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Abstract

Background: Epidemiologic investigations increasingly employ remote sensing data to estimate 

residential proximity to agriculture as a means of approximating individual-level pesticide 

exposure. Few studies have examined the accuracy of these methods and the implications for 

exposure misclassification.

Objectives: Compare metrics of residential proximity to agricultural land between a groundtruth 

approach and commonly-used satellite-based estimates.

Methods: We inspected 349 fields and identified crops in current production within a 0.5 

km radius of 40 residences in Idaho. We calculated the distance from each home to the 

nearest agricultural field and the total acreage of agricultural fields within a 0.5 km buffer. 

We compared these groundtruth estimates to satellite-derived estimates from three widely used 

datasets: CropScape, the National Land Cover Database (NLCD), and Landsat imagery (using 

Normalized Difference Vegetation Index thresholds).

Results: We found poor to moderate agreement between the classification of individuals living 

within 0.5 km of an agricultural field between the groundtruth method and the comparison datasets 

(53.1–77.6%). All satellite-derived estimates overestimated the acreage of agricultural land within 

0.5 km of each home (average =82.8–148.9%). Using two satellite-derived datasets in conjunction 

resulted in substantial improvements; specifically, combining CropScape or NLCD with Landsat 

imagery had the highest percent agreement with the groundtruth data (92.8–93.8% agreement).

Significance: Residential proximity to agriculture is frequently used as a proxy for pesticide 

exposure in epidemiologic investigations, and remote sensing-derived datasets are often the 

only practical means of identifying cultivated land. We found that estimates of agricultural 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding Author: Dr. Carly Hyland, carlyhyland@boisestate.edu, 1910 University Drive, Boise, ID 83725, 208-426-3924.
Author Contributions:
CH: Data Collection, Formal Analysis, Writing – Original Draft; KM, Conception of Data Analysis, Formal Analysis, Writing – 
Reviewing and Editing; ED, Formal Analysis, Writing – Reviewing and Editing; CLC: Conceptualization, Writing – Reviewing and 
Editing.

Competing Interests
The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 February 24.

Published in final edited form as:
J Expo Sci Environ Epidemiol. 2024 March ; 34(2): 294–307. doi:10.1038/s41370-022-00467-0.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


proximity obtained from commonly-used satellite-based datasets are likely to result in exposure 

misclassification. We propose a novel approach that capitalizes on the complementary strengths 

of different sources of satellite imagery, and suggest the combined use of one dataset with high 

temporal resolution (e.g., Landsat imagery) in conjunction with a second dataset that delineates 

agricultural land use (e.g., CropScape or NLCD).
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Introduction

Research suggests that individuals living in agricultural areas have higher levels of pesticide 

exposure than the general population (1–4). Residential proximity to pesticide-treated fields 

may be adversely associated with a range of health outcomes, including pre-term birth 

(5), fetal growth parameters (6), birth defects (7, 8), and other birth outcomes (9, 10); 

childhood (11–16) and adult cancer (17–19); respiratory problems, such as asthma (20); 

adverse neurodevelopment, including decreased cognition (21, 22) and increased emotional 

and behavioral problems (23) and traits related to Autism Spectrum Disorder (24, 25); 

and neurodegenerative disorders such as Parkinson’s disease (26–30). While previous 

epidemiologic studies have focused primarily on farmworkers and their families (31), non-

farmworkers living in areas of intensive agricultural pesticide use may also be exposed to 

pesticides via spray drift during their application and via inhalation, dermal exposure, or 

ingestion from volatilization after application (32).

While biomonitoring is often considered the gold standard for exposure assessment, there 

are various challenges that can limit the utility of biological monitoring for pesticides, 

including the short half-lives of many pesticides (33), as well as the cost and availability 

of analytical methods. To combat these limitations, an increasing number of exposure 

assessment and environmental epidemiology studies have employed Geographic Information 

Systems (GIS) and remote sensing data to assess residential proximity to agricultural 

pesticide use. Specifically, studies have used various geospatial data sources including 

aerial photography (34, 35), publicly available pesticide use reports (16, 21–25), land use 

surveys/crop maps developed from satellite imagery (e.g., Landsat, Sentinel, state-wide crop 

maps) (36–39), and satellite imagery combined with publicly available pesticide use data 

(40–44) to estimate agricultural pesticide use near study participants’ homes. Such data 

sources have many advantages and can be used in both prospective exposure assessment 

when methods like biomonitoring may not be available or are cost-prohibitive, as well 

as for retrospective exposure reconstruction, particularly for diseases with long latency 

periods. Remote sensing-derived products also offer a low-cost method to estimate use 

of multiple pesticides near individuals’ homes, facilitating analyses examining the health 

effects of potential exposure to mixtures of pesticides (23), a growing field in environmental 

epidemiology (45, 46). Previous studies have employed remote sensing-derived datasets to 

estimate residential proximity to agricultural land as a proxy for individual-level pesticide 

exposure to investigate associations with numerous health outcomes (44), including various 
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types of cancer (47–49); asthma (50); birth defects (51, 52), neural tube defects (8), and 

birth weight (53); child neurodevelopment (54); and child blood pressure (55).

Despite the many advantages of employing satellite-derived crop estimates to approximate 

pesticide exposure, some limitations exist. These data do not directly describe the type or 

quantity of pesticides applied, and instead provide an indirect measure of potential exposure 

in the form of crop locations. The varying spatial and temporal resolution of satellite-derived 

crop datasets mean they may not reflect sub-pixel changes in land cover. Further, more 

recent land cover changes (i.e., urbanization, market-driven change in crop types, rotation of 

non-permanent crops) many not be immediately reflected (31, 36, 56). Previous studies have 

also largely relied on aggregated annual exposure models, which cannot capture seasonal 

changes in pesticide use or allow for the examination of critical periods of exposure (56). 

Due to these limitations, previous analyses have often crudely classified participants as 

living in close proximity or far from agricultural land (e.g., < vs. ≥ 0.5 km), which may 

result in misclassification error (31) that could bias epidemiologic effect estimates (56). 

