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Abstract
Background

Accurate variant calls from whole genome sequencing (WGS) of Plasmodium falciparum infections are
crucial in malaria population genomics. Here we optimized a falciparum variant calling pipeline based on
GATK version 4 (GATK4) and applied it to 6,626 public Illumina WGS samples.

Methods

We optimized parameters that control the heterozygosity, local assembly region size, ploidy, mapping and
base quality in both GATK HaplotypeCaller and GenotypeGVCFs leveraging control WGS and accurate
PacBio assemblies of 10 laboratory strains. From these controls we generated a high-quality training
dataset to recalibrate the raw variant data.

Results

On current high-quality samples (read length = 250bp, insert size = 405 - 524 bp ), we show improved
sensitivity (86.6 ± 1.7% for SNPs and 82.2 ± 5.9% for indels) compared to the default GATK4 pipeline
(77.7 ± 1.3% for SNPs; and 73.1 ± 5.1% for indels, adjusted P < 0.001) and previous variant calling with
GATK version 3 (GATK3, 70.3 ± 3.0% for SNPs and 59.7 ± 5.8% for indels, adjusted P < 0.001). The
sensitivity of our pipeline on simulated mixed infection samples (80.8 ± 6.1% for SNPs and 78.3 ± 5.1%
for indels) was again improved relative to default GATK4 (68.8 ± 6.0% for SNPs and 38.9 ± 0.7% for
indels, adjusted P < 0.001). Precision was high and comparable across all pipelines on each type of data
tested. We further show that using the combination of high-quality SNPs and indels increases the
resolution of local population population structure detection in sub-Saharan Africa. We finally
demonstrate that increasing ploidy improves the detection of drug resistance mutations and estimation
of complexity of infection.

Conclusions

Overall, we provide an optimized GATK4 pipeline and resource for falciparum variant calling which should
help improve genomic studies of malaria.

Background
Malaria’s toll on human health remains unacceptably high with 627,000 deaths reported worldwide in
2020 (World Health Organization, 2021). Despite substantial progress in control made during the past
two decades, decreases in mortality have slowed or reversed (World Health Organization, 2021). The vast
majority of estimated deaths continue to occur in sub-Saharan Africa in children aged below 5 years due
to the most virulent species, Plasmodium falciparum. Control efforts are challenged by the lack of highly
effective vaccines, drug and insecticide resistance, failure of rapid diagnostic tests due to hrp2 and hrp3
deletions, and the impact of the COVID-19 pandemic (Dondorp et al., 2009; Gamboa et al., 2010; Koita et
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al., 2012; World Health Organization, 2021). Further progress necessitates improved tools for furthering
control and for the monitoring of progress towards eventual elimination.

Whole genome sequencing (WGS) represents a key tool for genomic epidemiology and surveillance of
parasite populations that circulate in malaria endemic regions. Significant advances have been made in
malaria research since the first WGS data of P. falciparum was released in 2002 to provide a reference
genome (Gardner et al., 2002). Today, laboratory and large clinical WGS datasets of parasites
representing malaria infections are generated predominantly by Illumina next-generation sequencing
(MalariaGEN et al., 2021). Studies based on WGS have been instrumental in defining and understanding
drug resistance, including the discovery of kelch 13 (k13) mutations as the molecular markers of
artemisinin resistance as well as providing a detailed description of the parasite population structure
within and across continents (Amambua-Ngwa et al., 2019; Ariey et al., 2014; MalariaGEN et al., 2021).

A crucial step in WGS data analysis is calling variants by mapping reads onto a reference genome and
looking for consistent differences representing single nucleotide polymorphisms (SNPs), insertions-
deletions (indels) and structural variations. First, the genome of P. falciparum is AT-rich with large regions
of low complexity and duplicated sequence, such as the subtelomeric regions which contain highly-
related gene families. This presents a general challenge for mapping reads accurately to the reference
genome. The P. falciparum genome is extremely repetitive in many (coding and non-coding) regions, with
high frequencies of AT-rich tandem repeats that create challenges for accurate calling of variants
(Hamilton et al., 2017; Miles et al., 2016). Indels are predominantly associated with short AT-rich sequence
repeats and are challenging to accurately identify with short read sequencing. Consequently, SNPs, which
are relatively less difficult to identify compared to indels, have been the preferred variant type for P.
falciparum population genetics studies. Second, sequence data from natural malaria infections present
an additional challenge, often containing an unknown number of clones (complexity of infection, COI) at
unknown relative abundances (DePristo et al., 2006; Felger et al., 1999; Gardner et al., 2002).

Despite the fact that P. falciparum is entirely haploid in the human host during its lifecycle, the
performance of the variant calling is affected by the high COI of clinical samples collected from patients
in areas of high malaria transmission. The number of clones can sometimes reach double digits, and
given their numbers and relative frequency are variable and unobserved, standard variant calling
pipelines based on ploidy do not properly apply. Moreover, given the proportion of an individual clone
within an infection can be extremely low, the detection of its presence and variants it may contain can be
computationally challenging.

