and acceptable false positive control (Fig. 2).

DeepGWAS enhancement reveals hundreds of novel SCZ loci

After systematically comparing DeepGWAS with alternative methods using 64 SCZ GWAS cohorts, we
trained a DeepGWAS model using data from two recent European SCZ GWA studies, applied to the latest
European SCZ GWAS, and investigated the enhancement results. Speci�cally, we trained a DeepGWAS
model using GWAS summary statistics from Ripke et al. 2014, the 2nd largest European ancestry SCZ
GWAS meta-analysis4, as input features, and using genome-wide signi�cance (p-value < 5e-8) from
Pardiñas et al. 2018 (the largest European SCZ GWAS)18, as the input Y label. Once trained, the
DeepGWAS model was applied to the GWAS summary statistics from Pardiñas et al. 2018, and the
results show that DeepGWAS, with the default threshold of 0.5, enhanced 413 loci compared to the input
GWA study from Pardiñas et al. 201818. Importantly, 88 out of 413 were validated by Trubetskoy et al.
2022, the most recent and largest multi-ethnic SCZ GWA study5 (Fig. 3).

DeepGWAS’s enhancement via transfer learning suggests novel loci for AD and MDD

We have shown above that the DeepGWAS model trained using SCZ data has demonstrated satisfactory
performance in enhancing SCZ GWAS. Importantly, we found that DeepGWAS could transfer the
knowledge learned from SCZ data to enhance GWAS for additional neuropsychiatric disorders including
Alzheimer’s disease (AD) and major depressive disorder (MDD) (“Transfer learning using deepGWAS”,
Online Methods). Speci�cally, we �xed the model parameters for DeepGWAS learned from two recent
European SCZ GWAS data described above, and applied the pre-trained DeepGWAS model to AD and
MDD GWAS results.

Enhancing AD GWAS via transfer learning

We applied the SCZ-trained DeepGWAS model to three AD GWA studies: Jansen et al. 201919, Kunkle et
al. 201920, and Schwartzentruber et al. 202121. There are three other AD GWA studies: Lambert et al.
201322, Wightman et al. 202123, and Bellenguez et al. 202224. When applying the DeepGWAS model to
each study, we used �ve other published AD GWAS to validate loci enhanced by DeepGWAS. From Fig. 4
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and Fig. S1a-c, 30% – 40% enhanced loci can be validated by other AD GWA studies, while few loci that
were signi�cant in the original input GWAS were missed by DeepGWAS. Taking the enhanced results
based on Jansen et al. 201919 as an example, we observe that DeepGWAS identi�ed the APP locus which
was not identi�ed as a signi�cant locus in the original Jansen et al., but was detected as a GWAS locus
by several larger AD studies recently published21,23,24 (Fig. 5). APP is a well-established AD gene and
previous studies have reported that mutations in APP can lead to β–amyloid protein accumulation and
early-onset AD25,26.

The APP gene serves as a positive control validated by earlier rare variant studies and more recent larger
GWAS. In addition to APP, DeepGWAS identi�ed other genes not, or not yet, validated by independent AD
GWAS. Multiple genes have also been reported to be relevant to AD. For example, the locus marked by
EIF4G3, the closest gene to a DeepGWAS index variant (i.e., the variant with the highest DeepGWAS
predicted association probability at the locus) when applied to Jansen et al. 201919, was reported as an
AD locus in Naj et al. (2022)27. As another example, NDUFAF6, the closest gene to another DeepGWAS
index variant, when the DeepGWAS model was applied to Kunkle et al. (2019)20 and Schwartzentruber et
al. (2021)21, was reported to be associated with AD in a previous study using gene-wide analysis28. Fig.
S1d summarizes DeepGWAS enhanced AD loci and the number of validated studies. Variants with higher
DeepGWAS predicted probability are more likely to be validated by a larger number of studies.
Interestingly and equally important, DeepGWAS also seems to be able to rectify potential false positives
from standard GWAS. For example, one locus on chr18:56.18 MB, was signi�cant in Jansen et al. 2019
but became non-signi�cant after DeepGWAS. This anti-enhancement �nding was con�rmed by non-
signi�cance in three larger AD GWAS (Wightman et al. 202123, Schwartzentruber et al. 202121 and
Bellenguez et al. 202224.