Additionally, studies have found that examining the total acreage of agricultural fields within 

a particular buffer is a more reliable indicator of potential exposure to pesticides than the 

distance to the nearest agricultural field (37, 41); however, this metric is rarely used and 

itself may be incorrectly characterized due to the aforementioned limitations.

Given the many benefits of satellite-derived data products, including their low cost, ease of 

estimating potential exposure to multiple pesticides, and ability to reconstruct past exposures 

for diseases with long latency periods (e.g., in case-control studies), it is imperative to 

examine the accuracy of these method and the implications for exposure assessment and 

epidemiologic studies. The goal of this analysis was to compare estimates of 1) the 

proximity to the nearest agricultural field and 2) the total acreage of agricultural fields 

near the homes of 40 participants from a study in Idaho’s Treasure Valley between a 

“groundtruth” gold standard method with other commonly used satellite-derived datasets. 

The results of this analysis can be used to improve future exposure assessment and 

epidemiologic studies employing satellite-derived datasets to estimate study participants’ 

proximity to agricultural land as a proxy for pesticide exposure.

Methods

Study Background

This analysis originated from a larger study examining dietary and agricultural contributions 

to exposure to the herbicide glyphosate among 40 pregnant women living in southern 

Idaho. Participants were recruited during their first trimesters of pregnancy from Idaho 

Women, Infant, and Children (WIC) clinics in the Southwestern, Central, and South-Central 

Health Districts from January-June, 2021 and were followed until they gave birth (August-

December, 2021). For the current analysis, we compare ground truth observations of 

agricultural fields within a 0.5 km buffer of each participant’s home during the growing 

season (August 2021), and compare these metrics of residential proximity to cultivated 

agricultural crops with estimates taken from satellite imagery and satellite-derived data 

products.
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Groundtruth Based Crop Locations

We plotted the address of each of the participant’s home(s) where they reported living any 

time during the study period and visually identified all potential agricultural fields within 

a 0.5 km radius of each home in Google Earth in August 2021 (imagery captured from 

Google Earth between July 2018 and August 2020). We identified “potential fields” as areas 

of green or brown that did not contain homes, buildings or other structures, or were not 

obviously occupied by other use (e.g., baseball fields). One researcher (CH) went to each 

of the potential fields in August 2021, visually inspected it, and classified the area as: 1) a 

grass field, 2) under development/developed land, 3) not a field (e.g., a lawn, dirt, soccer 

field), 4) a dormant field with nothing currently planted, 5) inaccessible (e.g., inaccessible 

without trespassing on private property), or 6) an agricultural field currently being used for 

crop production. For each agricultural field in production, the specific crop that was growing 

was identified.

If no potential fields were identified within a 0.5 km radius, we inspected potential fields 

within a 0.75 km and 1.0 km radius, as necessary, in order to determine the distance from 

the participant’s home to the closest field. If there were no agricultural fields with a 1.0 km 

radius of the participant’s home, the nearest field was listed as “>1 km”.

Selection of Comparison Geospatial Data Sources and Metrics

In order to compare metrics from our groundtruth approach with metrics from satellite-

derived crop estimates, we selected the data sources that have been most frequently used 

in previous studies examining residential proximity to agricultural fields, including the 

CropScape Cropland Data Layer from the US Department of Agriculture (37, 38, 57), 

Landsat satellite imagery (40–42, 44, 58), and the National Land Cover Database (NLCD) 

(48, 59). We converted our ground truth data to a raster layer (with 30 m resolution) for 

direct comparison of each of the data sources across two metrics: 1) distance to the nearest 

agricultural field, and 2) the total acreage of agricultural fields within a 0.5 km buffer. Each 

of these datasets has a 30 m spatial resolution (60–62), meaning each pixel was 900 m2.

Classification of Cultivated Land

To calculate groundtruth metrics, we used ArcGIS Pro 2.8.0 and its World Imagery base 

map imagery, which is derived from various data sources (63). First, we plotted the latitude 

and longitude of each home based on the geocoded street address. All addresses were 

self-reported by participants and verified by researchers during field work. Within a 0.5 

km radius buffer around each home, we manually plotted polygons corresponding to crops 

identified during the groundtruth. Using this groundtruth layer, we then calculated the 

distance from each home point to the nearest crop (referred to as “crop distance”) and total 

acreage of crops within a 0.5 km radius of each home point (referred to as “crop acreage”).

We used R Studio (R Version 3.6.2) to calculate satellite-derived crop estimates from each 

of the three comparison data sources. We used the sf, raster, nngeo, and tidyverse packages 

for analysis (64–67). For each dataset, we imported the participants’ geocoded addresses, 

plotted 0.5 km buffers around each address, and calculated crop distance and crop acreage. 

Crops are defined as follows for each of the three remote sensing-derived data sources:
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The Cropland Data Layer (CDL), also referred to as CropScape, is a crop-specific land cover 

map using satellite imagery and agricultural ground truth that is produced by the National 

Agricultural Statistics Service (NASS) of the US Department of Agriculture (USDA) (68). 

We downloaded the CropScape data layer representing the state of Idaho for the year 2020 

(the most recent year available) using the CropScapeR (69) package in R. The 2020 CDL 

was produced using satellite imagery from the Landsat 8 OLI/TIRS sensor, the Disaster 

Monitoring Constellation (DMC) DEIMOS-1, the ISRO ResourceSat-2 LISS-3, and the 

ESA SENTINEL-2 sensors collected during the growing season (70). We calculated the 

crop acreage and crop distance for all cultivated crops (field crops, vegetable crops, fruits, 

nuts). CDL codes corresponding to cultivated crops that we used are available in the 

supplementary material (Table S1).

NLCD is a Landsat-based land cover database that provides descriptive data for land-cover 

classes (e.g., urban, cultivated land, forest) (61). The Multi-Resolution Land Characteristics 

(MRLC) provides public access to the NLCD, which is released every 2–3 years (71). We 

downloaded the latest available NLCD dataset from 2019 (referred to as NLCD19), covering 

southern Idaho from https://www.mrlc.gov/viewer/. NLCD19 contains 34 different products 

that characterize land cover and land cover change from 2001–2019 (61). We calculated the 

metrics of interest using NLCD pixels classified as 82, corresponding to cultivated crops.