The genomic analysis toolkit (GATK) (Poplin et al., 2018; Van der Auwera & O’Connor, 2020) is a well-
validated tool that has been traditionally used to call variants (SNPs and short indels) in malaria WGS
data. However, this tool was initially developed for diploid human and other mammalian genomes and
has not been extensively optimized for microorganisms, particularly challenging ones such as P.
falciparum. One of the most important features of GATK is the variant recalibration step which consists
of using a training dataset to score and filter out low quality variants that are more likely false than true
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from the raw variant data in variant call format files (VCFs). However, developing a Mendelian error-free
(or error-depleted) training dataset based on sequence reads generated in the wet laboratory is currently a
challenge in malaria. Additionally, GATK was designed for diploid organisms, where there are equal
proportions of each chromosome present in the sample; in natural malaria infections with COI > 1 it is
more difficult to distinguish the few copies of actual variants in minor clones from sequencing errors We
hypothesized that this issue could be partially overcome by partitioning the ploidy until each expected
variant present in the sample gets enough probability to be called.

Here we leverage the flexibility of GATK4 to optimize SNP and indel calling for improved P. falciparum
WGS data analysis. We generate a custom variant training dataset in silico based on accurate PacBio
assemblies of laboratory strains as templates to filter out low quality variants. We test and adjust prior
variant rates and multiple parameters that control the read and mapping qualities at various stages of the
pipeline. We also make a reference true callset with select known laboratory strains to evaluate the
performance of our pipeline. Finally, we apply the pipeline to available public WGS data, including
Malariagen’s Pf6 dataset, demonstrating improvements in population genomic analyses. Since indels
have been challenging to properly call and rarely incorporated into these analyses, our study focuses on
them and demonstrates their utility in increasing the resolution of population structures when combined
with SNPs.

Results
Optimization of the pipeline on monoclonal and simulated mixed infection samples.

Towards optimizing GATK4 for P. falciparum, we sought to create an improved training “truth set” for the
pipeline. To filter raw VCFs with a high quality truth callset, which is difficult to obtain using wet lab
methods, we decided to generate a robust in silico training variant dataset from the PacBio assemblies
(Additional file1: Figure S1). We first ran the variant calling pipeline with default settings of GATK4’s
HaplotypeCaller and GenotypeGVFs tools on high-quality public Illumina read data (Additional file1: Table
S1) of 10 laboratory strains (7G8, Dd2, GA01, GB4, GN01, HB3, IT, KH01, KH01 and SN01) for which there
exist accurate PacBio assemblies (Otto et al., 2018; Vembar et al., 2016). We recalibrated the raw VCFs
with the published training dataset generated from 3D7 x HB3, HB3 × Dd2 and 7G8 × GB4 crosses in
splenectomized chimpanzees (Walliker et al. 1987; Wellems et al. 1990; Hayton et al. 2008) and used by
MalariaGEN’s Pf6 release (Miles et al. 2016; MalariaGEN et al. 2021). The results were compared to
reference callsets we generated from the accurate PacBio assemblies mapped onto the 3D7 reference
(Methods, Additional file1: Figure S2).

Sensitivity of this default variant calling in the core genome were 77.7 ± 1.3% (median ± interquartile
range) for SNPs and 73.1 ± 5.1% for indels (Fig. 1A). When we replaced the cross dataset with our
PacBio-derived in silico training dataset (called pipeline 1), we found greatly improved sensitivity ( 84.2 ±
2.5% for SNPs; and 78.8 ± 5.4% for indels). With GATK3 recalibrated with the cross training dataset, the
sensitivity for both SNPs and indels was the lowest. As next step in GATK4 optimization, we altered
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multiple parameters of HaplotypeCaller and GenotypeGVFs of pipeline 1 to make pipeline 2, including
adjusting expected SNP and indel rates (--heterozygosity and --indel-heterozygosity) and parameters that
control base quality (--base-quality-score-threshold and -stand-call-conf), mapping (-mbq and -DF) and
local assembly size (--min-assembly-region-size), aiming to further improve the sensitivity and reduce
false calls. While default values of pipeline 1 are fairly robust, sensitivity increased significantly to 86.6 ±
1.7% for SNPs and 82.2 ± 5.9% for indels when modified parameters were used (Methods; Fig. 1A;
adjusted P < 0.001, Wilcoxon test, Pipeline 2 vs. default GATK4 with cross training dataset for both SNPs
and Indels). Despite the trade off between sensitivity and precision, the latter was very high (> 90%) for all
GATK4 pipelines, including our pipeline 1 and 2.

We finally tested the GATK4 pipelines on simulated mixed infection samples after combining high-quality
reads of IT + KH01 at different proportions (95:5, 90:10, 85:15, 80:20, 75:25 and 50:50) to make 100X
coverage. Sensitivity of our optimized pipelines was higher than that of the default GATK4 pipeline
trained with the cross dataset for both SNPs and indels (adjusted P = 0.001, Wilcoxon test) (Fig. 1B).
Interestingly, the most significant performance gains were observed with indels for which the sensitivity
of pipeline 2 was 78.3 ± 5.1% versus 38.9 ± 0.7% for default GATK4 with cross training dataset (Fig. 1B,
adjusted P < 0.001, Wilcoxon test). Here the precision was similar across all GATK4 pipelines but lower
compared to single infection samples.

To understand how sequencing quality affects the results of our pipelines, we added shorter (old)
Illumina read samples (n = 7) from the Pf6 dataset and analyzed any potential effect of the read
coverage, insert size, read length and read quality on variant calling performance (Additional file1: Table
S2). In spite of the great variation in the read coverage (median between 35 and 180X), neither the
specificity nor the precision was correlated with this parameter (Fig. 2). Interestingly, we found a strong
positive correlation between pipeline performance and insert size and read length (Fig. 2).

