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The past 20 years of research has elucidated new innate immune
sensing and cell death pathways with disease relevance. Future
molecular characterization of these pathways and their crosstalk and
functional redundancies will aid in development of therapeutic
strategies.
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Innate immunity provides the first line of defense against disease. To carry out this critical

function, the innate immune system is made up of sensor molecules called pattern recognition

receptors (PRRs) that detect pathogen-associated and damage-associated molecular patterns

(PAMPs and DAMPs) to initiate signaling pathways that activate a broader immune response

and regulated cell death (RCD). There are several families of PRRs, including Toll-like recep-

tors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs), and they are highly

evolutionarily conserved (Fig 1A). For instance, mammalian NLRs were discovered to have

structural similarity to plant NLRs [1], and the origins of mammalian cGAS–STING machin-

ery were recently traced back to bacteria [2]. Similarly, many sensing and signaling strategies

are conserved across genera, such as the ability of NLRs to act as both direct sensors and helper

molecules in plants, which is beginning to be appreciated in mammals as well [3]. This evolu-

tionary conservation highlights the critical functions of these molecules for organismal

survival.

Because of their essential and multifaceted functions in health and disease, innate immune

sensors and their downstream pathways have been a major focus of recent research. The

advent of new technologies and genetic tools to study the immune system has greatly advanced

this field and enabled cutting-edge breakthroughs in our understanding of innate immune-

mediated cell death. Until approximately 20 years ago, apoptosis was the only widely accepted

form of RCD, and it was thought to be a developmental process that allowed nonlytic, immu-

nologically silent clearance of cells that were no longer needed. There was a gradual shift in

this understanding as studies began to show that infections could also cause RCD [4]. But this
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death was not silent; instead, it was lytic and inflammatory, resulting in the release of proin-

flammatory cytokines and signaling molecules (Fig 1B). As the momentum in the innate

immunity and cell death fields began to bring these previously divided sectors of research

together, it became clear that apoptosis was not the only RCD pathway. This led to descriptions

of many new cell death pathways and their molecular mechanisms. In 2001, the innate

immune inflammatory RCD (III-RCD) pathway “pyroptosis” was named, followed in 2002 by

the description of its multiprotein cell death complex known as the “inflammasome” [5]; this

was shortly followed by the identification of other lytic RCD pathways, including “necroptosis”

in 2005 [6], “ferroptosis” in 2012 [7] (Fig 1C), and several others [8].

Building upon these findings, the innate immune sensing and cell death fields have grown

exponentially. As a prime example of this growth, there were only 92 publications in PubMed

on pyroptosis in its first 10 years of study (2001 to 2011), but there were 2,204 just last year

(2022). As a result of the increased mechanistic understanding of RCD, cell death molecules

are now widely implicated across the disease spectrum, from infections and autoinflammatory

diseases to cancers, and these molecules are prime targets for drug development [9]. However,

few clinical trials using therapeutics targeting cell death machinery have been successful to

date, and much work remains to optimize treatment strategies.

Clinical translation continues to be a top priority in innate immunity and cell death fields,

leading investigators to ask fundamental questions about RCD pathways to improve therapeu-

tic strategies. As research in these areas has grown, so too has the understanding that there are

mechanistic connections and functional redundancies among multiple forms of RCD. This

may be one of the key factors influencing the lack of clinical effectiveness for therapeutics tar-

geting cell death machinery, such as caspases and inflammasome components [9]. Studies of

this crosstalk have suggested a paradigm shift in the field and provided multiple lines of evi-

dence connecting RCD pathways that were historically viewed as independent. These findings

have highlighted an important gap in our mechanistic understanding of RCD and innate

immune pathway components.