For Landsat-based crop estimates, we derived Normalized Difference Vegetation Index 

(NDVI) values and established a cutoff threshold to classify cultivated and non-cultivated 

pixels. NDVI is a measure of greenness that has been widely used for a variety of 

applications in remote sensing, including for pesticide exposure assessment (42) and 

detection of herbicide applications (72), and has been shown to be effective in differentiating 

different types of land cover, such as dense forest, non-forest, and agricultural fields (73). 

NDVI values range from −1.0 to +1.0, with higher NDVI values corresponding to dense 

vegetation or agricultural crops during their peak (74).

To establish an NDVI threshold above which pixels would be classified as cultivated, 

we first downloaded Landsat scenes from the month in which the groundtruth data were 

collected (August) and from the year in which the most recent NLCD data were available 

(2019). We utilized scenes from Landsat 8 OLI Collection 1 Analysis Ready Data (ARD). 

Because a single Landsat scene was not able to capture the entire study area, we downloaded 

separate scenes for participants clustered in the Western Idaho (e.g., Nampa/Caldwell area; 

captured August 9, 2019) and in Central Idaho (e.g., Twin Falls area; captured August 2, 

2019). Due to cloud cover, we were not able to select scenes covering both regions from 

exactly the same dates. We then calculated NDVI for each of the two scenes, and calculated 

the 75th and 90th percentiles of NDVI within pixels designated as crops by NLCD (Figures 

S1 and S2 for Western and Central Idaho, respectively). “Landsat75” and “Landsat90” 

are subsequently used as distinct thresholds, above which we classify pixels as cultivated 

land and below which we classify pixels as not cultivated land. We applied these NDVI 

thresholds to Landsat 8 ARD scenes from 2021 captured on July 29, 2021 for Nampa and 

September 1, 2021 for Twin Falls. We selected these scenes because they were the closest 

available to the dates in which the groundtruth data were collected (August 2-August 31, 

2021 for Nampa and August 18–19, 2021 for Twin Falls) and had minimal cloud coverage. 
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Prior to calculating NDVI for these scenes, we removed a small number of clouded pixels in 

Google Earth Engine using the Quality Assurance band.

Comparison of Cultivated Land Between Groundtruth and Satellite-Derived Estimates

To compare each of the three satellite-derived crop measures with our groundtruth measures, 

we compared the average acres of cultivated land estimated within a 0.5 km buffer of the 

participants’ homes with the average acres estimated from the groundtruth data by dividing 

the absolute difference of the estimates by the average of the two estimates, aggregated 

across all home buffers, and multiplying by 100:100 × acrescomparison − acresground−trutℎ
acrescomparison + acresground−trutℎ

2
.

For each of the five data sources (groundtruth, CropScape, NLCD, Landat75, and Landsat90), 

we created a raster layer with all of the area within 0.5 km of each participant-home 

classified dichotomously as cultivated crops (areas containing any agricultural fields 

currently being used for agricultural crop production; coded as “1”) or non-cultivated area 

(e.g., barren land, water, grass/pasture, development, or other area containing land that was 

not currently being used for crop production; coded as “0”). Using the groundtruth data as 

a gold standard, we assessed the accuracy of each of the satellite-derived crop measures 

in designating areas as cultivated vs. non-cultivated land by calculating the following 

metrics: 1) overall percent agreement (i.e., the percent of pixels within a 0.5 km buffer 

of all participant-homes in which the satellite-based dataset agreed with the groundtruth 

data’s designation of an area as cultivated vs. non-cultivated); 2) sensitivity (i.e., “true 

positive”, percent of acreage within a 0.5 km buffer of all 49 participant-homes that each 

satellite-based dataset identified as cultivated that was designated as cultivated based on 

the groundtruth data); and 3) specificity (i.e., “true negative”, percent of acreage within 

a 0.5 km buffer of all participant-homes that each satellite-based dataset identified as non-

cultivated that was designated as non-cultivated based on the groundtruth data). Potential 

fields that were inaccessible were coded as “0” (non-cultivated) for the groundtruth method. 

We conducted a sensitivity analysis in which inaccessible areas were removed from the 

analysis.

In addition to comparing the groudtruth data with each of the four datasets individually, we 

also compared the sensitivity and specificity of the groundtruth data with a combination of 

each of the satellite-derived datasets. First, we considered any area to be cultivated land if 

either of the comparison datasets designated it as cultivated land. Second, we considered an 

area to be cultivated land if both comparison datasets designated it as cultivated land.

Results

The 40 participants in this study lived in a total of 49 different homes during the study 

period. We identified a total of 349 potential fields within a 0.5 km buffer of these homes 

using Google Earth; of these 55 (15.8%) were inaccessible. Of the 294 fields that were 

accessible, 27 (7.7%) were grass fields, 22 (6.3%) were developed or under development, 

147 (42.1%) were another type of non-agricultural field (e.g., soccer field), and 13 (3.7%) 

were dormant; the remaining 85 (24.4%) were identified as agricultural fields (Table 1).
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Table 2 and Figure 1 show the distance to the nearest cultivated agricultural field and 

the average acreage of cultivated fields estimated within 0.5 km of the 49 participant-

homes from each dataset, as well as the percent difference in the estimates from the 

groundtruth data and the satellite-derived datasets. Each of the four satellite-derived datasets 

underestimated the crop distance (i.e., placed the nearest field closer to the participant’s 

homes than it actually was) and overestimated the crop acreage around participant’s homes. 

Of the four satellite-based datasets, NLCD Crop showed the greatest agreement with the 

groundtruth data in terms of residential proximity to the nearest field. Each of the Landsat-

derived NDVI metrics estimated that over 90% of homes had an agricultural field within 100 

meters, whereas our groundtruth data estimated that only 6% of homes had an agricultural 

field within 100 meters. We estimated an average of 13.6 acres of cultivated land within 

0.5 km of each of the homes from the groundtruth data; NLCD was the closest to this 

estimation (32.8 acres; 82.8% difference) and Landsat75 was the farthest (85.3 acres; 148.7% 

difference). While we estimated that about 51% of participant-homes had an agricultural 

field within 0.5 km, the satellite-derived datasets estimated there was an agricultural field 

within 0.5 km of 69–98% of homes, depending on the dataset.