Combination of SNPs and indels shows higher resolution of population structure

Since the performance of  indel calling was markedly improved with GATK4, we examined if the inclusion
of indels improved the resolution of global and local population structure using Malariagen’s Pf6
samples. After restricting our analysis to the core genome and filtering out low quality variants; our fully
optimized pipeline detected more variants in total compared to GATK3. The majority (55%)   of indel
positions overlapped with each other and with SNP sites and formed complex multiallelic markers  
 (2,341,377 SNPs, 1,381,687 indels and 1,686,041 multiallelic sites in 6,626 samples for our pipeline; and
2,441,874 SNPs, 889,667 indels and 1,327,993 multiallelic sites for the GATK3 VCFs). We used high
quality SNPs and indels from the core regions of chromosome 1, excluding hypervariable and
subtelomeric regions, after pruning them for linkage disequilibrium and selecting high-quality samples
with less than 20% missing genotypes (aiming to reduce potential false noise mostly for indels).  We
calculated the pairwise variance-standardized genetic relationship matrix and performed a t-distributed
stochastic neighbor embedding (tSNE) analysis using SNPs and indels, individually and in combination.
We observed a similar general   population structure between sub-Saharan Africa, South-East Asia, South
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America and Papua New Guinea similarly across all three variant sets as previously reported (MalariaGEN
et al., 2021; Manske et al., 2013; Miotto et al., 2015), including SNPs,   indels and SNPs+Indels  
(Additional file 1: Figure S3). Subsequently, we selected only African samples, a more challenging
population to differentiate,  and performed the same relatedness analysis to look at continental
 population structure. SNPs showed more pronounced separation of Democratic Republic of Congo from
West African samples (Fig. 3C) whereas indels provided greater differentiation of parasite populations
within the same geographical regions (Fig. 3B). Specifically, with indels, the vast majority of samples
from Ghana and Guinea were clearly separated from the rest of parasites from West Africa; and
Tanzania,  Madagascar, Kenya, Ethiopia and Malawi formed more population structure  within East and
South-East Africa. Interestingly, when combined both SNPs and indels led to higher resolution of
population separation within and across the different African regions (Fig. 3A) compared to each of them
analyzed separately. 

Increasing ploidy improves variant calling performance in unbalanced mixed infections 

Given the decreased performances of both GATK4 and GATK3 in mixed infections in diploid mode in
general, we tested our pipelines at ploidy 6 to improve detection of low abundance within-sample variants
(due to minor low abundance parasites). Since most downstream analytic tools cannot fully process
hexaploid VCFs, such as decomposing complex indels into smallest fragments prior to comparing two
callsets, we limited our evaluation to SNPs. The total number of additional true positive SNPs detected by
the hexaploid mode relative to the diploid one on chromosome 13 was 449, 359, 112, 102, 95 and 78 for
15%:95%, 10%:90%, 15%:85%, 20%:80%, 25%:75% and 50%:50% of IT:KH01 mixed infections, respectively
(Additional file1: Table S3). For the 50%:50% mixed infection sample, the hexaploid mode did not
substantially improve variant detection, confirming our hypothesis whereby the diploid mode works more
accurately when there are equal proportions of individual strains in the sample. These findings suggest
that the polyploid modes would be more suitable for monitoring molecular markers of malaria drug
resistance or detection of low abundance strains. 

To verify this, we applied our pipeline 2 at ploidy 2 and 6  on 6,626 field isolate samples from
MalariaGEN’s Pf6 release that have been collected from all malaria-endemic regions worldwide
(MalariaGEN et al., 2021) to analyze k13 resistant mutations that have been reported by the World Health
Organization (World Health Organization, 2020). We compared mutations found by our pipelines to those
present in the public GATK3 VCF (diploid mode). As expected, the hexaploid mode of the optimized
GATK4 detected 32 additional resistant mutations that were totally missed by GATK3 (Table 1). These
resistant samples rescued by the hexaploid mode of our optimized pipeline were confirmed by visualizing
their respective BAM files in IGV (examples are illustrated in Supplementary Figure S4 for C580Y
mutation). Interestingly, one sample from Cameroon in Central West Africa where artemisinin resistance
is yet to be reported, classified as wildtype by GATK3, was found with C580Y mutation (Additional file1:
Figure S4).
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Table 1: Resistant k13 mutations detected by the optimized GATK4 at hexaploid and diploid modes
versus GATK3. All the mutations were found in South-East Asia except for one sample carrying the C580Y
allele that was collected in Cameroon.

K13 mutations Optimized GATK4 (ploidy6) Optimized GATK4 (ploidy2) GATK3

A481V 5 5 5

C580Y 664 649 650

G449A 6 5 5

G538V 24 21 21

I543T 36 34 33

M446I 38 36 36

N458Y 17 17 17

P441L 28 28 28

P553L 24 23 23

P574L 30 30 30

R539T 65 63 62

R561H 24 24 24

Y493H 111 106 106

 

Our optimized pipeline with ploidy 6 enables robust estimation of complexity of infections

