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Spatial transcriptomics reveals niche-specific
enrichment and vulnerabilities of radial glial
stem-like cells in malignant gliomas

Yanming Ren 1,6, Zongyao Huang1,6, Lingling Zhou1,6, Peng Xiao1,6,
Junwei Song 2,6, Ping He2, Chuanxing Xie1, Ran Zhou1, Menghan Li1,
Xiangqun Dong1, Qing Mao 3, Chao You3, Jianguo Xu3, Yanhui Liu3,
Zhigang Lan3, Tiejun Zhang3, Qi Gan3, Yuan Yang3, Tengyun Chen3,
Bowen Huang3, Xiang Yang3, Anqi Xiao3, Yun Ou4, Zhengzheng Su4,
Lu Chen 2 , Yan Zhang 5 , Yan Ju 3 , Yuekang Zhang 3 &
Yuan Wang 1

Diffuse midline glioma-H3K27M mutant (DMG) and glioblastoma (GBM) are
the most lethal brain tumors that primarily occur in pediatric and adult
patients, respectively. Both tumors exhibit significant heterogeneity, shaped
by distinct genetic/epigenetic drivers, transcriptional programs including RNA
splicing, and microenvironmental cues in glioma niches. However, the spatial
organization of cellular states and niche-specific regulatory programs remain
to be investigated. Here, we perform a spatial profiling of DMG and GBM
combining short- and long-read spatial transcriptomics, and single-cell tran-
scriptomic datasets. We identify clinically relevant transcriptional programs,
RNA isoform diversity, and multi-cellular ecosystems across different glioma
niches. We find that while the tumor core enriches for oligodendrocyte
precursor-like cells, radial glial stem-like (RG-like) cells are enriched in the
neuron-rich invasive niche in both DMG and GBM. Further, we identify niche-
specific regulatory programs for RG-like cells, and functionally confirm that
FAM20C mediates invasive growth of RG-like cells in a neuron-rich micro-
environment in a human neural stem cell derived orthotopic DMG model.
Together, our results provide a blueprint for understanding the spatial archi-
tecture and niche-specific vulnerabilities of DMG and GBM.

Malignant gliomas, including diffuse midline glioma-H3K27M mutant
(DMG) and glioblastoma (GBM), are the most frequent and lethal pri-
mary brain tumors1. DMG is a new entity added tomalignant gliomas in
the recentWHO classification, which includes the tumor type formerly

known as DIPG1. It most commonly occurs in children, typically in
midline brain regions including the brain stem, thalamus, and
cerebellum1,2. It harbors a signature lysine 27-to-methionine mutation
in histone H3 (H3K27M), often accompanied by TP53 mutations and
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PDGFRA amplification3. GBM, on the other hand, primarily occurs in
the frontal and temporal lobes of adult brains, and is driven by more
complex combinations of genetic events1,4,5. Despite the differences in
age of onset, anatomic location, and genetics, both tumors have very
poor prognosis, with a median overall survival of 9–14 months under
the standard treatment paradigm of surgery and chemo/radiation
therapy1,2,4. The main challenges underlying the treatment failure for
these tumors include high degree of heterogeneity and their char-
acteristic infiltrative growth1,2,4.

The heterogeneity of DMG and GBM is mainly shaped by distinct
genetic/epigenetic drivers, transcriptional programs including RNA
splicing, and microenvironmental cues. A series of single-cell RNA-
sequencing (scRNA-seq) studies have elegantly revealed diverse cel-
lular states and cell types within DMG and GBM, which exhibit simila-
rities to normal cells in developing and adult brains such as astrocytes
(ACs), oligodendrocytes (OCs), and oligodendrocyte precursor cells
(OPCs)6–11. In GBM, Bhaduri et al. identified a subpopulation of cancer
stem cells resembling embryonic neural stem cells outer radial glia
(RG), which is implicated in glioma progression and invasion8. How-
ever, it is unknown whether a similar cell population exists in DMG
considering DMG is mainly comprised of proliferating OPCs based on
single-cell analysis6. More importantly, the spatial organization of
cellular states and cell types in DMG and GBM remains largely elusive.
It has been well-established that glioma cells reside in spatially segre-
gated regions called niches, forming complex ecosystems with
microenvironmental cells including neurons, glia, blood vessel, and
immune cells to support their growth and treatment resistance12–15.
Thus, it is important to characterize the ecosystems within these
niches in a spatial setting, which is lacking in scRNA-seq analyses.

The advancement of spatial transcriptomics provides a high-
throughput method to interrogate tumor heterogeneity in a spatial
context16–19. This technique, when coupled with the newly developed
long-read sequencing, can simultaneously reveal the spatial hetero-
geneity of gene expression as well as differential transcript isoform
expression resulting fromalternative RNA splicing (AS)20–22. Compared
to short-read sequencing, long-read sequencing has the unique
advantage to discover rare isoforms, accurately quantify isoform
expression, and detect differential AS events, since it requires frag-
mentation and reassembly of genomic sequences in short-read
sequencing23.

In this study, we perform a spatial profiling of DMG and GBM
through short- and long-read spatial transcriptomics to decode the
ecosystems and identify specific regulatory programs in distinct
glioma niches.

Results
We collected five DMG, three IDH-wildtype primary GBM (GBMIDHwt),
two IDH-mutant secondary GBM (GBMIDHmut), and one peritumor
samples from ten patients requiring surgical resection (Fig. 1a, Sup-
plementary Figs. 1a and 2a, and Supplementary Data 1). Among these
tumors, 9/10 are TP53-mutant. H3K27M mutation is exclusively found
in DMG samples (5/5). To establish a dataset for spatially resolved gene
and isoform expression, we performed short-read and long-read spa-
tial transcriptomic sequencing (ST-seq) on the same tissue sections
using the 10X Visium platform (Fig. 1a, Supplementary Data 2).

Sample-wise spatially informed clustering and identification of
malignant spots
Short-read ST-seq yields 26,460 high-quality transcriptomes/spots
(“Methods”). In the current experimental setting, mRNAs may bleed
between and among nearby spots (spot swapping) causing substantial
contamination24. To correct for spot swapping, we used a recently
published tool, SpotClean24, to generate adjusted gene expression
matrices for subsequent analyses (Fig. 1a). For example, the expression
pattern of OLIG2, a oligodendrocyte lineage and glioma marker25,

became more specific in the tumor core and the cerebellar white
matter in DMG1 after SpotClean (Fig. 1a). Spots from different samples
are horizontally integrated in the transcriptional space by Harmony26

(Fig. 1b). To integrate both transcriptional space and Cartesian space
for spatially informed spot clustering, we tested several recently
developed spatially aware tools such as Seurat27, BayesSpace28,
SpatialPCA29, Spruce30, SpatialDE231, and BANKSY32 (“Methods”). Since
the DMG1 sample contains a significant portion of normal cerebellum
tissue with clearly demarcated anatomic domains, we used DMG1 as a
benchmark to compare the clustering results, and found that the
clusters generated by Banksy best correlate with anatomical domains
in DMG1. Thus, we performed BANKSY on spots from each sample,
generating unique spatial clusters that can be mapped onto
distinct histopathological regions (Supplementary Figs. 1b, 2b, and
“Methods”).

To identify malignant spots with relatively high tumor cell con-
tent, we performed inferCNV analysis using histologically normal
peritumor tissue as a reference11. We identified spots with broad
chromosome number variations (CNVs) characteristic of malignant
cells, including hallmark Chr 1q, 2 gain, and Chr 5q loss in DMG, as well
as Chr 7 gain andChr 10 loss inGBM3,5 (Supplementary Figs. 1b and 2b).
In each sample, we designated prominent CNV events shared among
spots containing tumor cells based on histopathology, such as Chr7
amplification in GBM, as tumor signatureCNV events (Fig. 1c). We then
estimated the tumor content in each spot based on their score of the
tumor signature CNV events (Fig. 1c, d, and “Methods”). Of note, the
peritumor sample GBM5_2 also contained an area of spots with CNVs
(Fig. 1b, d, and Supplementary Fig. 2b), which were excluded from the
normal reference (“Methods”). In addition, although 10X Visium plat-
form is based on 3′ sequencing, we can infrequently obtain reads at the
K27 locus of H3F3A (~1 per 100,000 reads), and identify A-to-T point
mutation (H3K27M) in spots from DMG but not GBM samples (Sup-
plementary Fig. 1c). The majority of spots with H3K27M mutation also
exhibit broadCNVs (Fig. 1e), independently confirming the accuracyof
ourCNV call.However, the lowdetection ratemakesH3K27Mmutation
less reliable to estimate the tumor content. Thus, we used CNV-based
tumor content estimation to filter out malignant spots for subsequent
analyses (“Methods”).

Glioma niche-specific transcriptional programs
To determine spatial transcriptional programs, we first analyzed
patient samples individually by BANKSY to groupmalignant spots into
spatially informed clusters (Fig. 1a), and identified marker gene sets
(cluster signature) for each cluster except those with fewer than
50 significant genes (“Methods”). This resulted in 48 cluster signatures
from 10 tumor samples. To identify recurrent spatial transcriptional
programs across samples, we horizontally integrated these cluster
signatures within the transcriptional and Cartesian space (“Methods”).
In the transcriptional space, we identified four meta-modules, which
arepresent in all glioma samples (Fig. 2a and SupplementaryData 3). In
the Cartesian space, we used two methods to perform spatially
weighted correlation and hierarchical clustering to confirm the spatial
segregation of these four modules (Fig. 2b and “Methods”). To test
whether these modules are conserved across different glioma types,
wequantified the contributionof cluster signatures by tumor type, and
found that all fourmodules consist of clusters from three glioma types
(Fig. 2c). We further performed horizontal integration by tumor types,
and found tumor type-specificmodules well correlate with pan-glioma
modules (Supplementary Fig. 3a, b). To investigate the biological sig-
nificance of these modules, we first performed Gene Ontology
enrichment analysis (Supplementary Data 4). Module 1 enriches genes
associated with normal gliogenesis and gliomagenesis (e.g. ALDOC,
OLIG2, PDGFRA, ASCL1, and SOX10). Interestingly, most cell cycle-
related genes (e.g. CDK1, TOP2A) are only found inModule 1. Module 2
enriches genes related to vasculogenesis and endothelial cells (e.g.
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ANGPT2, CD34, VEGFB); Module 3 enriches neuron and synapse asso-
ciated genes (e.g. NEUROD1, ZIC1, CAMK2B, GABRD, SYN1); Module 4
enriches genes involved in hypoxia and stress responses (e.g. LDHA,
HMOX1, PGK1).