Using the groundtruth distance to the nearest agricultural field, we categorized participants 

as living within 0.5 km and 1.0 km of a field from each of the four datasets, which represent 

commonly used metrics to categorize participants as living near or far from agricultural 

pesticide use (8, 10, 38, 40, 44, 56, 58), and compared how often each satellite-derived 

dataset agreed with the groundtruth data (Table 3). Following previous research with 

Interclass Correlation Coefficients (ICCs) (75), we considered values of less than 0.5 to 

be indicative of “poor” agreement, values between 0.5 and 0.75 indicative of “moderate” 

agreement, values between 0.75 and 0.9 indicative of “good” agreement, and values greater 

than 0.9 indicative of “excellent” agreement. At 0.5 km, we observed moderate agreement 

between CropScape (67.3%) and both Landsat-based metrics (53.1%) with the groundtruth 

data, and good agreement with the NLCD Crop method (77.6%). At 1.0 km, we still 

observed moderate agreement for each of the Landsat-derived estimates (65.3%), but good 

agreement with CropScape (81.6%) and NLCD Crop (85.7%). We observed the lowest 

agreement between both Landsat-based metrics and the groundtruth method regarding the 

percentage of participants that would be categorized as “near field” at both 0.5 km and 1.0 

km, and the highest agreement with the NLCD Crop method.

Table 4 shows the percent agreement in the acreage of cultivated and non-cultivated land, 

as well as the sensitivity and specificity between our groundtruth method and each of 

the satellite-derived comparison datasets. NLCD and CropScape had the highest percent 

agreement with the groundtruth data; they each agreed with the designation of cultivated 

vs. non-cultivated land from the groundtruth method for about 88% of the total acreage. 

These datasets also had the highest sensitivity (84.4% and 83.3%, respectively) and 

specificity (88.5% and 88.2%, respectively). The Landsat-derived NDVI75 estimate had the 

lowest agreement with the groundtruth data (56.2%) and had very low specificity (54.6%). 

Increasing the NDVI threshold with the Landsat90 analysis increased the percent agreement 

with the groundtruth method to 75.9%, while also increasing the specificity significantly to 

76.5%. However, increasing the NDVI threshold for Landsat90 also decreased the sensitivity 

from 79.6% to 68.5%.
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Figures 2–7 demonstrate the areas that each of the datasets designated as cultivated land for 

participants living in areas of high-density development (Figures 2 and 3), medium-density 

development (Figures 4 and 5), and low-density development (Figures 6 and 7). We use 

these figures to demonstrate some of the strengths and weaknesses of each dataset across 

different levels of urbanization.

As shown in Figures 2 and 3, CropScape and NLCD tended to agree with our groundtruth 

results in areas of high-density development with little to no cultivated land. In Figure 2, 

the participant lived in an urban area with one small grass field to the southwest of their 

home and no cultivated agricultural fields within a 0.5 km buffer. Thus, the true amount 

of cultivated land in this buffer was 0 acres2. CropScape and NLCD each designated a 

small area that was actually just grass as cultivated crops; when we examined historical 

images of this area from Google Earth, we found that this area was, in fact, previously 

an agricultural field but has since been converted to uncultivated land. Because Landsat 

images are captured more frequently than CropScape or NLCD data layers are produced, 

both Landsat-derived crop estimates correctly identified this area as non-cultivated, but also 

tended to mis-designate sections of grass/yard as fields as cultivated. Increasing the NDVI 

cutoff from the 75th to the 90th percent (thus going from Landsat75 to Landsat90) decreased 

the amount of area incorrectly designated as cultivated crops, but still overestimated the 

acreage within the buffer that was considered cultivated. Similarly, in Figure 3, CropScape 

and NLCD were in almost perfect agreement with the groundtruth data that there were 

no cultivated crops within 0.5 km of the participant’s home in an urban area. However, 

Landsat75 and Landsat90 estimated 101.1 and 38.0 acres of crops, respectively, all of which 

appears to be small sections of grass/yards.

Figures 4 and 5 illustrate common situations in areas of medium-intensity development. For 

Figure 4, groundtruthing showed that there was just one cultivated agricultural field within 

0.5 km of the participant’s home, in the extreme northwest corner of the buffer. GoogleEarth 

images showed four other possible fields, however groundtruthing confirmed that these areas 

had been developed since the GoogleEarth images were captured. CropScape designated the 

large majority of these recently developed areas as cultivated land, and NLCD designated 

one of them as such, which was likely due to urbanization that had occurred since the most 

recent release of CropScape and NLCD data. While the NDVI threshold approach correctly 

identified these areas as non-cultivated land (likely because these scenes are more recent), 

they also designated a baseball field and various sections of grass/yard as cultivated fields, 

regardless of the NDVI cutoff (though the overestimation of agricultural land was, of course, 

greater when the 75th percentile of the NDVI was used). In Figure 5, the participant lived 

in an area surrounded by multiple currently cultivated agricultural fields and one large area 

that was a new suburban housing development. Both CropScape and NLCD incorrectly 

designated this central housing area, including the actual location of the participant’s home, 

as cultivated crops. In this scenario, Landsat imagery, and particularly when the NDVI 

cutoff was set at the 90th percentile, was better at estimating the cultivated acreage in this 

buffer and was closest to on-the-ground conditions because the Landsat images are more 

recent and were able to detect the new development, and because this area was so large 

(28 acres). Notably, there was one field near this participant’s home that was inaccessible, 

and each of the comparison datasets designated this area as a cultivated field. However, this 

Hyland et al. Page 8

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



area was relatively small (8 acres), and each dataset except for Landsat90 still would have 

overestimated the amount of agricultural land within the buffer even if we had designated it 

as a cultivated crop.

As highlighted in Figures 6 and 7, all datasets tended to over-estimate the acres of 

agricultural crops in rural regions in which there was substantial non-crop vegetation. 