Enhancing MDD GWAS via transfer learning

We applied SCZ-trained DeepGWAS model to a MDD GWAS Wray et al. (2018)29 (excluding 23andMe due
to their policies). We evaluated DeepGWAS enhanced results using a more recent MDD GWAS from
Howard et al. 201930, as well as Wray et al. 2018 full results including results from 23andMe. Results
show that 22 out of 83 (~ 26.5%) enhanced loci can be validated (Fig. 4d, 6), further demonstrating the
transferability of the DeepGWAS model. For example, KLF7, the closest gene to a DeepGWAS index
variant, when the DeepGWAS model was applied to Wray et al. (2018)29, was reported to be within a new
MDD GWAS locus in Howard et al. 201930. KLF7 as the target gene is further supported by adult cortex
Hi-C data where the region harboring the DeepGWAS index variant (rs6717413) forms a signi�cant
chromatin loop with the promoter region of KLF731 (Fig. S2). We note that there are 57 loci reported only
by Howard et al. 201930 (Fig. 6). These 57 loci remained non-signi�cant even after DeepGWAS
enhancement was applied on Wray et al. 2018 results, suggesting that increasing sample size is a power
enhancer complementary to DeepGWAS’s computational enhancement for identifying additional variant-
disease associations.
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Discussion
We proposed here a novel deep neural network to enhance GWAS signals without increasing sample size
for neuropsychiatric disorders. Systematic evaluation using SCZ GWAS data and real GWAS
enhancement showed DeepGWAS achieved the best performance compared to other two state-of-the-art
deep learning methods.

Although DeepGWAS and �ne-mapping methods are similar in terms of prioritizing variants, they are
different in at least two aspects. First, DeepGWAS allows more complex relationships between loci and
disease phenotype including non-linear relationships by employing a deep learning model. Second,
DeepGWAS naturally accommodates both qualitative and quantitative annotations, while most �ne-
mapping methods only allow qualitative annotations. Among 33 features of interest, initial GWAS p-value
is the most important feature, followed by super FIRE in adult annotations and LD score for known GWAS
variants and eQTLs (Fig. S3). Speci�cally, approximately 69% ~ 87% enhanced variants have initial p-
values < 1e-5 in the input GWAS. In addition, DeepGWAS enhanced variants are more likely to reside in
super FIRE regions, exhibit higher LD score for known GWAS variants, and are more likely to be eQTLs
(details in “Feature importance” in Supplementary Materials and Fig. S4).

By default, we used DeepGWAS’s prediction probability 0.5 as the threshold, for screening purposes where
our goal is to maximize power while tolerating false positives. Investigators may desire more stringent
thresholds to shortlist variants or to reduce false positives. We investigated other threshold values from
0.5 to 0.95 with an increment of 0.05. We found 0.5–0.75 would be a good calibration threshold value
interval and adapted to the user's preferences based on our calibration on SCZ, AD and MDD studies (Fig.
S5a-e). With higher or more stringent thresholds, DeepGWAS would detect fewer variants. For example,
the number of DeepGWAS enhanced loci decreased from 413 to 39 for the testing SCZ GWAS dataset
from Pardiñas et al. 2018 (Fig. 3 and Fig. S6) when the threshold was increased from the default 0.5 to
0.9. Accordingly, the number of enhanced loci that can be validated by the independent Trubetskoy et al.
2022 decreased from 88 to 17. Similar trends were observed for MDD (Fig. 6 and Fig. S7). Users therefore
should choose thresholds that suit their purposes.

In this work, we trained our DeepGWAS model using two GWA studies on SCZ. Future efforts are
warranted to train a “meta” DeepGWAS model with GWAS data from multiple genetically-correlated
diseases, as different neuropsychiatric disorders like SCZ, MDD, and bipolar disorder are known to share
some common genetic determinants as do certain neurological diseases (e.g., APOE in Alzheimer’s and
Parkinson’s disease32. The immediate advantage of combining GWAS across diseases is to increase
sample size for training, which in principle often improves the performance of neural network
performance.

Importantly, DeepGWAS had the ability to transfer knowledge from one disease (SCZ) to other diseases
(AD and MDD). DeepGWAS model can potentially transfer knowledge from one neuropsychiatric disorder
to other neuropsychiatric disorders such as bipolar, autism, and Parkinson's disease. It is also worthwhile
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to assess whether DeepGWAS model can transfer knowledge to other non-neuropsychiatric diseases or
traits, because increasing sample size is generally expensive for GWAS of almost any trait. For disorders
or traits not directly brain-related, annotation matching by tissue and cell type would be a non-trivial task
that warrants separate future studies. Nevertheless, we believe our DeepGWAS model is a generalizable
and valuable approach to enhance GWAS with additional knowledge that may be relevant to the diseases
or traits under study. Careful training with SCZ data and applications to SCZ, AD and MDD GWAS
presented in this work have demonstrated DeepGWAS’s enhanced power as well as the potential to
remove false positives in the original study, by integrating GWAS results with relevant annotations in a
deep learning framework.