We next sought to determine the clinical relevance of these
modules. We analyzed the relative module gene expression (module
score) in each tumor sample, and found that high module scores are
largely correlated with specific histopathological features, which were
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further confirmed by pathologists (Fig. 2d, Supplementary Figs. 4a and
5a). Consistent with Gene Ontology enrichment analysis, Module 1
marks the tumor core with the highest tumor cell density (thereafter,
tumor core). Module 2 identifies the blood vessels within and adjacent
to the tumor core area (thereafter, vascular niche or vascular). Of note,
GBM5 has been diagnosed as a highly vascularized tumor and the
majority of the malignant spots are marked by this module. Module 3
identifies regions with relatively normal histopathology or low tumor
cell density, reminiscent of tumor-infiltrated brain areas (thereafter,
invasive niche or invasive). Module 4 marks the necrotic and hypoxic
regions within the tumors (thereafter, hypoxic niche or hypoxic).
Pseudopalisading necrosis, a hallmark feature of malignant gliomas
most evident in DMG5 and GBM4, expresses high level of Module
4 geneset. Based on the relative expression of differentmodule scores,
we can assign the spots to different niches, which largely correlates
with histopathology (Supplementary Figs. 4a and 5a). To test whether
the spatial transcriptional modules are influenced by low-quality spots
(particularly those in the hypoxic/necrotic area), we compared the
gene number and mitochondrial gene percentage in spots from
hypoxic niches with spots fromother niches across all glioma samples,
and observed statistically significant but no dramatic differences
based on the median values (Supplementary Fig. 6a–c).

Ravi. et al. recently published a spatial transcriptomic dataset of
20 GBM patient samples, revealing five recurrent spatial transcrip-
tional programs33. To compare our results with a larger cohort, we
performed spatially weighted correlation between our pan-glioma
modules and their transcriptional programs in our dataset (Fig. 2e).
Our “Hypoxic niche” strongly correlates with the “Reactive Hypoxia”
program. “Tumor core” correlates with “Spatial OPC” and “Neuronal
development”, while “Invasive niche” correlates best with “Radial glia”.
“Vascular niche” does not appear to have a clear counterpart, exhi-
biting correlation with “Radial glia”, “Reactive hypoxia”, and “Reactive
immune”. To make a direct comparison between IDH-wildtype GBMs,
we further performed spatially weighted correlation between our
GBMIDHwt modules and Ravi. et al. transcriptional programs, and found
similar results (Supplementary Fig. 3b). Thus, our analysis identified
similar but different spatial transcriptomic programs, possibly due to
different spot filtering and data processing methods.

Malignant gliomas often exhibit spatially segregated subclonal
architecture influenced by environmental stress response33,34. To
investigate towhat extent tumor subclonal architecture contributes to
spatial transcriptional programs, we identified subclones in each
sample based on tumor signature CNV events (total 24 subclones), and
analyzed their spatial distribution across glioma niches (“Methods”).
We found 10/24 niche-dominant subclones (defined as more than 75%
of spots per subclone in a niche), and 14/24 non-niche-dominant
subclones (Fig. 2f, Supplementary Figs. 4b and 5b). Thus, similar to the
Ravi et al. study33, subclonal architecture does not appear to play a
major role in specifying the transcriptional programs.

RNA transcript isoform diversity across glioma niches
To determine the RNA isoform diversity across glioma niches, we
employed the Oxford Nanopore Technology (ONT) platform to per-
form long-read sequencing on the spatially barcoded cDNAs gener-
ated by 10X Visium, identifying novel isoforms as well as isoforms
validated by short-read sequencing (Fig. 3a, Supplementary Figure 7a,
and “Methods”). Since short-read and long-read sequencing share the
samebarcodes, we can align the expression of individual RNA isoforms
with their spot and niche identities (Fig. 3a). Through differential
expression analysis for each detected isoform, we identified isoforms
enriched in different glioma niches that exhibit recurrent expression
patterns across glioma samples (pan-glioma) or specific tumor types
(DMG, GBMIDHwt, and GBMIDHmut) (Supplementary Data 5). The host
genes for these isoforms enrich for pathways correlated with their
niche identities (Fig. 3b). For genes with multiple detected isoforms,

we calculated the percent spliced in (PSI) value for each isoform in
every high-quality spot, and compared their PSI across glioma niches
(Fig. 3a and “Methods”). We detected all types of AS events in each
niche, whose percentages are not significantly different (Supplemen-
tary Figure 7b). Isoforms from the same gene but enriched in different
niches are considered switched isoforms (Supplementary Data 5).

We further confirmed the AS events across glioma niches in
individual samples. For example, CHI3L1 encodes a secreted glyco-
protein, YKL-40, which is implicated in angiogenesis and glioma
progression35, and has been shown by Ravi et al. as a “Reactive
immune” marker33. We detected both long (CHI3L1-201) and short
(CHI3L1-205) isoforms of CHI3L1, which are differentially enriched in
the hypoxic niche versus the invasive niches, highlighting the need to
quantify gene expression at the isoform level (Fig. 3c–e).

To investigate the clinical relevance of niche-enriched isoforms,
we compared our data with the TCGA-GBM transcription dataset36,37.
Since the TCGA dataset is based on short-read sequencing which does
not offer accurate full-length isoform information, we compared these
datasets at the splicing junction (SJ) level (“Methods”). We identified
76,899newSJs through long-read sequencing,while the remaining two
thirds of SJs detected in our dataset were identified in the TCGA
dataset, confirming the fidelity of our long-read sequencing (Fig. 3f).
Among the shared SJs, we filter out SJs unique to specific isoforms to
perform survival analysis. For example, long (Tomm6-202) and short
(Tomm6-201) isoforms of Tomm6 (translocase of outer mitochondrial
membrane 6) are differentially enriched in the hypoxic niche versus
the invasive niches (Fig. 3g, h). The long isoformTomm6-202 contains a
unique SJ “chr6:41789337-41789530:+”, whose high expression is cor-
related with favorable prognosis (Fig. 3i and Supplementary Data 6).
To predict the regulatory mechanisms for niche-specific isoforms, we
further identified splicing factors (SFs) whose expression patterns are
consistent with the short isoform (“Methods”, Supplementary Data 5).
The AS for Tomm6 is likely regulated by YBX3, which is confirmed by
eCLIP and shRNA knockdown data from the ENCODE database38

(Fig. 3j). Consistently, low expression of YBX3, corresponding to high
expression of the long isoform Tomm6-202, is associated with favor-
able prognosis (Fig. 3j, k). As another example,we identified theU2AF2-
regulated AS of SNHG6 201/203, which has been implicated in the
progression of hepatocellular carcinoma39, and associatedwith patient
survival (Supplementary Fig. 7c–f). Thus, our data provide a spatial
profiling of diverse RNA isoforms in glioma samples, and identified
survival related isoforms/SJs and potential regulatory SFs.

Glioma ecosystemprofiling reveals niche-specific enrichment of
RG-like cells
Next, we sought to profile the multicellular ecosystems within differ-
ent glioma niches.

We integrated Bhaduri et al. GBM scRNA-seq8, Nowakowski et al.
human cortex scRNA-seq40, Filbin et al. DMG scRNA-seq6, and Aldinger
et al. human cerebellum snRNA-seq datasets41 as reference datasets to
perform deconvolution analysis (“Methods”). Malignant cell types
from tumor datasets are named as **-like (such as AC-like), to distin-
guish them from cell types from normal brain datasets (such as AC).
We determined the cellular composition of each spot, and calculated
the average cellular abundance in spots from different niches (Fig. 4a
and “Methods”). All four niches have a significant portion of astrocytes
(ACs),whichmaybe contributedbyAC-like tumor cells and/or reactive
astrocytes in the microenvironment, and AC-like cells are most abun-
dant in the invasive niche (Fig. 4a). As expected, vascular and immune
cells (Pericytes/endothelial cells, microglia/macrophage, and B cells)
are enriched in the hypoxic and vascular niche (Fig. 4a).We found that
OPCs are most abundant in the tumor core (Fig. 4a), while the neuron
content is the highest in the invasive niche (Fig. 4b).

Interestingly, we found RG-like cells in both DMG and GBM spots,
which are enriched in the invasive niche across glioma samples
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(Fig. 4a, c). In the two GBMIDHmut samples, hypoxic niche appears to
contain even more RG-like cells than the invasive niche (Fig. 4c),
althoughmore samples are required to confirm this observation. Since
it has notbeen reportedwhetherDMGcontainsRG-like tumor cells, we
rigorously tested this finding using a published DMG scRNA-seq
dataset6. We reanalyzed the data, and found two malignant cell clus-
ters thatwere annotatedby theprevious study asAC-like cells (AC1 and

AC2) (Fig. 4d). We found that AC2 expresses the highest level of RG
signature genes among all cell clusters, suggesting its RG-like cell
identity (Fig. 4e and “Methods”). It is well known that RG and astro-
cytes share many marker genes. To further test whether AC2 more
closely resembles RG-like cells, we obtained a short list of RG-specific
genes that are expressed at higher levels in RG-like cells than AC-like
cells in the GBM scRNA-seq dataset (“Methods”, Supplementary
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Data 7). We found that the expression of these RG-specific genes is
significantly higher in AC2 than AC1 cells (Fig. 4f), further supporting
the presence of RG-like cells in DMG. To further confirm the relation-
ship between RG-like cells and AC-like cells, we reanalyzed the Neftel
et al. GBMdataset7, and found that RG scores are highest in a subset of
cells at the AC-like andMES-like states (Fig. 4g). Since the MES-like cell
state is associatedwith glioma invasion but not a specific cell type7,36,42,
it is not surprising that RG-like cells exhibit MES-like state. Thus, these
analyses support that RG-like cells are present in both DMG and GBM,
which were classified as AC-like or MES-like cells in previous studies.

To predict niche-specific cell-to-cell communications networks,
we identified 101 receptor-ligand pairs that are co-expressed in spots
within each niche (“Methods” and SupplementaryData 8). Considering
that there is a significant overlap of receptor/ligands expression in
different cell types in brain tumors and each spot containsmultiple cell
types, we cannot definitively assign a receptor or ligand to a specific
cell type. Interestingly, 63/101 pairs contain at least one ligand or
receptor that are among RG signature genes (Supplementary Data 8).

Regulatory programs of RG-like cells in a neuron-rich
invasive niche
Since RG-like cells and neurons are enriched in the invasive niches of
both DMG and GBM, we sought to determine whether there are spe-
cific regulatory programs of RG-like cells in a neuron-rich invasive
niche. We focused on DMG1, a DMG sample from the cerebellum
exhibiting a continuum of tumor cell infiltration from the tumor core,
leading edge (LE), to a distant location in the granular-neuron cell layer
(GCL_TI), with large areas of anatomically comparable normal GCL
(GCL_N) that can be used as control (Fig. 5a). Consistent with the
aforementioned analysis, GCL_TI as a part of the invasive niche has the
highest RG and neuron scores among allmalignant regions (Fig. 5b, c′).