However, the number of acres that was estimated in the Landsat methods was much closer 

to, and sometimes even smaller than, the acres estimated from CropScape and NLCD in 

these rural areas. In Figure 6, the participant lives near two relatively large cultivated fields 

and several smaller non-cultivated fields (e.g., grass fields) to which agricultural pesticides 

are not likely to be applied. Similar to previous findings, Figure 6 shows that CropScape 

and NLCD identified non-agricultural fields as cultivated land. While the Landsat-based 

methods correctly identified these as non-cultivated areas, all of the datasets misclassified 

small patches of non-agricultural fields such as yards and baseball fields. Figure 7 similarly 

demonstrates that all datasets designated areas we identified as grass to be cultivated fields. 

Notably, none of the datasets captured the full areas we identified as cultivated fields; in 

Figures 7B and 7C, CropScape and NLCD missed some area to the north of the participant’s 

home, whereas in Figures 7D and 7E, the Landsat-derived estimates missed some area to the 

south of the participant’s home.

As demonstrated, each of the satellite-derived comparison datasets has various strengths 

and weaknesses. For example, the use of Landsat-based NDVI threshold values for 

crop detection avoids misclassifying recently urbanized areas, a limitation of NLCD and 

CropScape data. However, because NDVI is designed to measure general vegetation levels 

instead of specifically identifying cultivated land, this approach mis-identified small areas of 

grass such as yards as crops.

One approach to maximizing the strengths of each dataset is to consider two datasets 

in conjunction. Table 5 shows the percent agreement, sensitivity, and specificity when 

comparing our groundtruth data to a combination of two of the satellite-derived crop 

estimation methods. First, we considered an area to be cultivated land if either of the 

two satellite-derived datasets designated those pixels as cultivated crops. We observed 

significantly higher sensitivity (ranging from 93.2–95.1%), but lower specificity (ranging 

from 48.3–84.9%). By using either dataset to designate an area as cultivated land, we 

inherently increased the acreage considered to be true positives and false positives, thereby 

increasing the sensitivity but decreasing the specificity. We found that the combination 

of CropScape with NLCD or NLCD with Landsat75 had the highest sensitivity (95.1% 

and 95.4%, respectively). Second, we considered an area to be cultivated land if both 
of the satellite-derived datasets designated that area as a field, and observed decreased 

sensitivity (ranging from 58.5–75.5%) but significantly increased specificity (91.2–96.2%). 

Similarly, by requiring two datasets to designate an area as cultivated land, we increased 

both the true negatives, thereby increasing the specificity, while also increasing the false 

negatives, thereby decreasing sensitivity. The combination of either CropScape or NLCD 

with Landsat90 had the highest specificity (96.2% each); however, sensitivity values for both 

combinations were below 60%. Combining CropScape and NLCD had just slightly lower 

specificity (91.2%), while still maintaining relatively high sensitivity (75.5%).
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Our results were similar and our overall interpretations did not change in sensitivity analyses 

in which we excluded inaccessible fields (Tables S2 and S3).

Discussion

In this analysis, we compared residential proximity to agricultural fields between a “gold 

standard” groundtruth method with four analyses from three commonly-used remote sensing 

and remote sensing-derived datasets, CropScape, NLCD, and Landsat (using NDVI cutoffs 

from the 75th and 90th percentiles). We observed moderate or good agreement between 

the classification of individuals living within 0.5 km or 1.0 km of an agricultural field, 

commonly used metrics to classify participants as living “near” or “far” from pesticide 

use, between our groundtruth method and the satellite-derived estimates. The comparison 

satellite-derived datasets tended to overestimate the total acreage of agricultural land within 

0.5 km of each home, a metric that has been shown to be a better predictor of pesticide 

exposure than just distance alone (31, 41). We found that using two of the satellite-derived 

datasets in conjunction increased the sensitivity or specificity, depending on whether one 

or both datasets were required to designate an area as cultivated land; this has implications 

for different applications of remote sensing-derived crop datasets. Given the many strengths 

of employing remote sensing-derived crop estimates in pesticide exposure assessment and 

epidemiology studies, including their relatively low financial and logistical burdens, we 

advocate for these methods to continue to be used while properly acknowledging their 

strengths and limitations.

Many studies crudely classify study participants as living near or far from pesticide use 

based on whether they live within a certain distance of an agricultural field, such as 0.5 

km or 1.0 km. Evidence suggests that variables such as the total acreage of crops within 

a particular buffer zone may be better predictors of pesticide exposure than dichotomously 

classifying participants as near versus far field or continuously examining their proximity to 

the closest field (31, 41); however, these data are not always available. Our results suggest 

that using any of the satellite-derived methods to classify participants as “near” or “far” field 

based on the presence of a field within 0.5 km will result in exposure misclassification. More 

specifically, the satellite-derived methods identified fields both in much closer proximity to 

participant-homes, and also a greater number of fields within 0.5 km of participant-homes 

than we did in our groundtruthing, which results in an over-estimation of the number of 

“near-field” participants. We found significantly better agreement between our groundtruth 

data and the comparison datasets at 1.0 km. CropScape and NLCD each agreed with 

the groundtruth data regarding the presence of an agricultural field within 1.0 km of 

participant’s homes over 80% of the time; these appear to be the most reliable datasets 

and metric if crude near vs. far-field classification is to be used. While there is no scientific 

consensus regarding the best buffer distance to use to assess nearby agricultural pesticide 

use, previous meta-analyses and other studies have shown that pesticide concentrations 

in environmental samples collected from homes decrease with increasing distances from 

pesticide-treated fields (3, 76). We chose to characterize fields within a 0.5 km buffer of 

homes, as this has been used in previous studies as an intermediate distance for nonspecific 

pesticide applications (40, 56).
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In addition to underestimating the distance to the nearest agricultural field, we found 

that the satellite-derived datasets overestimated the total acreage of agricultural land near 

participant’s homes. The primary reasons for this are that: 1) CropScape and NCLD fail 

to capture recent changes in land use and urbanization due to the lag time in their public 

release, and 2) the inability of NDVI to fully differentiate between vegetation generally and 

crops specifically, which limits the utility of Landsat imagery paired with NDVI data. The 

CropScape data layer is updated annually (60, 77), whereas the NLCD is available every 2–3 

years (78) and new Landsat scenes are available approximately every 16 days (79). Here, we 

discuss some of the strengths, limitations, and implications of our findings for each method.