Online Methods
DeepGWAS model

DeepGWAS is a fully connected deep neural network model, which aims to enhance GWAS results
(Fig. 1), by discovering additional candidate loci relevant for complex diseases or traits. The structure of
DeepGWAS model utilizes 33-dimensional vectors as predictors (input), including GWAS summary
statistics such as p-value and odds ratios as well as population genetics metrics such as MAF and two
different LD scores (speci�cally, the regular LD score [summing across all variants] and LD score with
signi�cant variants in the input GWAS), which could also be calculated from a matching reference panel
if no individual level data available. MAF and LD scores calculation require a matching ancestry reference
panel otherwise it may affect the performance of DeepGWAS model. While for the 28 annotation-related
features including brain open chromatin regions and eQTLs, users can use the released annotations or
complement more annotations and assemble those 28 categories to apply DeepGWAS model. The output
of DeepGWAS is each variant’s predicted probability of being associated with the trait/disease of interest.
We denote the DeepGWAS model as F, the input SNP feature matrices as X, the input binary label as Y,

and the predicted probability  as F(X) (Fig. 1). Binary cross entropy loss is adopted in the training
process. The goal of training is to learn F that minimizes the binary cross entropy (details “DeepGWAS
model” in Supplementary Materials).

We aimed to release the pre-trained DeepGWAS model using the latest European SCZ GWAS summary
statistics. To achieve the aim, we trained DeepGWAS model using Ripke et al. 2014, the 2nd largest
European SCZ GWAS4 that identi�ed 108 loci with 36,989 cases and 113,075 controls and using
Pardiñas et al. 2018, the largest European SCZ GWAS18 that identi�ed 145 loci with 40,675 cases and
64,643 controls (Table S3). Both sets of European GWAS summary statistics could be downloaded from
https://www.med.unc.edu/pgc/download-results/. The SCZ-trained DeepGWAS model is released on
Github https://github.com/GangLiTarheel/DeepGWAS.

P̂

argmin − ∑
n

i=1
[YilogF (Xi) + (1 − Yi) log (1 − F (Xi))]

1

n
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GWAS summary statistics

DeepGWAS performs analysis on GWAS summary statistics. In this work, we used the following
summary statistics for SCZ, AD, and MDD GWAS.

Schizophrenia (SCZ) GWAS data

We assembled SCZ GWAS summary statistics from a total of 64 European cohorts, all contributing to the
latest SCZ GWAS meta-analysis5. The sample sizes in each cohort range from 389 to 12,310, with 204 to
5,370 SCZ cases, and the number of pre-imputation variants released varies from 225,788 to 813,688.
Detailed information of 64 cohorts is listed in Table S1. The released DeepGWAS model was trained
using the two largest European SCZ GWAS summary statistics4,18 (Table S3).

Alzheimer’s disease (AD) GWAS data

Six most recent Alzheimer’s disease (AD) GWAS data were used in our study19–24 (Table S3), which
identi�ed 20 ~ 75 loci with sample size from 54,162 to 1,126,563 for AD and/or proxy AD. Since we can
only download restricted GWAS summary statistics when we performed DeepGWAS analysis due to
provisions in the data-sharing agreement, we only applied SCZ-trained DeepGWAS model to 3 studies
instead of all AD studies, speci�cally Jansen et al. 201919, stage I summary statistics in Kunkle et al.
201920, and Schwartzentruber et al. 202121 separately, and then used the rest of the �ve AD studies to
validate enhanced loci.

Major depressive disorder (MDD) GWAS data

Two most recent major depressive disorder (MDD) GWAS data were used in our study29,30 (Table S3),
each identi�ed 44 loci with sample size of 480,359 and 102 loci with sample size of 807,553. Since only
GWAS summary statistics excluding 23andMe in Wray et al. 2018 and Howard et al. 2019 can be
downloaded from (https://www.med.unc.edu/pgc/download-results/), we only applied the SCZ trained-
DeepGWAS model to Wray et al. 2018 excluding 23andMe study, and then used Howard et al. 2019 to
validate the enhanced loci.

Input features

GWAS summary statistics and population genetics metrics

Basic predictors included GWAS summary statistics and population genetics metrics in the DeepGWAS
model. GWAS summary statistics included -log10(p-value), odds ratio (OR); and population genetics
metrics included minor allele frequency (MAF) and LD scores. MAF was extracted from European
ancestry individuals in the 1000 Genomes Project33. We calculated two LD scores for each variant:
overall LD score and LD score with known variants where the known variants were de�ned as the
signi�cant variants in standard GWAS analysis. The regular LD scores were calculated by summing up
LD r2 between the target variant and all other variants located within 1Mb of each target variant based on
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European individuals from 1000 Genomes Project. Similarly, LD scores with known variants were
calculated the same way but only summing over LD pairs involving signi�cant variants in the input
GWAS, again within 1Mb of each target variant.