We used SPATA2 to infer the tumor invasion spatial trajectory
from the tumor core towards GCL_N43 (Fig. 5d and “Methods”). Along
the trajectory, we identified genes specifically upregulated in each
region based on their dynamic expression patterns. As expected, OPC
markers OLIG2, SOX9, and cell cycle genes CDK1, MKI67 are highest in
the tumor core (early peak), while neuronalmarkers ZIC1,GABRA1, and
mature oligodendrocyte marker MBP are highest in the GCL_N (late
peak). GCL_TI specifically upregulates RGmarkers TNC,HOPX, PTPRZ1,
and VIM, astrocyte markers CLU, LGALS1, as well as genes involved in
migration and glioma network formation such as CD44, SPARC, and
GAP43 (One peak) (Fig. 5d and Supplementary Data 9). These genes are
collectively termed GCL_TI signature.

Intersectional analyses revealed that one-fourth (n = 73) of the
GCL_TI signature genes overlap with marker genes for RG-like cells
(Fig. 5e, Supplementary Data 9), and enrich for pathways associated
with interaction between tumor cells and the microenvironment cells,
such as extracellular matrix organization, post-translational protein
modification, synapse organization/axonogenesis, and response to

inflammation (Fig. 5f, Supplementary Data 10). Furthermore, high
expression of these genes is associated with poor prognosis in the
TCGA-GBM cohort (Fig. 5g). These results suggest that these genes
may play a role in regulating RG-like cells in a neuron-rich micro-
environment in the invasive niche.

FAM20C mediates invasive growth of RG-like cells in a neuron-
rich microenvironment
Among the top 10 upregulated genes in GCL_TI that are also expressed
by RG-like cells, we found FAM20C of particular interest. FAM20C is a
Golgi-localized kinase that generates the majority of the secreted
phosphoproteome, and depletion of FAM20C in a breast cancer cell
line impairs its migration and invasion in vitro44. However, its function
inDMGhas not been reported. The expression of FAM20C is highest in
the GCL_TI of DMG1 with high neuronal content, and higher in the
invasive niche than in the tumor core across glioma samples (Fig. 6a,
b). In addition, its high expression is associated with poor prognosis in
the TCGA-GBM cohort (Fig. 6c). These results suggest that FAM20C
mayplay an important role inpromoting the invasive growthofRG-like
cells in a neuron-rich microenvironment.

To test this hypothesis, we established a DMG mouse model
through orthotopic xenograft of iCas9 human embryonic stem cell
(ESC)-derived neural stem cells (hNSCs)10,45. Through CRISPR-
mediated genome editing and lentiviral infection, we established
mutant hNSCs with PDGFRA D842V, H3K27M overexpression and TP53
mutation, along with mCherry as a tracing reporter (thereafter, HPT-
hNSCs) (Supplementary Fig. 8a, b and “Methods”). This oncogenic
driver combination is frequently found in DMG, and was previously
shown to be sufficient to drive gliomagenesis in vivo46,47.

Since ESC-derived NSCs closely resemble RG in the developing
embryonic cortex, we first investigated the function of FAM20C in
HPT-hNSCs in vitro. We generated two FAM20C knockout HPT-hNSC
lines using gRNAs targeting the translation start site of FAM20C (F1
and F2), as well as a control line using a gRNA targeting the LacZ
sequence (Supplementary Fig. 8b–e). We further confirmed HPT cells
are transcriptionally closest to RG-like cells in DMG and GBM scRNA-
seq datasets6,8, and expressed NSC/RG markers hNESTIN, PAX6, and
SOX2 (Supplementary Fig. 8f, g). The colony-formation capacity of the
F1 line is not significantly different from the LacZ control, while the F2
line shows a modest reduction (Supplementary Fig. 9a). To model the
cell-to-cell communication between RG-like cells and neurons, we first
performed transwell migration assay and direct coculture experiment,
using LacZ, F1, and F2 HPT-hNSCs along with primary mouse cortical
neurons. The hNSCs were cultured in growth factor deprivedmedium,
whose number barely increased during the experimental interval
(48 h) (Supplementary Fig. 9b). In the transwell migration assay, the
number of hNSCs that migrated through the membrane towards cul-
tured neurons is significantly reduced in both F1 and F2 groups (Sup-
plementary Fig. 9c). During direct coculture with neurons, the number

Fig. 3 | RNA isoform diversity across glioma niches revealed by long-read
spatial transcriptomics. a Workflow to identify niche-specific isoforms and spli-
cing junctions (SJs), predict regulatory splicing factors (SFs), and analyze their
prognostic value for patient survival.bGeneOntology (GO) enrichment of the host
genes of niche-specific isoform across samples (n = 10). P values were determined
by two tailed hypergeometric test. Significantly enriched (Benjamini–Hochberg-
adjusted P <0.05) biological processes are shown. c–e Differential isoform
enrichment ofCHI3L1 in different niches. c Individual transcripts ofCHI3L1 isoforms
201 and 205 in high-quality malignant spots from all glioma samples
(n = 19,071 spots) are represented by transcript tracks, colored by their niche
identities. Transcript structures based on Ensembl annotation are shown at the
bottom, with colored regions representing exons and gray regions representing
introns. d Tile plots showing scaledmean expression of CHI3L1-201 and CHI3L1-205
across niches to compare their niche-specific enrichment patterns. e As an exam-
ple, spatial plots of PSI values (colors) in DMG3 quantifying the relative expression

of CHI3L1-201 and CHI3L1-205 are shown. f Venn diagram showing the overlap of
splice junctions detected in our long reads sequencing dataset and the TCGA-GBM
dataset37. Differential isoform enrichment of TOMM6-201 and TOMM6-202 in dif-
ferent niches of GBM samples (n = 6727 spots), shown by tile plots (g) and indivi-
dual transcripts in each niche (h). i Kaplan–Meier survival curves comparing the
overall survival in the TCGA-GBM cohort36,37, stratified by high (n = 62) vs. low
expression (n = 102) of TOMM6-202 specific splice junction. Curve comparison
P value was determined by two tailed Log-rank (Mantel–Cox) test. j Predicted
splicing regulation of TOMM6 by splicing factor YBX3. Peaks indicate eCLIP and
shRNA-KD RNA-seq read density in HepG2 cell line from ENCODE38. Biological
replicates have similar results. Gray box shows the alternatively spliced region of
TOMM6-202. k Kaplan–Meier survival curves comparing the overall survival
between YBX3 high (n = 17) versus low groups (n = 149) in the TCGA-GBM cohort36.
Curve comparison P value was determined by two tailed Log-rank
(Mantel–Cox) test.
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of hNSCs that grow near neuronal clusters is also reduced in F1 and F2
groups (Supplementary Fig. 9d). To test whether FAM20C regulates
migration or motility of hNSCs in general, we performed a standard
transwell migration assay using 10% FBS as a chemoattractant in the
bottom well, but did not observe any difference in the FAM20C KO
HPT-hNSCs (Fig. 6d). To determine whether the phenotypes we
observed is caused by murine neuron-specific ligand/receptor inter-
actions, we obtained human neurons by differentiating hNSCs in the
NSC differentiation medium for 40 days to allow neuronal differ-
entiation and maturation, as evidenced by neurite growth and
expression of neuronal markers TUJ1 and MAP2 (Supplementary
Fig. 9e, f and “Methods”). We re-performed transwell migration assay

and obtained consistent results (Fig. 6e). These results indicate that
FAM20C promotes directed migration and growth of RG-like cells
towards neurons.

To investigate the role of FAM20C in vivo, we transplanted LacZ
and F1 HPT-hNSCs into the brainstem (pons) of NOD-SCID mice, a
region with a large number of neurons and nuclei where DMGs com-
monly originate. The LacZ group developed large tumors 2–3 months
after xenograft (10/10). Similar to previously reported hNSC-derived
DMGmodels6,46, these tumors are formed inside brain regions of pons,
medulla, and midbrain, with encasement of the basilar artery, micro-
cystic changes, and subarachnoid/subventricular spread outside the
brain parenchyma, which is often seen in patients with DMG2,46,47
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(Fig. 6f). The mCherry+ tumor cells maintain high level expression of
H3K27M (Supplementary Figure 9g). FAM20C expression is most evi-
dent in the leading edge and peritumor areas with a large number of
neurons, but relatively low in the tumor core and tumors outside the
brain parenchyma, consistent with the observations in spatial tran-
scriptomic analysis (Fig. 6g).

The F1 group (n = 10) became moribund at a similar rate as the
LacZ group. These mice also developed subarachnoid/subventricular
tumor masses outside the brain parenchyma (neuron-free), whose
sizes are comparable to the LacZ group (Fig. 6f). Like the LacZ group,
thesemice exhibit severe hydrocephaly and enlargement of ventricles
at themoribund stage, likely due to the blockade of the normal flow of
cerebrospinal fluid by the tumor mass (Fig. 6f). However, inside the
brain weonly observed diffusely infiltratingmCherry+H3K27M+ human
cells without forming large tumor mass (10/10) (Fig. 6f and Supple-
mentary Fig. 8f). Importantly, inside the brain (neuron-rich) the per-
centage of Ki67+ cells among total mCherry+ cells is markedly reduced
in the F1 group versus the LacZ group (Fig. 6h). As an internal control,
outside the brain (neuron-free) the Ki67 percentage is comparable
between these twogroups (Fig. 6h), consistentwith the in vitro colony-
formation assay.

To rule out the possibility that the tumors outside the brain are
results of continuous growth/invasion of endstage tumors inside the
brain, we examined brains from three early-stage mice 21 days after
HPT cell xenograft. At this stage, we can already identify clusters of
mCherry+ cells in the 4th ventricle and the subarachnoid space, likely
resulting from the spread of mutant hNSCs along the injection/injury
path. In the ponswe only observed diffusely infiltratingmCherry+ cells,
which are not yet full-blown tumors and do not exhibit obvious con-
nections with cells outside the brain (Supplementary Fig. 9h). These
data indicate that from the early stage on tumors inside and outside
are growing independently under different microenvironmental con-
text. Thus, it is most appropriate to treat them as different tumor
entities. Together, these in vitro and in vivo results indicate that
FAM20C is required for invasive growth of RG-like cells in a neuron-
rich microenvironment, but is dispensable for their neuron-free sub-
arachnoid/subventricular growth.

Discussion
A comprehensive characterization of glioma niches in a spatial context
has the potential to improve the diagnosis and treatment of DMG and
GBM. In this study, we integrated short- and long-read spatial tran-
scriptomics as well as public single-cell transcriptomic datasets to
provide a comprehensive spatial profiling of DMG and GBM, and
revealed niche-specific glioma ecosystems and regulatory programs.