To examine the practical benefits of improved variant calling, we assessed the overall WGS dataset
complexity of infection (COI) in field isolates from sub-Saharan Africa, South-Asia Asia and South
America. We computed COI based on common SNPs on chromosome 13 called using our optimized
pipeline with ploidy of 6 and 2 and the GATK3 at diploid mode. Variants with minor allele frequencies >
1% and missing genotypes > 10% were selected for the COI calculation using the REAL McCOIL package
(Chang et al., 2017). Overall, more mixed infections were found when the hexaploid callset was used to
estimate the COI compared to the other VCFs and these results were consistent across all sampling
locations although polyclonality was generally reduced outside sub-Saharan Africa (Fig. 4). We found
52.2%, 58.2% and 58.3% monoclonal infections in sub-Saharan African regions using optimized GATK4
with ploidy 6 and ploidy 2 and GATK3, respectively. Regarding biclonal infections in the same regions, we
  found 28.2%, 28.6% and 29.2% with our pipeline at ploidy 6 and ploidy 2 and GATK3, respectively. The
prevalence of samples with COI > 2 was 19.6%, 13.2% for the hexaploid and diploid modes of the
optimized GATK4, respectively and 12.5% for GATK3. Thus, increasing the ploidy up to 6 significantly
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increased the detection of polyclonal samples compared to ploidy 2 for GATK4 and GATK3 (p < 0.05,
Wilcoxon test) in 8 sampling sites; including Cambodia, Cameroon, Democratic Republic of Congo,
Ghana, Guinea, Malawi, Mali and Tanzania.

Discussion
Our study, which aimed to adjust GATK4 settings to P. falciparum WGS and develop a new robust training
dataset for accurate removal of low-quality variants from raw VCFs, provides an optimized variant calling
pipeline that outperforms existing similar resources (MalariaGEN et al., 2021). Unlike GATK3 and default
GATK4, our fully optimized pipeline is equally competent at calling SNPs and indels with high sensitivity.
Thus, these results fill an important gap regarding the WGS of P. falciparum today and should encourage
a wide use of the indels alongside the SNPs to improve the resolution of the genomic epidemiology
analyses, especially within closely-related parasite populations. Importantly, our findings show that this
optimized pipeline is also more robust with clinical mixed infection samples in which the number and
relative frequency of each component strain is variable and undetermined. In further analysis based on
field isolate samples, we demonstrate that increasing the ploidy values in HaplotypeCaller significantly
improves the sensitivity of the variant calls, which might be impactful in tracking drug resistance
mutations or estimating COIs, especially in hyperendemic regions in sub-Saharan Africa where
artemisinin resistance is actively monitored and mixed infections are common (MalariaGEN et al., 2021;
Mobegi et al., 2012).

Although GATK4 with default settings was more sensitive and precise than GATK3 (MalariaGEN et al.,
2021) in general, the new training set significantly improved its performance. This achievement can be
attributed not only to the sensitivity of GATK4 to keep more likely true variants from mapped reads during
the initial HaplotypeCaller and GenotypeVCFs steps but also to the accuracy of the downstream soft
filtering of the raw VCFs by our custom training dataset. Interestingly, modifications of parameters that
control for base and mapping qualities as well as malaria-adjusted prior heterozygosities improved the
sensitivity of the pipeline in longer Illumina reads from both single and mixed infection samples without
significant increase in the amount of false variants and thus should work well for all current and future
sequencing.

One innovation we presented is a new and simple computational method to synthesize a positive training
dataset using accurate PacBio assemblies of lab strains as templates that can be reproduced in other
organisms in which cross models are unavailable. This errors-depleted benchmark truth callset was able
to train the Gaussian mixture model that is implemented in GATK4 to more effectively discriminate
between true and false variants. Even though few assemblies were available, the size of the training
dataset could be technically increased by adding mixed infection samples simulated from the unique
templates with a growing number of available long-read Oxford Nanopore assemblies. Key parameters
that were optimized were using a lower variant quality score log-odds (VQSLOD) threshold and increased
local assembly size for haplotypecaller to better capture indels. Here we made 2kb overlapping artificial
reads with 100X coverage but these key parameters can be more flexibly modified based on the goal of
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the variant calling project, which is hard to obtain with high precision with wet laboratory methods (Li et
al., 2018; Miles et al., 2016; Zook & Salit, 2011).

Given that both SNPs and indels were equally accurate, we confidently explored the impacts of both on
population genetics analyses including COI and population structure. We found that indels led to more
sensitive estimation of complexity of infection, more likely due to the fact that they are more abundant
than SNPs in the entire core genome of P. falciparum as previously demonstrated (Gardner et al., 2002;
Miles et al., 2016). Similarly, SNPs and indels seem to have different impacts on population structure
analysis in which the former, which is more stable, provides better separation of populations between
different geographic regions but the latter, which occurs more rapidly, produces high resolution of
subpopulation detection within the same areas. When combined, our study demonstrated that both
variants are more beneficial in population structure analysis than using SNP only because effects seem
to be additive. Indels seem to show more local inbreeding between parasites on a shorter time scale that
should complement the broader geographic genetic differentiation obtained with SNPs.

As a limitation of all the GATK pipelines (mainly the non-optimized pipelines) we tested, the performance
of variant calls was relatively lower in mixed than single infection samples. This general issue was
partially resolved by increasing the ploidy in the HaplotypeCaller package which also allowed us to detect
true artemisinin-resistant SNPs on k13 gene that were missed by the diploid mode. Additionally, there are
currently limited options for the downstream analysis of polyploid VCFs as most of the existing tools
were specifically made for the diploid format.

Conclusions
In conclusion, we provide an optimized variant calling pipeline based on GATK4 that produces high
quality SNPs and indel data from monogenomic and mixed infection samples. We used the output of the
pipeline in downstream population genetic analyses using publicly available WGS data to demonstrate
the value of incorporating indels in such studies alongside SNPs. This pipeline should contribute to
improving the quality of P. falciparum WGS studies and both our diploid and polyploid methods can be
borrowed to analyze the genomic data of other complex microorganisms in which calling accurate
variants is elusive.