Functional annotations

Functional annotations were collected from rich resources. We brie�y introduce each annotation feature
below and detailed information is summarized in Table S4.

Brain eQTLs - Brain-related eQTLs were collected from three sources including eQTLs from 13 Brain
regions from GTEx v834; brain eQTLs from PsychENCODE; and eQTLs from Qi et al. 201835. We
combined these eQTLs and �ltered at nominal p-value < 1.0e-6.

Pathogenic annotation - Pathogenic annotations included phyloP scores derived from vertebrate
mammals model36–38, Fathmm-XF score39, and CADD-phred score40.

Open chromatin regions - Open chromatin regions were taken union of the open chromatin regions for
adult and fetal from several published studies12,41−44.

FIREs and super FIREs - Frequently Interacting Regions (FIREs, 40KB resolution) and super FIREs were
downloaded from45.

Selective sweep regions - We also collected selective sweep regions in European detected in 1000
Genomes Project using S/HiC46,47.

ENCODE3 cCREs - The candidate cis-regulatory elements (cCREs) from ENCODE3 were collected based
on DHS (DNase I-hypersensitive sites), H3K27ac, H3K4me3, CTCF and transcription factors (TF)48,49 and
were downloaded from https://www.vierstra.org/resources/dgf.

Additional epigenomic annotations - We also collected 30 additional epigenomic annotations from 12.
Since we have multiple similar open chromatin and histone features collected from 12, we adopted data-
driven strategy to merge similar annotations and used the Jaccard similarity index (bedtools v2.29.0) to
group them into 11 meta-annotations (details in “Data-Driven Clustering for epigenetics annotations” in
Supplementary Materials) which was shown in Fig. S8, and merged the annotations within the one sub-
annotations using bedtools (v2.29.0).

With all the functional annotations above, we have in total 30 functional annotations used as predictors
in the DeepGWAS model.

Evaluation using SCZ GWAS results

With GWAS summary statistics from 64 SCZ studies, we �rst randomly split them into three sets: set A,
set B and set C (Fig. S9). Each variant in set A, B and C was annotated for all features listed in the
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“Functional annotations” section above. When splitting, we made efforts to balance the three sets
considering several aspects including the number of cases, total sample size (i.e., the number of cases
and controls), and the number of signi�cant variants. To mimic increasingly larger GWAS, we assigned
10, 22 and 32 studies to set A, B and C respectively. After splitting, we meta-analyzed GWAS within each
set using METAL50, and obtained three sets of GWAS summary statistics (Fig. S9). With these three sets
of GWAS summary statistics, we �rst trained models to “enhance set A to set B”. In other words, set A
contributed input features (X in Fig. 1) while set B contributed outcome labels (Y in Fig. 1). Speci�cally,
the binary indicator of whether the meta-analysis p-value < 5e-8 from set B was used as Y to train models.
We then applied this pre-trained model to set B, to obtain enhanced set B results. Finally, signi�cance in
set C was served as ground truth to evaluate enhanced set B results.

We repeated the splitting procedure, randomly generated a new independent testing data following the
same evaluation procedure, and applied the pre-trained DeepGWAS, XGBoost, and logistic regression
three models to another independent testing dataset. We �nally calculated the mean of the F1 score, CPR,
TPR, ROC metrics, and precision recall curve metrics. The detailed information including the sample sizes
and loci number used in evaluation were included in the Table S2.

Comparison with alternative methods

To evaluate the performance of the DeepGWAS model, we compared DeepGWAS with alternative
methods including logistic regression and XGBoost.

Logistic regression model

We trained a logistic regression model implemented in R v3.6.0. Logistic regression model was
formulated as below,  denoted as weights of predictors and  denoted predictors. The output of the

logistic regression model was prediction probability  of whether a given variant be signi�cantly
associated with a disease.

XGBoost model

XGBoost, or eXtreme Gradient Boosting, is a commonly used decision-tree-based ensemble machine
learning algorithm using a gradient boosting framework. Using the same training dataset and testing
dataset as applied to the DeepGWAS model, we trained and tested a supervised XGBoost model in R
v3.6.0. We speci�ed the learning task to be a tree-based logistic regression and evaluation metric to be
root mean square log error (RMSLE). We set maximum boosting iteration as 50 in the model. Due to the
extreme unbalanced ratio between the signi�cant variants versus insigni�cant variants in the model, we
used the argument of scale_pos_weight to control the unbalanced data.