Recent progress to fill this gap has identified regulatory mechanisms controlling crosstalk

between RCD pathways and the central roles of caspases in these connections. Caspase-1 was

characterized as a component of the inflammasome and pyroptosis, but it can also cleave apo-

ptotic substrates, including caspase-7 and PARP [10]. Additionally, functional redundancies

have been found between caspase-1 and caspase-8 in disease mechanisms [11]. Caspase-8 has

long been known to be an initiator of apoptosis and an inhibitor of necroptosis, but work in

the past decade found that caspase-8 also regulates the NLRP3 inflammasome and pyroptosis

[12]. These findings connecting caspase-8, caspase-1, and multiple RCD pathways led to the

identification of new multiprotein cell death complexes, called “PANoptosomes”, which regu-

late the unique III-RCD pathway known as “PANoptosis” (Fig 1C) [10].

PANoptosomes form when innate immune sensors detect pathogens, PAMPs, DAMPs,

homeostatic perturbations, or the cytokines produced downstream. The first PANoptosome

identified is formed by Z-DNA binding protein 1 (ZBP1), an innate immune sensor that

detects influenza A virus to activate the NLRP3 inflammasome and PANoptosis [3]. To date,

three distinct PANoptosome complexes have been identified, with key conserved molecules,

such as caspase-8, found in each [10]. These PANoptosomes use different sensors to respond

to specific perturbations, which is similar to how inflammasomes form. Additionally, PANop-

tosis has been observed in many diseases, including infections, inflammatory diseases, and

cancers, where it can have detrimental or beneficial effects depending on the specific disease

context [10]. For example, in cytokine storm-related clinical pathology in COVID-19 and

other diseases, PANoptosis has a disease-exacerbating effect [13]. By contrast, PANoptosis can

be induced through the same mechanism to inhibit tumor growth in murine xenograft tumor

PLOS BIOLOGY

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002022 February 10, 2023 2 / 5

Abbreviations: DAMP, damage-associated

molecular pattern; III-RCD, innate immune

inflammatory RCD; NLR, NOD-like receptor;

PAMP, pathogen-associated molecular pattern;

PRR, pattern recognition receptor; RCD, regulated

cell death; RLR, RIG-I-like receptor; TLR, Toll-like

receptor; ZBP1, Z-DNA binding protein 1.

https://doi.org/10.1371/journal.pbio.3002022


Fig 1. Evolutionary conservation of the innate immune pattern recognition receptor NLR family and the induction of III-RCD

pathways. (A) Phylogenetic tree of NACHT domain-containing proteins, including the NLR family of pattern recognition receptors,

from select bacterial and eukaryotic phyla. The tree was built using IQTREE2 phylogenetic software with protein sequences from

Mollusca (Candidula unifasciata), Proteobacteria (Pseudomonas fluorescens), Nematoda (Caenorhabditis elegans), Arthropoda

(Drosophila melanogaster), Chlorophyta (Chlamydomonas reinhardtii), Ascomycota (Aspergillus niger), Streptophyta (Selaginella
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models [10]. Therefore, it will be critical to mechanistically characterize this III-RCD pathway

in disease to optimize therapeutic strategies.

Overall, the fields of innate immune sensing and cell death have progressed extensively in

the past 20 years, highlighting key molecular similarities and differences between RCD path-

ways. Looking to the future, work to improve the translational application of these discoveries

is critically important. Current molecular evidence suggests that many disease phenotypes can-

not be explained by previously identified RCD pathways individually [10]. Future studies will

need to view RCD through the lens of multiple interconnected pathways with functional

redundancies and crosstalk (as PANoptosis does) to enable researchers to consider the full

suite of molecular components involved and identify unique therapeutic targets. Such an

approach would also help to address why inhibiting a single molecule may not be sufficient to

prevent RCD and inflammation.

Future work to identify new therapeutic targets in innate immunity and cell death com-

plexes and to translate these findings to the clinic should leverage the power of new technologi-

cal advancements. The advent of CRISPR–Cas9, single-cell analysis technologies, advanced

imaging capabilities, and cryo-EM have already rapidly accelerated progress in the field and

paved the way for continued discovery. It has never been a better time to investigate both the

evolutionarily conserved and distinct aspects of innate immune signaling and cell death path-

ways in health and disease to translate these mechanistic findings into therapeutic strategies.
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