Individually, NLCD had the highest sensitivity and specificity, as well as the highest 

agreement regarding the presence of an agricultural field within 0.5 km or 1.0 km of 

the home when compared with the groundtruth data. Notably, we did not include the 

NLCD class “hay/pasture” (code 81) as cultivated crops in our analysis. While hay is 

often produced from cultivated alfalfa, and alfalfa is a common crop in Idaho, we found 

that areas we identified as alfalfa from the groundtruth data were often correctly classified 

as “cultivated crops” (code 82) in NLCD. Therefore, including the hay/pasture category 

as cultivated land would have resulted in an even greater overestimation of the acreage 

of agricultural land near participant’s homes. We recommend that future investigations 

similarly exclude the hay/pasture category.

CropScape had slightly lower overall agreement with the groundtruth data than NLCD, but 

still had relatively high sensitivity, specificity, and agreement regarding the existence of 

crops within 0.5 km or 1.0 km of participant’s homes.

One of the primary strengths of the Landsat-based method was the more accurate detection 

of urbanizing areas as non-cultivated fields. Agricultural land in Idaho, and particularly 

within the Treasure Valley where many of our study participants live, has been increasingly 

converted for housing development due to rapid population growth (see Supplementary 

Material Figure S3) (80), and datasets such as CropScape and NLCD may not accurately 

reflect recent changes in land use due to the infrequent nature in which new data are made 

available. However, one of the primary limitations of the NDVI threshold approach was the 

frequent misclassification of small areas of grass (e.g., lawns) as agricultural fields. Because 

we found that Landsat75 designated a large acreage of yards as cultivated fields, we aimed 

to examine the impacts on specificity by increasing the NDVI threshold from the 75th to 

the 90th percentile. We found that even when we selected the 90th NDVI percentile, the 

specificity was still lower than either CropScape or NLCD. In this study area, where water 

is widely used on yards and non-agricultural fields (e.g., soccer fields, school yards), this 

method does not appear to be able to differentiate agricultural fields from other greenspace, 

no matter what cutoff is chosen. This is not unexpected, as NDVI is a general measure of 

vegetation greenness, and not a measure of agricultural lands in particular. By definition, 

the sensitivity of Landsat75 will always be higher and the specificity will always be lower 

than Landsat90. By increasing the NDVI threshold that was required to designate an area as 

cultivated crop from Landsat75, Landsat90 decreased the acres of truly non-cultivated fields 

that was designated as cultivated, but also removed some of the acres of truly cultivated 

fields that were designated as cultivated.
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Overall, CropScape and NLCD were highly sensitive at identifying “unexposed” participants 

in urban areas with no nearby agricultural fields. The NDVI approach designated numerous 

small sections of grass or yards in urban/suburban areas as cultivated fields, which would 

result in a consistent overestimation of exposure among truly non-exposed participants. 

CropScape and NLCD tended to overestimate cultivated fields in areas of rapid urbanization, 

as the most recently released data products lag by several years, and as such do not 

accurately capture recent urbanization. These datasets also were less specific in more rural 

areas where there is substantial green space (e.g., lawns, soccer fields, school fields) that 

was mistaken as cultivated land. The NDVI threshold approach was much better at not 

designating urbanizing areas as cultivated fields, as images are captured every two weeks, 

but also had low specificity. Increasing the NDVI threshold from the 75th percentile to 

the 90th percentile in Landsat images decreased the number of acres Landsat incorrectly 

identified as cultivated land, but also decreased the method’s ability to capture cultivated 

land.

These findings highlight the utility of using multiple datasets in conjunction to estimate 

residential proximity to agricultural land in order to maximize the aforementioned strengths 

while minimizing limitations of each method. While decisions of which specific datset 

to select depend on the goals of the investigator, including whether they would like to 

maximize sensitivity or specificity and the geographic landscape (e.g., level of urbanization) 

near participant’s homes, we advocate for the use of either CropScape or NLCD and 
Landsat75 in order to achieve maximal sensitivity, specificity, and percent agreement and 

to leverage the strengths of each dataset. By combining these datasets, the investigator 

would benefit from the sensitivity of CropScape/NLCD while also increasing the specificity 

of identification of cultivated lands in urbanizing areas from the Landsat-based method. 

Additionally, requiring both datasets to designate an area as cultivated land mitigates 

concerns regarding the Landsat-based methods’ identification of lawns and small areas 

of grass as cultivated lands, as CropScape and NLCD each had high sensitivity. While 

using CropScape or NLCD and a Landsat-based method decreases the sensitivity compared 

to classifying an area as cultivated if either designates it as a crop, the trade-off is 

significantly increased specificity and overall percent agreement. Additionally, because 

the satellite-based methods consistently over-estimated the number of agricultural fields 

and total acreage of agricultural land near participant’s homes, decreasing the sensitivity 

may actually result in more accurate exposure classification. We advocate specifically for 

the use of CropScape or NLCD Crop with Landsat75, rather than Landsat90, in order to 

balance specificity (94.5–94.6%, respectively), maintain relatively high sensitivity (68.3–

68.5%, respectively, compared to <60% for Landsat90), and overall percent agreement 

(92.8–92.9%, respectively). Because the percent agreement statistic is more heavily driven 

by specificity than sensitivity, as non-cultivated land comprises significantly more of the 

acreage near participant’s homes than cultivated land, investigators may also consider 

conducting sensitivity analyses using a combination of other methods, such as NLCD or 

Landsat75, which had the highest sensitivity (95.4%). However, while the time and resources 

needed to use two datasets in conjunction were relatively minimal for this small study, we 

acknowledge that combining datasets may not always be feasible in studies with a much 

larger number of participants. However, advances in geospatial cloud computing, such as the 
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Google Earth Engine platform, may help overcome barriers to processing high volumes of 

land cover imagery.

This analysis has various strengths and limitations. Importantly, we identified at least one 

potential field within 0.5 km of 13 of the 49 homes that we were not able to access 

because it was surrounded by private property, resulting in a potential under-estimation of 

agricultural land near these homes. However, our overall interpretations were qualitatively 

similar in sensitivity analyses where we excluded potential fields that were inaccessible; 

thus, we do not anticipate that not being able to access a relatively small percentage of 

the total potential field identified had a large impact on our analysis. Additionally, while 

we believe the results of this analysis have implications for studies elsewhere in the United 

States, further research is needed to analyze the performance of remote sensing-derived data 

products for exposure assessment in different countries, which may have distinct crop types, 

levels of greenness, and land use patterns.