We identified four gene expression modules that are conserved
across tumor samples, which specifically mark the hypoxic, vascular,
invasive, and tumor core niches. The histopathology of these niches
has been well documented in clinical practice. However, our previous
understanding of these niches is largely based on bulk analyses of

regionally dissected tumor tissues, exemplified by the Ivy Glio-
blastoma Atlas Project48. Aside from the cellular tumor core, the pro-
portion of tumor cells in other niches is generally low, making it
difficult to dissect the contribution of tumor cells versus micro-
environmental cells to bulk gene expression. In addition, these ana-
lyses lack a whole picture of the spatial architecture of malignant
gliomas. Through spatial transcriptomics, inferCNV, mutation calling,
and deconvolution using single-cell datasets, we provide a high-
resolution landscape of themulticellular ecosystemwithin each niche.

Notably, our niche-specific transcriptional programs correlate
with but differ from Ravi et al.’s spatial transcriptional programs33. In
their study, they used a very stringent threshold (90% based on their
tumor content estimation) to filter malignant spots, trying to identify
tumor cell specific transcriptional programs in different micro-
environment. However, our deconvolution analysis using pub-
lic single-cell datasets demonstrate that there are a significant portion
of immune and vascular cells within each tumor spot. The current 10X
Visium platform lacks single-cell resolution and each cell contain
multiple cells from different cell types. Thus, we believe it is more
feasible to consider each spot as a multicellular ecosystem, and iden-
tify recurrent niche-specific signatures correlatedwith histopathology.

In addition to gene expression, it is increasingly recognized that
RNA splicing plays an important role in the regulation of
tumorigenesis49,50. Our study provides a spatial dataset of RNA iso-
forms of DMG and GBM using long-read spatial transcriptomics. The
differential isoform expression across different niches may be a com-
bined result of niche- and cell-type-specific splicing. Further analysis
using long-read single-cell RNA sequencing in different regions could
help us distinguish these two possibilities and identify functional RNA
splicing events underlying gliomagenesis. Also, the biological sig-
nificance of differentially expressed isoforms needs further validation
from functional studies.

While there are many studies profiling GBM and its micro-
environmental cells at the single-cell resolution51–56, there are limited
high-throughput analyses of DMG, and our understanding of this
tumor type is still evolving. Our study shows that DMG shares many
similarities with GBM including niche-specific ecosystems, despite its
unique driver mutations and age of onset. While the DMG tumor core
is largely comprised of proliferatingOPCs, in the distant invasive niche
we identify a high proportion of RG-like cells potentially serving as a
cell-to-cell communication hub, which are transcriptionally similar to
their counterparts in the GBM and developing neurogenic niche. This
finding is confirmed by the re-analysis of a published DMG scRNA-seq
dataset6. Additional single-cell analyses of regionally dissected DMG
invasive niches could strengthen this point.

Since current 10X Visium-based spatial transcriptomics lacks the
single-cell resolution, we believe it is essential to collect samples
encompassing the tumor, peritumor, and normal brain areas with
comparable anatomic structures in a single slide, alongwith scRNA-seq
or snRNA-seq to pinpoint cell-autonomous regulators of tumor cells in

Fig. 4 | Profiling ecosystems in glioma niches. a The average of the deconvoluted
percentage of individual cell types in spots from each glioma niche (n = 19,767).
Integrated GBM8, DIPG6, CTX40, and CB41 public scRNA-seq datasets were used as a
reference in the deconvolution analysis. b Dot plot of deconvoluted percentage of
neurons in individualmalignant spots fromdifferent gliomaniches, quantified in all
tumor samples or by tumor type (n = 10,342, 1182, 6290, and 1951 spots; n = 3917,
211, 1796, and 774 spots; n = 3713, 48, 2533, and 347 spots; n = 2712, 923, 1961, and
830 spots, respectively). Boxes indicate quartiles, horizontal bar indicates median,
and whiskers indicate range, up to 1.5-fold inter-quartile range. P values,
Kruskal–Wallis test for between group differences with Holm’s correction for
multiple comparisons. c Dot plot of deconvoluted percentage of RG-like cells in
individual malignant spots from different glioma niches, quantified in all tumor
samplesor by tumor type (n = 10,342, 1182, 6290, and 1951 spots;n = 3917, 211, 1796,
and 774 spots; n = 3713, 48, 2533, and 347 spots; n = 2712, 923, 1961, and 830 spots,

respectively). Boxes indicate quartiles, horizontal bar indicates median, and whis-
kers indicate range, up to 1.5-fold inter-quartile range. P values, Kruskal–Wallis test
for between group differences with Holm’s correction for multiple comparisons.
d Re-analysis of Filbin et al. DIPG scRNA-seq dataset6 presented by UMAP scatter
plot. Cell identities for each cluster are consistent with the original study. The red-
dashed circle highlights the malignant cell populations. OC_N, normal oligoden-
drocytes. eViolin plots of the relative RG score expression in individual cell types in
d. n = 206, 87, 1437, 480, 49, 94, and 96 cells, respectively. Two tailed Wilcox test
for between group differences for comparisons. f Violin plots of the relative RG-Vs-
AC score expression in AC1 (n = 206 cells) and AC2 (n = 87 cells). Two tailedWilcox
test for between group differences for comparisons. g Re-analysis of Neftel et al.
GBM scRNA-seq dataset7 in scatter plot showing the expression of RG score. The
cellular states for each single cell were obtained from the annotations by Nef-
tel et al7.

Article https://doi.org/10.1038/s41467-023-36707-6

Nature Communications |         (2023) 14:1028 9



a DMG1 b RG score RG score

Tu
mor

GCL_
TI

GCL_
NLE

Tumor
GCL_TI

GCL_N

LE

Neuron scorecb’

dc’ Neuron score

Tu
mor

GCL_
TI

GCL_
NLE

0.2

0.4

0.6

0

0.2

0.4

0.6

−0.2

−0.1

0

0.1

0.2

***P = 8.8e-9

***P = 3.1e-34

−0.2

−0.1

0

0.1

0.2

Tumor
LE
GCL_TI
GCL_N

SPATA2 spatial trajectory prediction

Trajectory Direction

FA
M

20
C 

ex
pr

es
sio

n

Trajectory direction
Annotation

GABARAPL2
GABRA6
GABRA1
GABARAPL1
GABRB2
ZIC1
GABRD
MBP
PTPRZ1
VIM
HOPX
GAP43
CLU
FAM20C
CD44
TNC
SPARC
ZFP36L1
NLGN3
OLIG2

EGR1
FN1
MKI67

z score

−2
−1
0
1
2

Direction

0
10
20
30
40

fe Pathway enrichment of 
GCL_TI RG signature

endothelial cell
migration

ameboidal−type cell
migration

regulation of inflammatory
response

axonogenesis

synapse organization

post−translational
protein modification

extracellular matrix
organization

6

8

10

P. adj

0.04
0.03
0.02
0.01

+
++

+

+

++

+

++++
+++++++++
++++++

+++
+
+
+

+

++
+

P = 0.031

0

0.25

0.50

0.75

1

0 400 800 1200 1600days

Pe
rc

en
t s

ur
vi

va
l

+
+

low: n = 30
high: n = 136

GCL_TI RG signatureg

GCL_TI RG

229 48873

GCL_TI RG signature

***P = 2.1e-24

Fig. 5 | Identification of regulatory programs of RG-like cells in a neuron-rich
invasive niche. a Selected spots from the tumor core (Tumor), leading edge (LE),
and tumor-infiltrated GCL (GCL_TI), and normal spots without CNV from GCL
(GCL_N)ofDMG1are shown,distinguishedby color.bSpatial plot of theRGscore in
selected spots. b′ The RG score in each region (n = 256, 74, 71, and 200 spots,
respectively) is quantified and compared. Boxes indicate quartiles, horizontal bar
indicates median, and whiskers indicate range, up to 1.5-fold inter-quartile range. P
values, Kruskal–Wallis test for between group differences with Holm’s correction
for multiple comparisons. c Spatial plot of the Neuron score in selected spots. c′
The Neuron score in each region (n = 256, 74, 71, and 200 spots, respectively) is
quantified and compared. Boxes indicate quartiles, horizontal bar indicates med-
ian, and whiskers indicate range, up to 1.5-fold inter-quartile range. P values, two
tailed Wilcox test for between group differences for comparisons. d The spatial
trajectory from Tumor to GCL_N inferred by SPATA243. Highlighted spots were

selected for analysis (upper left). Heatmapof genes (row) dynamically expressed in
selected spots (column,markedby different colors representing regions) along the
spatial trajectory is shown on the right, clustered into three modules. Genes
upregulated in GCL_TI exhibiting an ‘one-peak’ pattern is highlighted in red. The
expression of FAM20C along the spatial trajectory is shown as an example (bottom
left). The shaded area represents the 95% confidence interval. eVenn chart showing
the overlap between genes upregulated in GCL_TI (d) and the RG signature genes.
The 73 overlapping genes are termed GCL_TI RG signature. f Gene Ontology
enrichment analysis of the GCL_TI RG signature genes. P value was determined by
two tailed hypergeometric test. Top enriched (Benjamini–Hochberg-adjusted
P <0.05) biological processes are shown. g Kaplan–Meier curves comparing the
overall survival between GCL_TI RG signature high (n = 136) versus low (n = 30)
groups in the TCGA-GBMcohort. Curve comparisonp valuewasdeterminedby two
tailed Log-rank (Mantel–Cox) test.
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different niches. In one such sample, DMG1, we were able to simulate a
whole transcriptomic trajectory of tumor spread from the tumor core
to a neuron-rich invasive niche, and identify niche-specific regulatory
programs in RG-like cells that are conserved across different tumors.
Among the top upregulated genes, we functionally validated FAM20C
as an important regulator of invasive growth of RG-like cells in a
neuron-rich microenvironment, using a mutant hNSC/RG-initiated

DMG mouse model. While the exact mechanism of how FAM20C
regulates the crosstalk between neurons and RG-like cells remains to
be investigated, these results serve as a proof of concept that we can
use spatial transcriptomics to uncover functional regulators within a
specific tumor niche.

In summary, our results provide a blueprint for understanding the
spatial architecture and niche-specific vulnerabilities of DMG and
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GBM, and pave the way for future functional studies of glioma niches
and ecosystems.

Methods
Patient samples and ethics
Our research complies with all relevant ethical regulations. Fresh
tumor tissues were collected from patients with brain tumors under-
going surgical resection at West China Hospital (2020/09-2021/03).
Patient sample collection and the study design was approved by the
Ethics Committee on Biomedical Research of West China Hospital,
Sichuan University, Chengdu, China (Approval number: 2020.837). All
adult patients and the guardians of patients under 18 years old have
provided written informed consent. Sample information is summar-
ized in Supplementary Data 1.

