Table 2. Summary of model metrics for four machine-learning techniques.
XGBoost | ||||||||||
Metrics | Minimum | 5th Percentile | 25th Percentile | Median | 75th Percentile | 95th Percentile | Maximum | Mean | Standard Deviation | Range |
Accuracy | 0.688 | 0.744 | 0.771 | 0.79 | 0.808 | 0.832 | 0.894 | 0.789 | 0.027 | 0.206 |
F1 | 0.69 | 0.745 | 0.772 | 0.788 | 0.81 | 0.832 | 0.897 | 0.79 | 0.027 | 0.207 |
Sensitivity | 0.678 | 0.759 | 0.788 | 0.808 | 0.825 | 0.85 | 0.906 | 0.806 | 0.028 | 0.228 |
Specificity | 0.595 | 0.709 | 0.753 | 0.785 | 0.814 | 0.855 | 0.944 | 0.784 | 0.042 | 0.349 |
PPV | 0.68 | 0.757 | 0.786 | 0.82 | 0.845 | 0.88 | 0.954 | 0.82 | 0.037 | 0.274 |
NPV | 0.57 | 0.678 | 0.725 | 0.756 | 0.787 | 0.83 | 0.928 | 0.756 | 0.046 | 0.358 |
AUROC | 0.771 | 0.828 | 0.853 | 0.87 | 0.885 | 0.906 | 0.947 | 0.869 | 0.023 | 0.176 |
Random Forest | ||||||||||
Metrics | Minimum | 5th Percentile | 25th Percentile | Median | 75th Percentile | 95th Percentile | Maximum | Mean | Standard Deviation | Range |
Accuracy | 0.670 | 0.728 | 0.768 | 0.782 | 0.800 | 0.815 | 0.889 | 0.784 | 0.026 | 0.219 |
F1 | 0.683 | 0.736 | 0.772 | 0.781 | 0.806 | 0.815 | 0.880 | 0.786 | 0.026 | 0.196 |
Sensitivity | 0.663 | 0.747 | 0.784 | 0.797 | 0.807 | 0.846 | 0.893 | 0.797 | 0.029 | 0.229 |
Specificity | 0.584 | 0.708 | 0.743 | 0.784 | 0.807 | 0.845 | 0.925 | 0.774 | 0.042 | 0.340 |
PPV | 0.673 | 0.741 | 0.778 | 0.808 | 0.842 | 0.862 | 0.947 | 0.806 | 0.041 | 0.274 |
NPV | 0.551 | 0.658 | 0.716 | 0.740 | 0.769 | 0.829 | 0.911 | 0.754 | 0.042 | 0.360 |
AUROC | 0.755 | 0.821 | 0.847 | 0.863 | 0.883 | 0.897 | 0.931 | 0.855 | 0.024 | 0.176 |
Artificial Neural Network | ||||||||||
Metrics | Minimum | 5th Percentile | 25th Percentile | Median | 75th Percentile | 95th Percentile | Maximum | Mean | Standard Deviation | Range |
Accuracy | 0.687 | 0.740 | 0.760 | 0.784 | 0.804 | 0.828 | 0.880 | 0.776 | 0.023 | 0.193 |
F1 | 0.673 | 0.735 | 0.753 | 0.782 | 0.791 | 0.822 | 0.886 | 0.774 | 0.025 | 0.212 |
Sensitivity | 0.672 | 0.747 | 0.776 | 0.797 | 0.806 | 0.832 | 0.888 | 0.796 | 0.024 | 0.217 |
Specificity | 0.594 | 0.704 | 0.751 | 0.769 | 0.799 | 0.837 | 0.926 | 0.764 | 0.039 | 0.332 |
PPV | 0.660 | 0.749 | 0.778 | 0.811 | 0.836 | 0.862 | 0.939 | 0.808 | 0.033 | 0.278 |
NPV | 0.551 | 0.662 | 0.715 | 0.748 | 0.771 | 0.814 | 0.913 | 0.744 | 0.050 | 0.362 |
AUROC | 0.752 | 0.819 | 0.838 | 0.862 | 0.882 | 0.889 | 0.946 | 0.851 | 0.025 | 0.194 |
Adaptive Boosting | ||||||||||
Metrics | Minimum | 5th Percentile | 25th Percentile | Median | 75th Percentile | 95th Percentile | Maximum | Mean | Standard Deviation | Range |
Accuracy | 0.687 | 0.732 | 0.759 | 0.79 | 0.793 | 0.82 | 0.886 | 0.776 | 0.028 | 0.199 |
F1 | 0.67 | 0.743 | 0.758 | 0.769 | 0.806 | 0.826 | 0.892 | 0.775 | 0.025 | 0.221 |
Sensitivity | 0.674 | 0.752 | 0.781 | 0.808 | 0.812 | 0.835 | 0.89 | 0.796 | 0.023 | 0.216 |
Specificity | 0.589 | 0.692 | 0.744 | 0.778 | 0.803 | 0.853 | 0.944 | 0.776 | 0.041 | 0.355 |
PPV | 0.672 | 0.743 | 0.774 | 0.8 | 0.845 | 0.862 | 0.948 | 0.816 | 0.04 | 0.276 |
NPV | 0.567 | 0.661 | 0.714 | 0.749 | 0.786 | 0.826 | 0.925 | 0.749 | 0.042 | 0.358 |
AUROC | 0.756 | 0.814 | 0.839 | 0.865 | 0.865 | 0.897 | 0.934 | 0.866 | 0.026 | 0.178 |
Summary of model metrics within the test set for each of the four machine-learning techniques (XGBoost, Random Forest, Artificial Neural Network, and Adaptive Boosting).