Our analysis describes the benefits and potential biases of using commonly-used remote 

sensing-derived data sources to identify crop locations in exposure studies. We highlight 

three publicly-available data sources that can be used at minimal cost and computational 

expense. While we selected these data given their broad accessibility to researchers, there 

are a range of alternative data sources and land use classification techniques that could 

enhance future exposure studies.

There are a growing number of fine-scale remote sensing and aerial imagery data products 

available that could be used to identify crop locations with greater precision. The National 

Aerial Imagery Program (NAIP) operated by the USDA Farm Service Agency, for instance, 

provides coverage of the United States at spatial resolutions ranging from .5 to 2 meters 

(81). At its finest resolution, NAIP imagery is sixty times more finely resolved than Landsat 

imagery, meaning that it can be used to more precisely identify both small patches and 

the true boundaries of crop regions. In addition to public data sources such as NAIP, 

imagery produced by private companies are available with global coverage, and at very high 

spatial and temporal resolutions. These data sources are being actively incorporated into 

agricultural and land use research (82–84). However, privately-produced remote sensing data 

can come at high financial and computational costs, and thus may not be a feasible data 

source for use in all research contexts.

In addition to more finely-resolved spatial data, there are a range of machine learning 

techniques that can be used to classify pixels in remote sensing imagery. We chose not to 

employ machine learning in this investigation, as our goal was to compare groundtruth 

findings with methods that have commonly been adopted in this field to approximate 

pesticide exposure and can be used with minimal computational expense. However, future 

research should evaluate the extent to which unsupervised (no training data used) and 

supervised (training data used) algorithms can be utilized in an exposure assessment context, 

as machine learning techniques have been successfully used to classify land cover types with 

high precision in geographical research (85–88). These techniques would very likely offer an 

improvement in crop identification accuracy over our simpler to use but less discriminating 

NDVI threshold approach. Combining machine learning techniques with high-resolution, 
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high-frequency remote sensing imagery could overcome many of the limitations we identify 

with CropScape, NLCD, and Landsat-derived NDVI. Data available at higher spatial 

resolution could more accurately discriminate between non-agricultural and agricultural 

vegetation as well as the boundaries between agricultural and non-agricultural land covers. 

Data available at a higher temporal frequency could identify recent land cover changes 

associated with urbanization that take CropScape and the NLCD longer to detect. Applying 

machine learning techniques to these data could, in turn, yield more accurate crop estimates 

than NDVI metrics alone.

This study also has a number of strengths. It is the first to our knowledge to compare remote 

sensing-derived crop estimates that have been widely used to assess residential proximity 

to agricultural fields with a “gold standard” groundtruth approach and provides important 

information for the future use of these datasets. Although our sample size contained just 49 

homes, we groundtruthed 349 potential fields and were able to capture homes in a range 

of rural, semi-urban, and urban areas with different levels of urbanization over time. While 

this study was conducted solely in Idaho, the weaknesses that we noted (e.g., the time-lag 

in which data become available, the rapid land-use changes from farmland (89), and the 

detection of lawns as agricultural land) are likely universal and applicable to other locations 

in the United States. Notably, this analysis lays the groundwork to conduct more accurate 

studies examining associations with residential proximity to agricultural land in areas where 

publicly available pesticide use data are not available. California is the only state in the U.S. 

with comprehensive agricultural pesticide use data reported annually, further highlighting 

the importance of understanding the strengths and weaknesses of different satellite-based 

datasets in studies that must rely on residential proximity to agricultural fields as a proxy 

for pesticide exposure. Additionally, in order to develop more sophisticated exposure models 

that could incorporate consideration of factors such as wind speed and direction, it is critical 

that the actual location of agricultural fields be correctly identified. Thus, choosing the most 

reliable sources of data to designate agricultural fields becomes even more critical. The 

current analysis can be used to contribute to research examining potential pesticide exposure 

among the millions of residents living in agricultural communities in states where public 

pesticide use reporting data are not available, which remains severely understudied.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Impact Statement:

The goal of this analysis was to compare commonly-used satellite-based estimates 

of residential proximity to agricultural crops with estimates from a “gold standard” 

groundtruth approach. The results of this analysis suggest that datasets such as 

CropScape and the National Landcover Database (NLCD) have higher sensitivity than 

Landsat-based methods, but the latter is better at identifying developed areas as non-

cultivated land. Remote sensing datasets are increasingly being employed to examine 

residential proximity to agricultural land as a proxy for pesticide exposure; we advocate 

for the use of CropScape or NLCD in conjunction with a Landsat-based classification 

method to minimize exposure misclassification.
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Figure 1. 
Crop distance and crop acreage estimated from ground-truth and satellite-based comparison 

methods (ground-truth distances > 1,000 m excluded)
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Figure 2. 
Identification of fields from all methods (participant living in area of high-density 

development)
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Figure 3. 
Identification of fields from all methods (participant living in area of high-density 

development)
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Figure 4. 
Identification of fields from all methods (participant living in area of medium-density 

development)
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Figure 5. 
Identification of fields from all methods (participant living in area of medium-density 

development)
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Figure 6. 
Identification of fields from all methods (participant living in area of low-density 

development)
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Figure 7. 
Identification of fields from all methods (participant living in area of low-density 

development)
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Table 1.

Identification of potential fields with a 0.5 km buffer of participant’s homes (n=349)

Identification n (%)

Agricultural field1 85 (24.4)

 Alfalfa 36 (42.4)

 Corn 23 (27.1)

 Mint 3 (3.5)

 Onion 3(3.5)

 Soybeans 5 (5.9)

 Straw/hay 6 (7.1)

 Sugarbeets 4 (4.7)

 Wheat 5 (5.9)

Non-agricultural field 147 (42.1)

Inaccessible 55 (15.8)

Grass Field 27 (7.7)

Developed/under development 22 (6.3)

Dormant 13 (3.7)

1
Number and percentage of specific crops represent the proportion of fields within the “agricultural field” category

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 February 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hyland et al. Page 30

Ta
b

le
 2

.