Methods
Reference callset (“gold standard”) generation 

We aligned publicly available accurate PacBio assemblies of 10 laboratory strains 7G8, Dd2, GA01, GB4,
GN01, HB3, IT, KH01, KH02 and SN01 (Otto et al., 2018; Vembar et al., 2016) in fasta format onto the P.
falciparum 3D7 reference genome (Version 3) with minimap2 version 2.17.  Mapped single chromosome-
long reads were used to retain all mismatches as variants using optimized bcftools (version
1.13) mpileup and bcftools call commands. Variant calling was validated by visualizing VCFs and BAMs
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together in IGV (version 2.4.17) to confirm the concordance between variants and mismatches.
Subtelomeric and internal hypervariable regions were removed as these regions undergo frequent
exchange between chromosomes such that orthology is not maintained. 

New in silico training dataset generation from PacBio assemblies 

We harnessed the same 10 PacBio assemblies as templates to computationally generate a positive
training dataset for GATK. Biopython scripts were used to make 2kb fragments of each genome after
every 20 nucleotide positions and fragments were saved as fasta files. This strategy produces
overlapping 2kb reads with 100X coverage from which fastq files were created by setting the quality of
bases to highest quality  (“~” in ASCII format)  using bbmap. These reads were mapped onto the 3D7
reference genome using minimap2 (version 2.17). BAM files were sorted and  duplicate reads marked
using tools Picard SortSam and GATK MarkDuplicatesSpark prior to variant calling, respectively. The
HaplotypeCaller package of  GATK version 4.1.6.0 was used to call potential variants and create genome
VCFs (gVCFs). The 10 gVCFs were combined  using GenomicsDBImport (GATK4’s tool) before running a
joint genotyping with GenotypeGVCFs (GATK4’s tool) within the core genome. The final VCF was
compared to the reference callset for each laboratory strain using  RTG Tools to verify the quality of the
training SNPs and indels. This tool was employed for all subsequent VCF comparisons, in which our
accurate reference callsets were used as baselines along with the following arguments --decompose and -
-squash-ploidy that normalize complex variants into smaller constituents and ignore zygosity differences
between VCFs that are compared, respectively. 

Developing an optimized variant calling pipeline

The application of an optimized pipeline to Illumina sequencing is illustrated    in  supplementary Figure
S5. Code for the pipeline is available (https://github.com/Karaniare/Optimized_GATK4_pipeline). Illumina
reads of laboratory stains and Pf6 samples were downloaded from SRA using sratoolkit (version 2.8.2-1).
Trimmed paired reads were competitively aligned to the P. falciparum 3D7 and human (hg38) reference
genomes with bwa (version 0.7.15). Reads mapping specifically onto the 3D7 genome were selected
before cleaning the bam files using CleanSam. Clean BAM files were sorted and processed for duplicate
marking using SortSam and MarkDuplicatesSpark, respectively. Mixed infection samples were simulated
after combining 95%, 90%, 85%, 80%, 75% and 50% mapped reads of the KH01 strain with 5%, 10%, 15%,
20%, 25% and 50% mapped reads of IT strain to make final BAMs with 100X coverage. To optimize
HaplotypeCaller (GATK4) for initial variant calling from P. falciparum WGS data with higher sensitivity, we
adjusted multiple parameters as follows: --heterozygosity (prior SNP rate) 0.0029, --indel-heterozygosity
(prior indel rate) 0.0017, --min-assembly-region-size 100, min-base-quality-score (minimum base quality
required to consider a base for variant calling) 5 and --base-quality-score-threshold 12.  Heterozygosity
values were chosen based on SNP and indel rates calculated from the reference callsets of the 10
laboratory strains. Base quality score filtering thresholds were made less stringent to allow the algorithm
to process higher amounts of reads. The mapping quality filter (-DF MappingQualityReadFilter) was also
disabled for the same reason. Optimized HaplotypeCaller was run on each sample independently to
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initially detect potential variants that are stored in gVCFs. For joint genotyping option, gVCFs were first
combined into a genomic database using GenomicsDBImport. Per-chromosome genotyping of the gVCFs
was performed using the GenotypeGVCFs command in which -stand-call-conf (minimum phred-scaled
confidence threshold at which variants should be called) was set to 30 to remove the majority of false
positive variants that passed HaplotypeCaller’s filters. We enabled the --genomicsdb-use-vcf-codec
argument in the joint genotyping script to allow for more space in info fields when annotation sizes
exceed 32-bit while processing the genomic database. Since the genotyping step is computationally
costly, we ran  GenotypeGVCFs in parallel slurm jobs on each chromosome partitioned into 200kb
segments. We used GATK4’s GatherVcfs to merge segments into single VCFs. When indels and SNPs are
called at the same positions, they are recorded as multi-allelic and  incorrectly treated as indels by GATK’s
VCF filtering engine. To accurately filter low-quality (likely false) SNPs and indels independently, bcftools
norm commands were used to split multi-allelic positions before applying GATK4’s VariantRecalibrator
and AppyVQSR. The VariantRecalibrator analysis was performed based on QD, DP, FS, SOR and MQ
using either the public cross data (downloaded from ftp://ngs.sanger.ac.uk/production/malaria/pf-
crosses/1.0/) or our in silico positive training dataset made with the 10 laboratory strains. The --lod-score-
cutoff (VQSLOD cutoff) in AppyVQSR was set to 0 for SNP and -2.0 for indel (due to the mapping issue of
the low complexity repeat regions) to annotate low quality variants. Low quality variants (VQSLOD < 0 for
SNP and VQSLOD < -2.0) were tagged with the annotation  “LOW_VQSLOD” and can be used to remove
them from the VCFs. We used bcftools norm to merge variants with the same positions into multi-allelic
loci as multi-position VCFs are hard to handle in downstream analyses. The final VCFs were functionally
annotated with SnpEff (version 5.0d). Bcftools view and bcftools query were used for all VCF subsetting
and data extraction and the outputs were plotted with R Studio.