βi Xi

P̂

ln = β0 +∑
33

i=1
βiXi

P̂

1 − P̂
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To assess the performance of three models, we �rst de�ned the enhanced variants and loci as the
predicted signi�cant variants and loci that are not considered to be signi�cantly associated with the
disease in the input study. Then, we considered two metrics: truth positive rate (TPR), and F1 score. In
addition, receiver operating characteristic curves (ROC) and precision recall curves (PRC) were also used
to compare three models.

Transfer learning using DeepGWAS

Although DeepGWAS training is supervised with labels from a large-sample-size study of the same
disease (Fig. 1 and Fig. S9), DeepGWAS can transfer the knowledge learned from one disease (SCZ) to
other diseases (such as AD and MDD). Speci�cally, we �rst trained our DeepGWAS model with two
largest European SCZ GWAS4,18, �xed all the parameters in the neural networks, and applied the SCZ-
trained-DeepGWAS model to enhance AD and MDD GWAS. Then we summarized the enhanced AD

results by �rst binning them according to the probability of signi�cant association with the disease 
and then assessing the proportion of loci within each bin that can be validated by independent AD GWAS
(Fig. S1d). The rationale behind this loci validation approach is that true positives are more likely to be
enhanced by additional independent studies.
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Figures

Figure 1

Overview of the DeepGWAS model. The blue circle Xdenotes the 33 input features, which serve as
predictors in DeepGWAS model; the blue circle Y denotes the true binary input label indicating whether a
variant is associated with the disease. During training, Y is obtained from a larger-sample-size study,
serving as the working truth; n denotes the number of genetic variants; the black and gray solid circles
denote the neural network nodes of the deep learning architecture within the DeepGWAS model; the
yellow circle denotes DeepGWAS output p̂ : estimated probabilities for each of the n variants being
associated with the disease.
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Figure 2

Model comparison in SCZ data. a, Comparison of TPR and F1 at both variant and locus level for 5
methods; b, ROC curve for comparison at variant-level of logistic regression, XGBoost and DeepGWAS
models for evaluation. Logistic is the logistic regression model based on all variants, while
logistic_subset uses the same variants selected by DeepGWAS’ insigni�cant variant under-sampling
strategy. Similarly for XGBoost and XGBoost_subset; c, Precision recall curve for comparison at variant-
level of logistic regression, XGBoost and DeepGWAS models for evaluation. PPV: positive predictive
value. Marked points in the lines denote results using prediction probability threshold value of 0.5.
Abbreviations: FPR=false positive rate; TPR=true positive rate; ROC=receiver operating characteristic
curve; F1=TP/(TP+½(FP+FN)).
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Figure 3

DeepGWAS enhanced Pardiñas et al. 2018 SCZ GWAS. Signi�cant loci detected by each method/study
are shown with an upset plot. The orange bar represents loci not in the input Pardiñas et al. 2018 GWAS
results, enhanced by DeepGWAS, and validated by Trubetskoy et al. 2022; the purple bar corresponds to
lower hanging fruit loci detected by all methods/studies, i.e., signi�cant in the original input of Pardiñas
et al. 2018, remain signi�cant after DeepGWAS enhancement, and also signi�cant in Trubetskoy et al.
2022.
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Figure 4

DeepGWAS performance when transferred to AD and MDD GWAS. a, Enhanced AD results when applied
to Jansen et al. 201919; b, Enhanced AD results when applied to Kunkle et al. 201920; c, Enhanced AD
results when applied to Schwartzentruber et al. 202121; d, Enhanced MDD results when applied to Wray et
al. 2018 (excluding 23andMe results)29. “Validated_loci” denotes DeepGWAS enhanced loci that can be
validated by GWAS other than the input study.
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Figure 5

The APP locus enhanced by DeepGWAS. a, Manhattan plot to show the original GWAS results from
Jansen et al. 201919, and b, zoom in from a for chr21; c, Manhattan plot to show enhanced results by
DeepGWAS. Y-axis is the prediction probability from DeepGWAS, and the red horizontal line marks 0.5. d,
zoom in from c for chr21.
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Figure 6

DeepGWAS results when transferred to MDD. The results are visualized by this upset plot, where the
orange bars denote the validated loci which means the enhanced loci by DeepGWAS and validated by
other studies; and the purple bar denotes the common loci identi�ed by DeepGWAS, Wray et al. (2018)
and Howard et al. (2019).
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