D
is

ta
nc

e 
to

 n
ea

re
st

 a
gr

ic
ul

tu
ra

l c
ro

p 
an

d 
av

er
ag

e 
ac

re
s 

of
 a

gr
ic

ul
tu

ra
l c

ro
ps

 w
ith

in
 0

.5
 k

m
 o

f 
ea

ch
 p

ar
tic

ip
an

t-
ho

m
e 

fr
om

 e
ac

h 
m

et
ho

d

G
ro

un
d-

tr
ut

hi
ng

C
ro

pS
ca

pe
N

L
C

D
 C

ro
p

L
an

ds
at

-d
er

iv
ed

 N
D

V
I 7

5
L

an
ds

at
-d

er
iv

ed
 N

D
V

I 9
0

D
is

ta
nc

e 
to

 n
ea

re
st

 a
gr

ic
ul

tu
ra

l f
ie

ld
 (

n 
[%

])

 
≤ 

10
0 

m
3 

(6
.1

)
20

 (
40

.8
)

13
 (

26
.5

)
48

 (
98

.0
)

46
 (

93
.9

)

 
>

 1
00

 m
– 

≤ 
50

0 
m

22
 (

44
.9

)
21

 (
42

.9
)

21
 (

42
.9

)
0 

(0
.0

)
2 

(4
.1

)

 
>

 5
00

 m
 –

 ≤
 1

,0
00

 m
8 

(1
6.

3)
1 

(2
.0

)
2 

(4
.1

)
0 

(0
.0

)
0 

(0
.0

)

 
>

 1
,0

00
 m

16
 (

32
.7

)
7 

(1
4.

3)
13

 (
26

.5
)

1 
(2

.0
)

1 
(2

.0
)

A
ve

ra
ge

 a
cr

es
13

.6
33

.8
32

.8
92

.5
50

.9

Pe
rc

en
t d

if
fe

re
nc

e 
in

 a
ve

ra
ge

 a
cr

es
 f

ro
m

 g
ro

un
d-

tr
ut

hi
ng

 d
at

a
-

85
.3

82
.8

14
8.

7
11

5.
7

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 February 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hyland et al. Page 31

Ta
b

le
 3

.

Pe
rc

en
t a

gr
ee

m
en

t o
f 

ex
is

te
nc

e 
of

 a
gr

ic
ul

tu
ra

l c
ro

ps
 w

ith
in

 0
.5

 k
m

 a
nd

 1
.0

 k
m

 b
uf

fe
rs

 o
f 

pa
rt

ic
ip

an
t’

s 
ho

m
es

 b
et

w
ee

n 
gr

ou
nd

-t
ru

th
in

g 
m

et
ho

d 
an

d 

sa
te

lli
te

-d
er

iv
ed

 c
ro

p 
es

tim
at

es

C
ro

pS
ca

pe
N

L
C

D
 C

ro
p

L
an

ds
at

-d
er

iv
ed

 N
D

V
I 7

5
L

an
ds

at
-d

er
iv

ed
 N

D
V

I 9
0

Pe
rc

en
t a

gr
ee

m
en

t 
w

ith
in

 0
.5

 k
m

Pe
rc

en
t a

gr
ee

m
en

t 
w

ith
in

 1
.0

 k
m

Pe
rc

en
t a

gr
ee

m
en

t 
w

ith
in

 0
.5

 k
m

Pe
rc

en
t a

gr
ee

m
en

t 
w

ith
in

 1
.0

 k
m

Pe
rc

en
t a

gr
ee

m
en

t 
w

ith
in

 0
.5

 k
m

Pe
rc

en
t a

gr
ee

m
en

t 
w

ith
in

 1
.0

 k
m

Pe
rc

en
t a

gr
ee

m
en

t 
w

ith
in

 0
.5

 k
m

Pe
rc

en
t a

gr
ee

m
en

t 
w

ith
in

 1
.0

 k
m

67
.3

%
81

.6
%

77
.6

%
85

.7
%

53
.1

%
65

.3
%

53
.1

%
65

.3
%

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 February 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hyland et al. Page 32

Table 4.

Sensitivity and specificity in pixels of cultivated crops and non-cultivated land within 0.5 km of each 

participant-home between ground-truthing and satellite-derived estimates

Method Overall agreement1 (%) Sensitivity (%) Specificity (%)

CropScape 87.9 83.3 88.2

NLCD Crop 88.2 84.4 88.5

Landsat-derived NDVI75 56.2 79.6 54.6

Landsat-derived NDVI90 75.9 68.5 76.5

1
Overall agreement in area designated as cultivated crops vs. non-cultivated area
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Table 5.

Sensitivity and specificity in pixels of cultivated crops and non-cultivated land within 0.5 km of each 

participant-home between ground-truthing and combinations of satellite-derived estimates

Method Overall agreement1 (%) Sensitivity (%) Specificity (%)

CropScape or NLCD Crop2 85.4 95.1 84.9

CropScape or Landsat-dervied NDVI90
2 51.3 94.5 48.3

CropScape or Landsat-derived NDVI90
2 70.1 93.2 68.4

NLCD Crop or Landsat75
2 51.6 95.4 48.5

NLCD Crop or Landsat90
2 70.4 93.3 68.7

CropScape and NLCD Crop3 90.7 75.5 91.2

CropScape and Landsat-dervied NDVI75
3 92.8 68.3 94.5

CropScape and Landsat-derived90
3 93.8 58.5 96.2

NLCD Crop and Landsat75
3 92.9 68.5 94.6

NLCD Crop and Landsat90
3 93.8 59.6 96.2

1
Overall agreement in area designated as cultivated crops vs. non-cultivated area

2
Area considered cultivated land if either comparison method designated it as cultivated land

3
Area considered cultivated land if both comparison methods designated it as cultivated land

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 February 24.


	Abstract
	Introduction
	Methods
	Study Background
	Groundtruth Based Crop Locations
	Selection of Comparison Geospatial Data Sources and Metrics
	Classification of Cultivated Land
	Comparison of Cultivated Land Between Groundtruth and Satellite-Derived Estimates

	Results
	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