All animal procedures were approved by the Animal Care and Use
Committee of Sichuan University. Mice were housed in pressurized,
individually ventilated cages (PIV/IVC) and maintained under specific-
pathogen-free conditions, with free access to food and water in a 12 h
light/dark cycle. The maximum allowable tumor size is 20mm in dia-
meter for a mouse. We confirm the maximal tumor size/burden was
not exceeded, with detailed tumor diameters documented in the
Source Data. When mice exhibited neurological symptoms indicative
of endstage brain tumor development, or more than 20% weight loss,
they were deeply anesthetized by intraperitoneal injection of Avertin
(400mg/kg) and perfused with PBS for 5min and 4% paraformalde-
hyde (PFA) for 10min. Mice were euthanized with carbon dioxide.

This study used an establishedhuman stemcell line, iCas9 hPSCs45

and its differentiated derivative iCas9 hNSCs10. Its use has been
approved by the Ethics Committee on Biomedical Research of West
China Hospital, Sichuan University. This study does not involve
establishment of new human embryonic stem cell lines, hence does
not involve embryo donation or participant compensation.

Reporting on sex and gender
Sex/gender of patients was not considered in this study, since it does
not have a major impact on the spatial transcriptomes of gliomas. Sex
ofmicewas not considered in this study, since it does not have amajor
impact on animal model development or xenograft growth. Female
immunocompromised mice were used because they are easier to
handle and pool than male ones.

Histopathological diagnosis
Hematoxylin and Eosin (H&E) staining and immunohistochemistry
(IHC) for GFAP, OLIG2, TP53, and Ki67 on tumor sections were per-
formed by the Pathology department of West China Hospital. These

slides were reviewed by two experienced neuropathologists, and
tumor types were diagnosed according to 2016 World Health Organi-
zation (WHO) classification of central nervous system tumors1. For
mutational analyses, targeted Sanger sequencing on tumor samples
were performed by the Pathology department of West China Hospital
using the following primers for H3F3A, HIST1H3B, IDH1 and the pro-
moter region of telomerase reverse transcriptase (TERT) gene.

H3F3A-F: 5′-GTACAAAGCAGACTGCCCGCAAAT-3′
H3F3A-R: 5′-GTGGATACATACAAGAGAGACTTTGTCCC-3′
HIST1H3B-F: 5′-CTGCTCGTAAGTCCACCGGTG-3′
HIST1H3B-R: 5′-GCGATCTCCCTCACCAACCTC-3′
IDH1-F: 5′-CGGTCTTCAGAGAAGCCATT-3′
IDH1-R: 5′-GCAAAATCACATTATTGCCAAC-3′
TERT promoter-F: 5′-GTCCTGCCCCTTCACCTT-3′
TERT promoter-R: 5′-GCACCTCGCGGTAGTGG-3′
The methylation status of O6-methylguanine-DNA methyl-

transferase (MGMT) promoter was analyzed by the Pathology depart-
ment of West China Hospital through methylation-specific PCR. The
primers for the unmethylated reaction were 5′-TTTGTGTTTTG
ATGTTTGTAGGTTTTTGT-3′ (forward) and 5′-AACTCCACACTCTTCCA
AAAACAAAACA-3′ (reverse). For the methylated reaction, the primers
were 5′-TTTCGACGTTCGTAGGTTTTCGC-3′ (forward) and 5′-GCACTC
TTCCGAAAACGAAACG-3′ (reverse). These histopathological analyses
are summarized in Supplementary Data 1.

Sample preparation for spatial transcriptomics
Tissue processing and sample preparation. Surgically removed
human glioma samples were snap-frozen in isopentane/liquid nitro-
gen, embedded in pre-chilled optimal cutting temperature compound
(OCT) (Tissue-Tek O.C.T. Compound, SAKURA), and then cryosec-
tioned into 10μm sections at −20 °C. Sections with obvious tumor
areas were collected.

Tissue optimization. Frozen tissue sections on Visium Tissue Optimi-
zation Slides were fixed with pre-chilled methanol. H&E staining was
performed according to the Tissue Optimization Guide (CG000238
Rev A, 10X Genomics), and subjected to bright-field imaging under a
Leica DM6B microscope. Sections were permeabilized with Permea-
bilization Enzyme at different durations. The released mRNA was
captured by probes on the slides, and reverse transcribed to cDNA
marked by fluorescently labeled nucleotides. Tissuewas then removed
from the slides with a digestive enzyme, leaving the fluorescently
labeled cDNA, which was visualized under a Leica DM6B microscope.
Based on the signal intensity, we determined that the optimal per-
meabilization duration for human brain tumor samples was 12min.

Fig. 6 | FAM20C mediates invasive growth of RG-like cells in a neuron-rich
microenvironment. a Spatial expression pattern of FAM20C in selected spots of
DMG1. b The two tailed Paired SamplesWilcoxon Signed Rank Test comparing the
expression of FAM20C between paired tumor core and invasive niches from dif-
ferent samples (n = 10). Boxes indicate quartiles, horizontal bar indicates median,
and whiskers indicate range, up to 1.5-fold inter-quartile range. c Kaplan–Meier
curves comparing the overall survival between FAM20C high (n = 32) versus low
(n = 134) groups in the TCGA-GBM cohort. Curve comparison P value was deter-
mined by two tailed Log-rank (Mantel–Cox) test. d Left: Illustration of transwell
assay with HPT-hNSCs in growth factor deprived medium in the top well and 10%
fetal bovine serum in the bottomwell. Middle: representative images of crest violet
staining for migrated LacZ, F1, and F2 HPT-hNSCs. Right: Quantification of the OD
values of invading cells for each group. n = 3 for each group. P values were deter-
mined by Student t-test. Error bars indicate mean± SEM. e Left: Illustration of
transwell assaywith HPT-hNSCs in the top well and hNSC-derived neurons (day 40)
in the bottom well in growth factor deprived medium. Middle: Representative
images of crest violet staining for migrated LacZ (n = 3), F1 (n = 3), and F2 (n = 4)
HPT-hNSCs. Right: Quantification of the OD values of invading cells for each group.
P values were determined by Student t-test. Error bars indicate mean ± SEM. f Left:
representative low-magnification images of whole-mount brain sections from LacZ

and F1 group (n = 10 for each group). The LacZ andF1mice shown in this panel both
reached the endstage at around 80 days post HPT-hNSC xenograft. White dashed
lines mark the tumor inside the brain parenchyma. Red-dashed lines mark the
enlarged lateral ventricles (LV). Right: quantification ofmCherry+ tumor area inside
(n = 3 for LACZ group and n = 5 for F1 group) and outside (n = 3 for each group) the
brainparenchyma for eachgroup.P valuesweredeterminedby Student t-test. Error
bars indicatemean ± SEM. gRepresentative images of immunofluorescence (IF) co-
labeling of FAM20C/Human Nuclear Antigen (hNu) in tumor areas inside the brains
of LacZ and F1 mice (n = 10 for each group). The dashed line marks the border
between the tumor core (T) and tumor-infiltrated brain area (TI). Arrows point to
FAM20C/hNu co-labeled tumor cells in TI, arrowheads point to adjacent hNu-
negative neuronswith small, roundednuclei.h Left: Representative images of IF co-
labeling of mCherry/Ki67 in tumor areas inside and outside the brains of LacZ and
F1mice (n = 10 for each group). V, blood vessel. Thedashed linemarks theborder of
the brain stem. Right: the ratio ofKi67+mCherry+ cells among totalmCherry+ cells in
tumor areas inside (n = 3 for LacZ group, n = 5 for F1 group) and outside (n = 3 for
LacZ group, n = 5 for F1 group) the brains of LacZ and F1 mice. P values were
determined by Student t-test. Error bars indicate mean ± SEM. Source data for d-h
are provided as a Source Data file. Scale bars, 50μm in d, e, g, h, 1mm in f.
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Spatial transcriptomic sequencing and analysis
Visium spatial gene expression library construction and sequen-
cing. For spatial gene expression library preparation, frozen sections
on Visium Spatial Gene Expression Slides were fixed with pre-chilled
methanol and stained with H&E according to Tissue Optimization
Guide (CG000238Rev A, 10XGenomics). Sections were permeabilized
with Permeabilization Enzyme at the optimal duration, and cDNAs
were reverse transcribed, spatially barcoded, and amplified for 10 and
12 cycles for DMG and GBM samples, respectively.

For short-read sequencing, standard spatial transcriptomics
libraries were prepared according to the Visium Spatial Gene Expres-
sion User Guide (CG0000239 Rev A, 10XGenomics). 10 μl of amplified
cDNA from each sample was used for library construction through
fragmentation, adapter ligation, index PCR, and purification. Each final
library passed the quality control using Bio-Fragment Analyzer Qseq1
(Bioptic Inc.) and was sequenced with the Illumina NovaSeq 6000
platform at Novogene, Beijing, China, in a sequencing depth of
approximately 300-400M read-pairs per sample.

For long-read sequencing, PCR was performed with 20 ng of full-
length cDNA per sample for 14 PCR cycles. PCR products were then
purified and fragments greater than 800bp were selected by 0.6X
AMPure beads (Beckman Coulter, A63881). Library preparation was
performed using the ONT Ligation Sequencing Kit (Oxford Nanopore
Technologies Ltd., SQK-LSK109) according to the manufacturer’s
instructions. Approximately 200 ng of cDNA amplicons per sample
were used for library preparation. Sequencing was performed on a
PromethION or MinION sequencer for 72 h using R9.4.1 flow cells
(Oxford Nanopore Technologies Ltd).

Alignment and quantification. For short-read sequencing, the
sequencing data were processed using SpaceRanger software (version
1.1.0) with default parameters and mapped to the human genome
(hg38 https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-
GRCh38-2020-A.tar.gz). Gene expression was quantified based on
the uniquemolecular identifier (UMI). For quality control, we removed
low-quality spots whose gene count <200 or the mitochondria gene
ratio > 25%. To adjust for spot swapping in spatial transcriptomicsdata,
we used SpotClean24 (v0.99.2 with default parameters) to generate
adjusted gene expression matrices for subsequent analyses.