 Increased ploidy GATK4 analysis of drug resistance

We ran our optimized pipeline on Pf6 data with --ploidy argument of HaplotypeCaller set at 6 (hexaploid
mode) in comparison to  2 (diploid mode).  We   analyzed validated k13 mutations associated with
artemisinin resistance. The annotated VCF was subset at k13 gene locus on chromosome 13 (1,724,600 -
1,727,877) using bcftools view and amino acid changes and positions were extracted with SnpEff’s
SnpSift.jar package. In order to identify samples that carry these mutations, we used GATK4’s
VariantsToTable to extract the GT information along with REF and POS into a table. We applied the same
approach to analyze k13 mutations in MalariaGEN’s Pf6 GATK3 VCF which was downloaded from the
publicly available repository
ftp://ngs.sanger.ac.uk/production/malaria/pfcommunityproject/Pf6/Pf_6_vcf/. For mutated samples
that were not found in the GATK3 VCF, BAMs were visualized in IGV to confirm the mutations were
present across multiple reads.

Complexity of infection analysis in field isolates

We used bcftools view to extract SNPs with minor allele frequencies > 1% from chromosome 13 in VCFs
which included 6,626 samples from West Africa, East Africa, Central Africa, Central West Africa, South-
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East Africa, South-East Asia West, South-East Asia East, South America, South Asia and
Papua_New_Guinea. We used bcftools +fill-tags to add fractions of missing genotype annotations to the
VCFs and bcftools view to select SNPs with less than 10% missingness rates. We used custom scripts
based on vcftools to create genotype tables from diploid and hexaploid VCFs in which reference
homozygous, alternate homozygous and heterozygous calls were coded as 0, 2 and 1. We finally used
the genotype tables to compute discrete COIs with the REAL McCOIL package (Chang et al., 2017) in
jupyter notebook.

Population structure analysis

To analyze the population structure, we pruned variants for linkage disequilibrium and samples for
missingness (> 20%). We tested SNPs and indels of chromosome 1 individually and in combination to
assess the impact of both types of variants combined on the population structure. Multiallelic sites in
SNP or indel-specific VCF were split and optimized PLINK codes were used to compute the variance-
standardized genetic relationship matrix between pairs of African samples. The variance-standardized
genetic relationship matrix was used to conduct tSNE analysis using the Rtsne package in R. We
extracted the tSNE dimensions and plotted them with ggplot2.  

Abbreviations
AT : Adenine-Thymine

COI: Complexity of infection

DRC: Democratic Republic of Congo

GATK : Genomic Analysis Toolkit

Indel: Insertion-deletion

K13: Keclh 13

MalariaGEN: Malaria Genomic Epidemiology Network

POS: Position

REF : Reference

SNP : Single nucleotide polymorphism

tSNE: t-Distributed stochastic neighbor embedding 

VCF: Variant call format

VQSLOD : Variant quality score log-odds



Page 13/20

WGS: Whole genome sequencing

Declarations
Author contributions

JAB and BG conceived the study idea and secured the funding. KN, JAB and BG designed the study. KN
performed the data analysis that was supervised by JAB. KN wrote the first draft of the manuscript. JAB
and BG reviewed the manuscript. All authors read and approved the final manuscript.

Acknowledgments

This work was funded by the Drivers of Strain-Specific and Strain-Transcendent Antimalarial Immunity in
Childhood (NIH- 5R01AI137037) and Artemisinin Resistance in Africa (NIH-1R01AI156267) grants.

Funding

KN, BG and JAB were supported by the Drivers of Strain-Specific and Strain-Transcendent Antimalarial
Immunity in Childhood (NIH- 5R01AI137037) grant. JAB was supported by the Artemisinin Resistance in
Africa (NIH-1R01AI156267) grant.

Availability of data and materials

Data and codes are available at: https://github.com/Karaniare/Optimized_GATK4_pipeline 

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests

References
1. Amambua-Ngwa, A., Amenga-Etego, L., Kamau, E., Amato, R., Ghansah, A., Golassa, L.,

Randrianarivelojosia, M., Ishengoma, D., Apinjoh, T., Maïga-Ascofaré, O., Andagalu, B., Yavo, W.,
Bouyou-Akotet, M., Kolapo, O., Mane, K., Worwui, A., Jeffries, D., Simpson, V., D’Alessandro, U., …
Djimde, A. A. (2019). Major subpopulations of Plasmodium falciparum in sub-Saharan Africa.
Science, 365(6455), 813–816.

2. Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J., Langlois, A.-C., Khim, N., Kim, S., Duru, V.,
Bouchier, C., Ma, L., Lim, P., Leang, R., Duong, S., Sreng, S., Suon, S., Chuor, C. M., Bout, D. M., Ménard,
S., Rogers, W. O., … Ménard, D. (2014). A molecular marker of artemisinin-resistant Plasmodium
falciparum malaria. Nature, 505(7481), 50–55.