For long-read sequencing, the raw current signal data of FAST5
files were used to obtain RNA full-length sequences using Guppy
(Oxford Nanopore Technologies Ltd, v5.0.11) with super-accuracy
model for base-calling. The pass sequence reads were aligned against
the human genome (hg38), using minimap257 (v2.22 -ax splice -k14 -uf
–secondary = no). We used the ScNapBar58 (v1.0.0) software to assign
standard spatial barcodes generated from short-read sequencing
identification to ONT sequencing data. The parameters are set to poly
A/T. Length is 10, scoring threshold is 50 and a probability model is
selected. Then we used pychopper (Oxford Nanopore Technologies
Ltd., v2.5.0) to filter, orient and select the full-length read for down-
stream analysis. For oriented strand specific reads, we used the
TranscriptClean59 (v2.0.2) to correct themismatches,microindels, and
noncanonical splice junctions for a high-quality alignment. The all
corrected long reads were aligned against the human genome (hg38),
using minimap257 (v2.22 -ax splice -k14 -uf –secondary = no). We
extracted splice junctions (SJs) by comparison with GTF-annotated
sites and defined novel SJs that were not annotated but supported by
more than 10 reads. Then we identified all annotated and novel iso-
forms according to each long read and quantified the isoforms
expression based on the reads from the same sample. Then, we filtered
out isoforms expressed in less than 50 spots and spots expressing less
than 100 isoforms by min.cells = 50 and min.feature = 100.

CNV estimation and prediction of tumor cell content. We applied
InferCNV11 R package (v1.7.1) following the previously described

method11, using a moving average of 100 analyzed genes to estimate
CNVs in each spot and at each analyzed gene/chromosomal location.
We used spots from histologically normal peritumor regions of DMG1
or GBM5_2 as independent normal references, and got similar results.
CNV scores were rescaled to values ranging from0.7 to 1.3, with scores
<1 representing chromosomal loss and scores >1 representing
chromosomal gain.

Since all our tumor samples exhibit broad CNVs across the gen-
ome,we utilizedCNV scores to predict tumor cell content in each spot.
For each sample, we first designated a tumor signature CNV event in a
specific chromosomal region that is shared among spots containing
tumor cells based on inferCNV and histopathology, such as Chr7
amplification in GBM,with an average CNV score >1.2 or <0.8. We then
calculated the average CNV scores in this region for all spots from the
same sample. The tumor content C for a given spot i was calculated as
Ci = [ACNVi − 1]/[max(ACNV) − 1] if the signature CNV is a chromosomal
gain, or Ci = [1 −ACNVi]/[1 −min(ACNV)] if the signature CNV is a chro-
mosomal loss. At least three signature CNV eventswere tested for each
sample to ensure the robustness of the tumor content prediction. A
spot is considered a malignant spot to be included in subsequent
analyses if its C value is greater than 0.2.

CNV subclone analysis. For each sample, we clustered all spots based
on their CNV profiles using average-linkage hierarchical clustering.
CNV hierarchies were predicted using parsimonious order of CNV
events similar to a previously published study8. We then split the spots
into prominent clusters/subclones based on aforementioned tumor
signature CNV events. The distribution of the malignant spots from a
given subclone across four niches (see below Assigning niche identities
to each spot) were quantified and compared. If more than 75% of the
spots fromagiven subclonebelong to a specific niche,we consider this
subclone niche enriched.

Calling H3K27M mutation in DMG. We used REDItools60 (v2) with
default parameters to identifyH3K27Mmutation inDMGsamples from
BAM files generated by the SpaceRanger pipeline. The frequency of
reads with H3K27Mmutation in each spot is too low to be informative
of the tumor cell content.

Sample-wise spatially informed clustering. To integrate both tran-
scriptional space and Cartesian space for spatially informed spot
clustering, we tested several recently developed spatially aware tools
such as Seurat27 (v4.0.4), SpatialPCA29 (v1.2.0), Spruce30 (v0.99.1),
spatialDE31 (v2), and Banksy32 (v0.1.3). Clustered spotswereoverlaid on
H&E images using the SpatialDimPlot function. We used DMG1 as a
benchmark to compare the clustering results from these tools, and
found that the clusters generated by Banksy best correlates with ana-
tomical domains inDMG1. Thus, weused the expressionmatrix of each
sample after preprocessing and the spatial coordinate information of
the spots as input, and performed Banksy using default resolution
parameters on spots from all samples to assign each spot to spatially
informed clusters.

Horizontal integration and identification of transcriptionalmodules
across samples. To avoid the complication from inter-patient het-
erogeneity, we first analyzed patient samples individually to identify
spatially informed marker gene sets. For each sample, we filtered out
malignant spots, performed BANKSY to group them into spatially
informed clusters, and identified marker genes for each cluster using
the Seurat package27 (v4.0.4) (FindAllMarkers function, only. pos = T,
p_val_adj < 0.05), while excluding marker genes that are shared by
different clusters. For each cluster, we retained the top 50 marker
genes based on log2FC. Clusters with fewer than 50 significant genes
(log2FC >0.25 and P.adj < 0.05) were removed. As a result, 48 spatially
informed marker gene sets were identified across 10 tumor samples.
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To horizontally integrate these gene sets into transcriptional
modules, we tested three methods as follows and got consistent
results.

(1) In the transcriptional space, we calculated the relative gene set
expression score in each spot using the Seurat’s (v4.0.4) AddModule-
Score function with default parameters. The gene set expression
matrix was then used as input for Pearson correlation analysis. The
resultant correlation coefficient matrix was subjected to hierarchical
clustering using corrplot package-based hclust method61, integrating
the 48 spatially informed marker gene sets into four cluster modules.

(2) In the Cartesian space, while each spot is not spatially inde-
pendent, spatially informed clusters obtained by Banksy can be con-
sidered independent to eachother. Thus, we integrated spots from the
same cluster in each sample into pseudobulks using Seurat’s (v4.0.4)
AverageExpression function. For each pseudobulk, we calculated the
relative expression of the aforementioned 48 marker gene sets using
Seurat’s (v4.0.4) AddModuleScore function with the default para-
meters. The gene set expression matrix was then used as input for
Pearson correlation analysis. The correlation coefficient matrix was
subjected to hierarchical clustering using corrplot (v0.92) package-
based hclust method61, resulting in four modules highly similar to
method 1 (Jaccard-Index 0.746).

(3) In the Cartesian space, since adjacent spots are not indepen-
dent, we used Geographically Weighted Regression (GWR) for corre-
lation analysis. We first calculated all 48 marker gene set scores for
individual spots in each sample. Then we calculated the spatially
weighted correlation coefficient between any two gene sets using the
GWmodel62(v2.2) and gwrr63 (v0.2-2) packages, individually for each
sample. The resulting correlation array was reduced by mean to gen-
erate a single cross-sample correlation coefficient for any two gene
sets. Finally, the correlation coefficient matrix was hierarchical clus-
tered using the corrplot package-based hclust method61, resulting in
four modules similar to method 1 (Jaccard-Index 0.53). The mean
values of the correlation coefficients were visualized by
ComplexHeatmap64 R package (v2.0.0).

Spatial weighted correlation. For spatial weighted correlation
between our gene modules and published gene modules, we used
GWR-based correlation as described above.

Gene ontology (GO) enrichment analysis. GO enrichment analysis
was performed using clusterProfiler65 (v4.6.0) R package
Benjamini–Hochberg-adjusted P < 0.01 is considered statistically sig-
nificant. We used dot plot function to visualize the enrichment results
of GO Biological Process.

Assigning niche identities to each spot. We normalize the module
score for eachmodule across all spots. The niche identity of each spot
was determined by its highest-expressing module score correspond-
ing to each niche.

Deconvolution. We used Bhaduri et al. GBM scRNA-seq8, Now-
akowski et al. human cortex scRNA-seq40, Filbin et al. DIPG scRNA-
seq6, and Aldinger et al. human cerebellum snRNA-seq datasets41 as
reference datasets. For each dataset, we randomly sampled 500
cells from all major cell types as input for the subsequent decon-
volution analysis. Normal cells were named based on the acronyms
of the cell types (such as AC), while tumor cells were named as **-like
(such as AC-like). We used RCTD66 (v1.1.0) to deconvolute the
transcriptome of each spot (run. RCTD function with the entire
mode parameter) into the likely constituent cell types. The fre-
quency of the same cell types (such as AC) from different datasets
were combined to obtain a single frequency for each cell type.
Deconvoluted ratios of individual cell types were visualized by
Seurat’s (v4.0.4) SpatialFeaturePlot function.

Identification of AS types and isoform biotype. To identify the AS
event types, a reference-guided assembly and quantification of long
reads analysis was performed by StringTie267 (v2.1.7) with the para-
meter of ‘-L’. And then the assembled GTF was subjected to SUPPA268

(v2.3) with the parameter of “-f ioe -e SE SS MX RI FL” for categorizing
the AS events.We classified the annotated isoforms types according to
the biotype labels, and further annotated the protein-coding isoforms
as principal or minor isoforms using the APPRIS database69.

Detection of differentially expressed isoform. For each sample, we
performed pairwise comparisons among the four niches to find niche-
specific isoforms, using Wilcoxon test for differential expression
testing. Differentially expressed isoforms (DEIs) were defined with the
P value <0.01, absolute log2 (fold-change) >0.1 and percentage of
minimal spots expression >0.1. To identify conserved isoform
expressionpatterns across tumor samples,weonly keptDEIs thatwere
identified across patient samples with the same niche enrichment
pattern. When at least two isoforms were identified as DEIs for differ-
ent niches, we consider the host gene as isoform-switch genes.

Identification of isoform-related splicing factors. To reveal niche-
specific RNA splicing networks, we selected splicing factors thatmight
play a role in tumors70 and performed pairwise comparisons among
the four niches to finddifferentially expressed splicing factors (DESFs).
We then overlapped the DESFs and DEIs in co-expression analysis to
identify DEI-related splicing factors. Next, we downloaded the eCLIP
data and shRNA knockdown data from the ENCODE database38, and
retained credible peaks (log2fold change > 1 and PV > 1). Reliable
isoform-related SFs were found using the findOverlaps function in the
GenomicRanges71 package (v1.40.0). Finally, the shRNA knockdown
data was used to verify that a splicing event is regulated by a
specific SF.

Visualization of spatial distribution of switched isoforms. To visua-
lize the spatial distribution of switched isoforms, we calculated the PSI
of the switched isoforms in each spot according to the formula PSI =
IR/(IR + ER), requiring at least 5 total reads for a gene in a spot,where IR
and ER represent the reads of two differentially expressed isoforms
from the same host gene. SpatialFeaturePlot function of Seurat27

(v4.0.4) was used for PSI presentation in spatial spots.

Visualization of long-read isoforms. To visualize long-read tran-
scripts, the gene region reads were extracted using Samtools72 (v1.9).
Bam files for gene were converted to BED format using Bedtools73

(v2.29.2), and all bed files were converted to GTF format using UCSC
tools bedToGenePred and genePredToGtf. Visualization was per-
formedbyRpackageggbio74 (v1.38.0). Tovisualize differential isoform
enrichment among niches, the mean expression of an isoform in a
given niche is calculated as total reads divided by the number of high-
quality spots in the niche. The values from four niches were then auto-
scaled and visualized in the heatmap to show niche-specific enrich-
ment of each isoform.

Survival analysis on TCGA-GBM cohort. RNA-seq and clinical data of
the TCGA-GBM cohort were downloaded from the TCGA Data Portal
(https://tcga-data.nci.nih.gov/tcga/). For a given sample, the ssGSEA-
normalized score was calculated using the GSVA75(v1.46.0) package
with default parameters based on module gene sets. The optimal
cutoff point was obtained by iterating through each ssGSEA-
normalized score value. And the survival curve was plotted using
survminer (v0.4.9) R package. Furthermore, to explore the prognostic
value of splice junctions in GBM patients, we downloaded GBM cohort
in the TCGA linear junctions database and used the same approach for
certain isoforms with splice junctions specific to their gene to assess
the prognostic value of each splice junction.
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Analysis of public glioma scRNA-seq datasets. Bhaduri et al. GBM
scRNA-seq dataset8 was downloaded from UCSC Cell Browser (http://
gbm.cells.ucsc.edu). We obtained the list of RGmarker genes from the
published study8 (p_val_adj <0.05 & avg_logFC > 0.5). We calculated
marker genes expressed at higher levels in RG compared to AC using
Seurat27 (v4.0.4) (FindMarkers function: avg_log2FC >0.5 &
p_val_adj < 0.05), listed in Supplementary Data 4. We downloaded Fil-
bin et al. DIPG scRNA-seq dataset6 from Broad Single-Cell Portal
(https://singlecell.broadinstitute.org/single_cell). We reanalyzed the
data, performed cell clustering, calculated the relative expression of
cell-type markers based on the original study, and assigned cell iden-
tities to each cluster. We downloaded Neftel et al. GBM scRNA-seq
dataset7 from GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSM3828672).We calculated cell-type-specific gene set scores for
both AC and RG cell types separately, and gene set scores of individual
cell types were visualized by Seurat’s (v4.0.4) FeaturePlot function.

Niche-specific ligand-receptor analysis. We extracted a pool of
public ligand-receptor pairs from CellChat76(v1.4.0) and Nichenetr77

(v1.0.0) package. We then obtained all possible interacting pairs by
pairing two genes within each module, and intersected these results
with the ligand-receptor pool to predict the possible ligand-receptor
pairs in each module.

Spatial trajectory analysis of tumor invasion. To determine the
dynamics of spatial trajectories, we performed SPATA2 tool box43

(v0.1.0) in DMG1 tomanually draw trajectories simulating the tumor
invasion process and selected spots included in the trajectory width
90. Dynamic gene expression changes along the trajectory were
performed using the assessTrajectoryTrends function with pre-
defined models for early peak, one peak and late peak, resulting in
3036 spatial dynamic genes. The dynamic changes of the FAM20C
gene in the spatial trajectory were displayed by the plotTrajector-
yFeatures function and the expression of spatial dynamic genes
were shown in a heatmap using the ComplexHeatmap64 pack-
age (v2.0.2).

HPT-hNSC-derived DMG models
Cell lines and cell culture. The iCas9 hPSCswere gifted byDr. Danwei
Huangfu at Sloan-Kettering Institute45, and differentiated into iCas9
hNSCs following a published protocol10. Briefly, iCas9 hPSCs were
cultured on matrigel-coated dishes and fed daily with mTeSR (STEM-
CELL) for 7 days. On the next day, mTeSR was substituted by N2
medium (DMEM/F12 supplemented with 0.5× N2 supplement (Gibco),
1μM dorsomorphin (Tocris), and 1μM SB431542 (STEMCELL)) for
1–2 days. The hPSC colonies were lifted off, cultured in suspension on
the shaker at 37 °C for 8 days to form embryoid bodies (EBs) and fed
with N2 media. EBs were then mechanically dissociated, plated on a
matrigel-coated dish, and fed with hNSC maintenance medium
(DMEM/F12 supplemented with 1×N2 supplement, 1×B27 supplement
(Gibco), 1% penicillin/streptomycin, and 20ng/mL bFGF (Gibco)). The
emerging rosetteswerepickedmanually, dissociated completely using
Accutase (Gibco), and plated on a poly-ornithine/laminin-coated plate.
The resultant hNSCs were expanded and maintained in the hNSC
maintenance medium.

The 293T cells were purchased from National Collection of
Authenticated Cell Cultures (Shanghai, China) with catalog number
GNhu177, and cultured in DMEM medium with 10% FBS and 1% peni-
cillin/streptomycin (Gibco).

All cell lines were authenticated by the supplier. We performed
additional cell line authentication by STR profiling on both iCas9
hPSCs and HEK-293T cells (TsingKe Biological Technology, Beijing,
China), and confirmed their identities. Cell lines were routinely
checked for mycoplasma contamination. All cell lines used in this
study were tested negative for mycoplasma.

Plasmid design. For genome-editing, we used sgRNA sequences from
published studies:10,44,78

sgTP53−5 GGGCACCCGCGTCCGCGCCA
sgTP53−6 GAACACTTTTCGACATAGTG
sgFAM20C−1 GCTGTTCGTGCGCGCAGCCC
sgFAM20C−2 GGCGCGCCTTGCGGGGGCGG
sgLacZ GCGAATACGCCCACGCGAT
These sgRNAs were synthesized by TsingKe Biological Technol-

ogy (Beijing, China). For overexpression of oncogenes, coding
sequence of H3K27M and PDGFRA D842V were synthesized by GENE-
WIZ (Suzhou, China). The sgRNAs and oncogene sequences were
cloned into pLentiV2T vectors with Puromycin or Hygromycin resis-
tancegenes. EachgRNA is driven by a unique humanU6promoter. The
coding sequences of H3K27M and PDGFRAD842V are driven by EF-1α-
core promoter. Detailed plasmid designs are summarized in Fig. S8b.

Lentiviral packaging and infection of hNSCs. Lentiviruses carrying
plasmids were packaged and harvested in 293T cells through calcium
phosphate precipitation and concentrated by Lenti-X Concentrator
(Takara). The hNSCs were cultured in coated 6-well plates, and first
infected with 100μl concentrated lentiviruses carrying V2TC-sgTP53-
H3K27M-sgLacZ, V2TC-sgTP53-H3K27M-sgF1, or V2TC-sgTP53-
H3K27M-sgF2. To induce the expression of Cas9, the culture med-
ium was supplemented with 2μg/mL doxycycline for 48 h, then
screened in the culture medium containing 1μg/mL puromycin. The
genome-editing efficiencywas analyzedbyT7E1 orWesternblot. These
mutant hNSCs were subsequently infected with lentiviruses carrying
V2TH-PDGFRA D842V for 8 h, then screened in the culture medium
containing 100μg/mL Hygromycin for 3 days. The expression levels of
PDGFRA D842V in these cells were assessed by qPCR analysis.

Westernblot analysis. The harvested cellswere lysedwith RIPA buffer
(Sigma) containing 1mM PMSF (Sigma). Protein samples (approxi-
mately 20μg each) were analyzed by SDS-PAGE and electro-
transferred to PVDF membrane (Millipore). The blots were then
blocked in 5% skim milk in TBST, and the primary antibody was incu-
bated overnight at 4 °C. After washing, the blots were incubated in
horseradish peroxidase (HRP)-conjugated secondary antibody for
1 hour at room temperature. We used ECL or ECL Plus (GE Healthcare)
to detect the signals. Primary and secondary antibodies used are as
follows: β-actin (1:1000, rabbit, Cell Signaling Technology, 93473SF),
FAM20C (1:500, rabbit, Abcam, ab154740), and anti-Rabbit IgG(H + L)
Antibody, Peroxidase-Labeled (1:10000, ScraCare, 5220-0336).

Confirmation of RG-like identities of HPT-hNSCs. For IF staining of
cultured hNSCs, cells were fixed with 4% PFA for 15min at RT. After
three washes with PBS, cells were treated with 0.5% Triton X-100 for
15min at RT. After blocking with 5% milk in PBS for 1 hour at RT, cells
were incubated with either anti-hNESTIN (1:2000; Abcam, ab22035),
anti-Sox2 (1:1000; Abcam, ab92494), or anti-Pax6 (1:500; Abcam,
ab5790), anti-mCherry (1:2000; Abcam, ab205402) overnight at 4 °C.
Primary antibodies were visualized by species-specific goat secondary
antibodies conjugated to Alexa Fluor dyes (Alexa 488/555/647, 1:1000,
Invitrogen, A-11001/A-11008/A-21437/A-21235), and the nuclei were
stained with DAPI (1μg/mL). Stained cells were coverslipped and
imaged under a Zeiss (LSM880) confocal microscope.

To determine the expression of cell-type-specific gene signatures
in HPT-hNSCs, bulk RNA-seq was performed as previously described10.
Briefly, total RNA was purified using TRIzol reagent (Invitrogen).
Sequencing libraries were generated using NEB Next® UltraTM RNA
Library Prep Kit for Illumina® (NEB, USA) following the manufacturer’s
recommendations. The library fragments were purified with AMPure
XP system (Beckman Counlter, Beverly, USA). The libraries were
sequenced on the IlluminaHiSeq 2500platform and 150 bppaired-end
reads were generated (Novogene, Beijing, China). After QC, we aligned
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the cleaned human reads to the hg38 genome for downstream ana-
lyses. We collected marker gene signatures of main glioma cell types
from Bhaduri et al. GBM scRNA-seq and Filbin et al. DIPG scRNA-seq
datasets using Seurat (v4.0.4) function (FindAllMarkers function, only.
pos = T, p_val_adj <0.05). For a given sample, the ssGSEA-normalized
scorewas calculatedusing theGSVA75 packagewithdefault parameters
based on gene signature sets. The signature score of all samples was
visualized using ggplot2 R package (v3.3.6) and compared. P <0.05* is
considered statistically significant.

Orthotopic xenograft. Immunodeficient female NCG mice aged
4–5 weeks old were purchased from GemPharmatech, Ltd (Nanjing,
China). For stereotactic injection, single-cell suspensions were pre-
pared in 2 μL HBSS solution and placed on ice to maintain cells via-
bility. 1 × 106 cells were stereotactic injected into the brainstem of NCG
mice (RWD life science, Shenzhen, China). Stereotactic coordinates
usedwere: 1mm lateral tomidline, 0.8mmposterior to lambda suture,
and 5mm deep. The injection speed was 1 μl/min.