Page 14/20

3. Chang, H.-H., Worby, C. J., Yeka, A., Nankabirwa, J., Kamya, M. R., Staedke, S. G., Dorsey, G., Murphy,
M., Neafsey, D. E., Jeffreys, A. E., Hubbart, C., Rockett, K. A., Amato, R., Kwiatkowski, D. P., Buckee, C.
O., & Greenhouse, B. (2017). THE REAL McCOIL: A method for the concurrent estimation of the
complexity of infection and SNP allele frequency for malaria parasites. PLoS Computational Biology,
13(1), e1005348.

4. DePristo, M. A., Zilversmit, M. M., & Hartl, D. L. (2006). On the abundance, amino acid composition,
and evolutionary dynamics of low-complexity regions in proteins. Gene, 378, 19–30.

5. Dondorp, A. M., Nosten, F., Yi, P., Das, D., Phyo, A. P., Tarning, J., Lwin, K. M., Ariey, F., Hanpithakpong,
W., Lee, S. J., Ringwald, P., Silamut, K., Imwong, M., Chotivanich, K., Lim, P., Herdman, T., An, S. S.,
Yeung, S., Singhasivanon, P., … White, N. J. (2009). Artemisinin resistance in Plasmodium falciparum
malaria. The New England Journal of Medicine, 361(5), 455–467.

6. Felger, I., Smith, T., Edoh, D., Kitua, A., Alonso, P., Tanner, M., & Beck, H. P. (1999). Multiple Plasmodium
falciparum infections in Tanzanian infants. Transactions of the Royal Society of Tropical Medicine
and Hygiene, 93 Suppl 1, 29–34.

7. Gamboa, D., Ho, M.-F., Bendezu, J., Torres, K., Chiodini, P. L., Barnwell, J. W., Incardona, S., Perkins, M.,
Bell, D., McCarthy, J., & Cheng, Q. (2010). A large proportion of P. falciparum isolates in the Amazon
region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PloS One, 5(1),
e8091.

8. Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., Pain, A., Nelson,
K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S. L., Craig, A., Kyes,
S., Chan, M.-S., Nene, V., … Barrell, B. (2002). Genome sequence of the human malaria parasite
Plasmodium falciparum. Nature, 419(6906), 498–511.

9. Hamilton, W. L., Claessens, A., Otto, T. D., Kekre, M., Fairhurst, R. M., Rayner, J. C., & Kwiatkowski, D.
(2017). Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids
Research, 45(4), 1889–1901.

10. Koita, O. A., Doumbo, O. K., Ouattara, A., Tall, L. K., Konaré, A., Diakité, M., Diallo, M., Sagara, I.,
Masinde, G. L., Doumbo, S. N., Dolo, A., Tounkara, A., Traoré, I., & Krogstad, D. J. (2012). False-
negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2
gene. The American Journal of Tropical Medicine and Hygiene, 86(2), 194–198.

11. Li, H., Bloom, J. M., Farjoun, Y., Fleharty, M., Gauthier, L., Neale, B., & MacArthur, D. (2018). A synthetic-
diploid benchmark for accurate variant-calling evaluation. Nature Methods, 15(8), 595–597.

12. MalariaGEN, Ahouidi, A., Ali, M., Almagro-Garcia, J., Amambua-Ngwa, A., Amaratunga, C., Amato, R.,
Amenga-Etego, L., Andagalu, B., Anderson, T. J. C., Andrianaranjaka, V., Apinjoh, T., Ariani, C., Ashley,
E. A., Auburn, S., Awandare, G. A., Ba, H., Baraka, V., Barry, A. E., … Ye, H. (2021). An open dataset of
Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Research, 6,
42.

13. Manske, M., Miotto, O., Campino, S., Auburn, S., Almagro-Garcia, J., Maslen, G., O’Brien, J., Djimde, A.,
Doumbo, O., Zongo, I., Ouedraogo, J.-B., Michon, P., Mueller, I., Siba, P., Nzila, A., Borrmann, S., Kiara, S.



Page 15/20

M., Marsh, K., Jiang, H., … Kwiatkowski, D. P. (2013). Analysis of Plasmodium falciparum diversity in
natural infections by deep sequencing. Nature, 487(7407), 375–379.

14. Miles, A., Iqbal, Z., Vauterin, P., Pearson, R., Campino, S., Theron, M., Gould, K., Mead, D., Drury, E.,
O’Brien, J., Ruano Rubio, V., MacInnis, B., Mwangi, J., Samarakoon, U., Ranford-Cartwright, L., Ferdig,
M., Hayton, K., Su, X.-Z., Wellems, T., … Kwiatkowski, D. (2016). Indels, structural variation, and
recombination drive genomic diversity in Plasmodium falciparum. Genome Research, 26(9), 1288–
1299.

15. Miotto, O., Amato, R., Ashley, E. A., MacInnis, B., Almagro-Garcia, J., Amaratunga, C., Lim, P., Mead, D.,
Oyola, S. O., Dhorda, M., Imwong, M., Woodrow, C., Manske, M., Stalker, J., Drury, E., Campino, S.,
Amenga-Etego, L., Thanh, T.-N. N., Tran, H. T., … Kwiatkowski, D. P. (2015). Genetic architecture of
artemisinin-resistant Plasmodium falciparum. Nature Genetics, 47(3), 226–234.

16. Mobegi, V. A., Loua, K. M., Ahouidi, A. D., Satoguina, J., Nwakanma, D. C., Amambua-Ngwa, A., &
Conway, D. J. (2012). Population genetic structure of Plasmodium falciparum across a region of
diverse endemicity in West Africa. Malaria Journal, 11, 223.

17. O’Brien, J. D., Iqbal, Z., Wendler, J., & Amenga-Etego, L. (2016). Inferring Strain Mixture within Clinical
Plasmodium falciparum Isolates from Genomic Sequence Data. PLoS Computational Biology, 12(6),
e1004824.

18. Otto, T. D., Böhme, U., Sanders, M., Reid, A., Bruske, E. I., Duffy, C. W., Bull, P. C., Pearson, R. D., Abdi, A.,
Dimonte, S., Stewart, L. B., Campino, S., Kekre, M., Hamilton, W. L., Claessens, A., Volkman, S. K.,
Ndiaye, D., Amambua-Ngwa, A., Diakite, M., … Berriman, M. (2018). Long read assemblies of
geographically dispersed Plasmodium falciparum isolates reveal highly structured subtelomeres.
Wellcome Open Research, 3, 52.

19. Poplin, R., Ruano-Rubio, V., DePristo, M. A., Fennell, T. J., Carneiro, M. O., Van der Auwera, G. A., Kling,
D. E., Gauthier, L. D., Levy-Moonshine, A., Roazen, D., Shakir, K., Thibault, J., Chandran, S., Whelan, C.,
Lek, M., Gabriel, S., Daly, M. J., Neale, B., MacArthur, D. G., & Banks, E. (2018). Scaling accurate
genetic variant discovery to tens of thousands of samples. In bioRxiv (p. 201178).
https://doi.org/10.1101/201178

20. Van der Auwera, G. A., & O’Connor, B. D. (2020). Genomics in the Cloud: Using Docker, GATK, and WDL
in Terra (1st ed.). O’Reilly Media.

21. Vembar, S. S., Seetin, M., Lambert, C., Nattestad, M., Schatz, M. C., Baybayan, P., Scherf, A., & Smith,
M. L. (2016). Complete telomere-to-telomere de novo assembly of the Plasmodium falciparum
genome through long-read (>11 kb), single molecule, real-time sequencing. DNA Research: An
International Journal for Rapid Publication of Reports on Genes and Genomes, 23(4), 339–351.

22. World Health Organization. (2020). Report on antimalarial drug efficacy, resistance and response: 10
years of surveillance (2010-2019). World Health Organization.

23. World Health Organization. (2021). World malaria report 2021. World Health Organization.
https://apps.who.int/iris/bitstream/handle/10665/350147/9789240040496-eng.pdf?sequence=1



Page 16/20

24. Zook, J. M., & Salit, M. (2011). Genomes in a bottle: creating standard reference materials for
genomic variation - why, what and how? Genome Biology, 12(1), 1–25.

Figures

Figure 1
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Performance of the optimized GATK4, default GATK4 and GATK3 pipelines. A) Pipeline performance
using current high-quality Illumina read data (read length = 250 bp; insert size = 405 - 524 bp) from single
infection samples.Ten laboratory strains (7G8, Dd2, GA01, GB4,GN01, HB3, IT, KH01, KH02 and SN01)
were included for all the pipelines except GATK3 as only two (GN01 and KH02) of these samples were
found in the GATK3 VCFs we downloaded from the MalariaGEN website. B)Pipeline performance on
simulated high-quality mixed infections samples of IT + KH01 at 95:5, 90:10, 85:15, 80:20, 75:25, and
50:50 proportions (100X read depth). Only significant statistical differences are shown (indicated by
asterisks). Pipeline 1: GATK4 pipeline with default settings of HaplotypeCaller and GenotypeVCFs
coupled with variant recalibration by our in silicotraining dataset. Pipeline2: fully optimized GATK4
pipeline with alternation of HaplotypeCaller and GenotypeGVFs parameters and variant recalibration
(filtering) using our new in silicotraining dataset. Default GATK4 (crosses): Default GATK4 pipeline but
recalibrated by the publicly available cross dataset. GATK3: same GATK3 pipeline used by MalariaGEN’s
Pf6 release in which variants are recalibrated by the cross training dataset. Red dashed line represents
90% performance.
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Figure 2

Correlation analysis between sequencing quality parameters and variant calling performance, sensitivity
(A) and precision (B). Red (75bp) and green (100bp) represent samples with old shorter Illumina reads.
Samples with current longer Illumina reads are colored blue. Read score in the x-axis represents values for
either insert size, read coverage, read length or read quality. Pearson correlation was used.
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Figure 3

Local population structure in sub-Saharan Africa. t-distributed stochastic neighbor embedding (tSNE)
was computed from the variance-standardized genetic relationship matrix generated using A) SNPs and
indels combined, B) indels only and C) SNPs only. Variant data (from chromosome 1) were pruned for
linkage disequilibrium and only samples with less than 20% missing genotypes (n = 3,008) were kept.
DRC: Democratic Republic of Congo.
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Figure 4

Complexity of infection analysis by site based on the optimized GATK4 pipeline with ploidy of 6 and 2
versus GATK3. This analysis included SNPs with minor allele frequencies > 1% and missingness rates <
10% on the core region of chromosome 13 from public Illumina reads of field isolate samples (n = 6,626).
Ploidy 6 and ploidy 2 refer to the optimized GATK4 pipeline ran at hexaploid and diploid modes that were
compared to GATK3 (publically available callset from MalariaGEN Pf6). Ploidy 6 showed significant
increase in polyclonal sample detection compared to ploidy 2 and GATK3 after pairwise statistical
analysis between pipelines (p < 0.05, Wilcoxon test). DRC: Democratic Republic of Congo. COI: complexity
of infection.
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