Tissue preparation and Immunofluorescence (IF). Brains were dis-
sected, post-fixed in 4% PFA overnight at 4 °C, and then transferred to
30% sucrose overnight at 4 °C. Dehydrated brain tissues were then
embedded in O.C.T. compound (Tissue-Tek) and frozen on dry ice.
Cryostat sections were saggitally prepared at 10 μm thickness.

For IF staining, frozen brain sections were oven-dried at 42 °C for
30min, rinsed and rehydrated with PBS, and treated with 0.3% Triton
X-100 in PBS for 20min at room temperature. The sections were then
blocked with 2% goat serum in PBS for 1 hour at room temperature,
and incubated with the primary antibody overnight at 4 °C. The pri-
mary antibodies were visualized by a species-specific goat secondary
antibody conjugated with Alexa Fluor dye (Alexa 488/555/647, 1:1000,
Invitrogen, A-11001/A-11008/A-21437/A-21235). Then the sections were
stained with DAPI (1μg/mL, Solarbio) for 5min. The slides were cov-
ered and imaged under the Olympus BX51 fluorescence microscope.
The primary antibodies used in this study are as follows: OLIG2
(1:1000, rabbit, Abcam, AB9610), KI67 (1:500, rabbit, BD, 550609),
mCherry (1:1000, chicken, Abcam, ab205402), Human Nuclear Anti-
gen antibody (1:200,mouse, Abcam, ab191181), FAM20C (1:200, rabbit,
Abcam, ab154740). The images and statistical results presented in the
figures are representative of at least three biological replicates and five
different imaging fields in each group.

Colony-formation assay. To determine the colony-formation capacity
of LacZ, F1, and F2 HPT-hNSCs, 2000 cells for each group were seeded
in the coated 6-well plate and cultured until apparent colony forma-
tion. Colonieswere stained by crystal violet (Beyotime biotechnology),
and the total colony numbers were counted and compared. Each assay
was repeated for 3 times.

Quantitative PCR (qPCR). Briefly, total RNA was purified from HPT-
hNSCs using Trizol reagent (Thermo Fisher Scientific). Two micro-
grams RNA for each sample was reverse transcribed into cDNA by
FastKing RT Kit with gDNase (Tiangen), prepared in iTaq™ Universal
SYBRGreen Supermix (BioRad), and analyzed by BioRadCFX96 Touch
Real-Time PCR Detection System. Primers used for qPCR are
listed below:

PDGFRA-cDNA-F: 5′ TTGAAGGCAGGCACATTTACA3′
PDGFRA-cDNA-R: 5′ GCGACAAGGTATAATGGCAGAAT3′
Beta-ACTIN-cDNA-F: 5′ GATGAGATTGGCATGGCTTT 3′
Beta-ACTIN-cDNA-R: 5′ GTCACCTTCACCGTTCCAGT 3′

Primary mouse cortical neuron culture. Primary mouse cortical
neuron culture was performed as previously described79. Briefly,
newbornmice at postnatal day 2 were euthanized by decapitation and
the brains were dissected out. After gently stripping themeninges and

carefully separating the cortex with forceps and fine scissors, the
cortical tissue was re-suspended in 2ml of fresh dissection medium
and incubated at 37 °C for 20min. The cells were centrifuged at 4 °C at
300 × g for 3min and cell numbers were estimated by a hemocyt-
ometer, and cultured in poly-D-lysine coatedplates. After incubating at
37 °C for 4 h, the old medium was removed and replaced with a fresh
maintenance medium (Neurobasal supplemented with 1X
B27 supplement (Gibco), 1% penicillin/streptomycin, 0.25% GlutaMAX
(Gibco) and 20 ng/mLbFGF (Gibco)). When changing themaintenance
medium, half of the medium were aspirated and replaced with the
same volume of fresh medium every 3-4 days.

Differentiation of humanneurons fromhNSCs. We generated human
neurons through direct differentiation of hNSCs using an adapted
protocol80. Briefly, hNSCs were dissociated by Accutase and seeded
intopoly-D-lysine and laminin-coated 6-well plate (2 × 105 cells /well) or
24-well plate (1 × 105 cells/well), and cultured in hNSC culture medium
(day 1). On day 2, bFGF was withdrawn and 5μM Rock inhibitor (Y-
27632, STEMCELL Technologies) was added to the medium for 24 h.
After that hNSC culturemediumminus bFGF was changed every other
day until day 40. We performed immunocytochemistry to confirm the
neuronal identity of differentiated cells. Cellswere fixedwith 4%PFA at
RT for 15minutes, washedwith DPBS for three times, and blockedwith
5% goat serum in DPBS for 1 h at RT. Cells were then incubated with
anti-MAP2 (1:5000, Chicken, Novus,NB300-213) and anti-TUJ1 (1:5000,
Rabbit, Sigma, 801201) overnight at 4 °C. Primary antibodies were
visualized by anti-chicken or anti-rabbit goat secondary antibodies
conjugated to Alexa 555 (1:1000, Invitrogen, A-21437) or Alexa 488
(1:1000, Invitrogen, A-11008), respectively, and the nuclei were stained
with DAPI (1μg/mL).

Cell Counting Kit 8 (CCK-8) assay for cell viability/proliferation. 1
× 104 cells/well (200 μl cell suspension) HPT-hNSCs were placed into
a 96-well plate, and cultured in normal hNSC culture medium or
growth factor deprived hNSC culture medium. At 0, 24, and 48 h,
10μl CCK-8 solution (Bimake, B34302) was added directly to each
well and incubated for 3 h. Then the absorbance at 450 nm for each
well was measured with a microplate reader.

Transwell migration assay. Cell migration was assessed by the
Transwell® Permeable Supports assay (Polycarbonate Membrane,
Corning) in a 24-well transwell system. (1) The standard transwell
migration assay was performed by adding 600 µl DMEM medium
supplemented with 10% FBS in the bottom chamber. (2) For migration
towardsmouse primary neurons, the bottom chamber was pre-coated
with poly-D-lysine and seeded with 2 × 105 freshly isolated primary
mouse cortical neurons. The neurons were cultured in maintenance
medium for 10 days until they formed apparent synapses. (3) For
migration towards human neurons, the bottom chamber was pre-
coatedwith poly-D-lysine and laminin, and seededwith 1 × 105 wildtype
hNSC. The hNSCs were allowed to differentiate following the afore-
mentioned protocol for 40 days until they formed apparent synapses.

For all transwellmigration assays, the top insert was seededwith 2
× 105 HPT-hNSC with or without FAM20C KO on top of the permeable
membrane in growth factor deprived culture medium (hNSC culture
medium without growth factors). After 48 h, the HPT cells that
migrated through to the other side of the membrane were fixed with
4% PFA and stained with crystal violet. Themigrated cells were imaged
under the microscope. The intensity of crystal violet staining was
measured by ImageJ, and at least 10 imaging fields for each groupwere
quantified and compared. Tomeasure theODof invading cells, the dye
was collected in 800μl 10% acetic acid (Keshi) following a published
protocol81. Formigration towards FBS, 100μl solution of dissolved dye
was further diluted 1:5 in 400 μl 10% acetic acid. Formigration towards
neurons, no further dilution was required. For each sample, 200μl
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solution was subjected to absorbance measurement at 552 nm, and at
least three replicates for each group were quantified and compared.

Direct coculture of mouse neurons and HPT-hNSCs. 7.5 × 105 Pri-
marymouse cortical neuron were cultured in coated six-well plates for
10 days until they form apparent synapses. LacZ, F1, and F2HPT-hNSCs
were dissociated into single cells using Accutase (Gibco) and seeded
with the neuron for 3 days. For IF staining of co-cultured cells, cells
were fixed with 4% PFA for 15min at RT. After washed with PBS three
times and blocked with 5% milk in PBS for 1 h at RT, cells were incu-
bated with anti-mCherry (1:1000, Chicken, Abcam, ab205402) over-
night at 4 °C. Primary antibodies were visualized by anti-chicken goat
secondary antibodies conjugated to Alexa 555 (1:1000, Invitrogen, A-
21437), and the nuclei were stained with DAPI (1μg/mL). HPT-hNSCs
clustering around densely populated neurons were imaged under the
microscope and counted by Image J. The images and statistical results
presented in the figures are representative of at least five different
imaging fields and three biological replicates for each group.

Statistical analysis
Statistical analyses were performed by R version 4.0.3 and Graphpad
Prism (v9.0). Statistic tests and data presentation are indicated in the
figure legends, and P or P adj. <0.05 is considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data for short-read sequencing in this study were deposited in
Genome Sequence Archive with accession ID HRA001865. The raw
data for long-read sequencing in this study were deposited in Genome
SequenceArchivewith accession IDHRA001960. The rawdata for bulk
RNA-seq of HPT cells were deposited in Genome Sequence Archive
with accession ID HRA003511 (https://ngdc.cncb.ac.cn/gsa-human/
browse/HRA003511). Since these data are related to human genetic
resources, raw data can be obtained within 3-6 weeks by requesting
and following the guidelines for Genome Sequence Archive for non-
commercial use. There are no time restrictions once access has been
granted. The guidance for making a data access request of GSA for
humans can be downloaded at the National Genomics Data Center
website (https://ngdc.cncb.ac.cn/gsa-human/document/GSA-Human_
Request_Guide_for_Users_us.pdf). The processed data in this study
have been deposited in the GEO database under the accession
GSE194329 and Figshare (https://doi.org/10.6084/m9.figshare.
20653908). The corresponding author will respond to requests for
thedatawithin oneweek. TheTCGAGBMpublicly availabledata36 used
in this study are available in the TCGA Data Portal (https://tcga-data.
nci.nih.gov/tcga/). The Bhaduri et al. GBM scRNA-seq8 publicly avail-
able data used in this study are available in UCSC Cell Browser (http://
gbm.cells.ucsc.edu). The Filbin et al. DIPG scRNA-seq6 publicly avail-
able data used in this study are available in Broad Single-Cell Portal
(https://singlecell.broadinstitute.org/single_cell). The eCLIP and
HepG2 shRNAknockdownpublicly available data used in this study are
available in the ENCODE Data portal38 (https://www.encodeproject.
org). The Nowakowski et al. human cortex scRNA-seq40 publicly
available data used in this study are available in UCSC Cell Browser
(http://cells.ucsc.edu/?ds=cortex-dev). The Aldinger et al. human cer-
ebellum snRNA-seq41 publicly available data used in this study are
available in Human Cell Atlas (https://www.covid19cellatlas.org/
aldinger20) and the UCSC Cell Browser (https://cbl-dev.cells.ucsc.
edu). The remaining data are available within the Article, Supplemen-
tary Information or Source Data file. Source data are provided with
this paper.

Code availability
The scripts used to perform themain analyses are available in Figshare
(https://doi.org/10.6084/m9.figshare.21878748).
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