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Mitochondria have recently emerged as key drivers of inflammation associated with cell death. Many of the pro-inflammatory
pathways activated during cell death occur upon mitochondrial outer membrane permeabilization (MOMP), the pivotal
commitment point to cell death during mitochondrial apoptosis. Permeabilised mitochondria trigger inflammation, in part, through
the release of mitochondrial-derived damage-associated molecular patterns (DAMPs). Caspases, while dispensable for cell death
during mitochondrial apoptosis, inhibit activation of pro-inflammatory pathways after MOMP. Some of these mitochondrial-
activated inflammatory pathways can be traced back to the bacterial ancestry of mitochondria. For instance, mtDNA and bacterial
DNA are highly similar thereby activating similar cell autonomous immune signalling pathways. The bacterial origin of mitochondria
suggests that inflammatory pathways found in cytosol-invading bacteria may be relevant to mitochondrial-driven inflammation
after MOMP. In this review, we discuss how mitochondria can initiate inflammation during cell death highlighting parallels with
bacterial activation of inflammation. Moreover, we discuss the roles of mitochondrial inflammation during cell death and how these
processes may potentially be harnessed therapeutically, for instance to improve cancer treatment.
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FACTS

® MOMP is inherently pro-inflammatory.

® Apoptotic caspase activity inhibits cell death-associated
inflammation.

® Mitochondrial-derived DAMPs can be bacterial-like.

® Mitochondrial-driven inflammation can enhance the immu-
nogenicity of cell death.

OPEN QUESTIONS

® |s mitochondrial-driven inflammation during cell death driven
by bacterial-like DAMPs?

® How do mitochondria release immunostimulatory mtDNA?

Can inflammation occur under caspase-proficient conditions?

® What physiological functions has mitochondrial inflammation
during cell death?

INTRODUCTION

Mitochondria, with rare exceptions, are found in all eukaryotic cells.
Amongst their many roles, mitochondria play a crucial function in
energy production, iron homeostasis, and the biosynthesis of lipids,
amino acids and nucleic acids [1, 2]. In addition, mitochondria
harbour many damage-associated molecular patterns (DAMPs)
that can initiate a variety of inflammatory signalling pathways [3].

Some of these mitochondrial DAMPs share similarities with
pathogen-associated molecular patterns (PAMPs) found in bacteria
and may be derived from their bacterial ancestors. Approximately
1.5 billion years ago endosymbiosis between archaebacteria and
a prokaryotic cell, driven by increased oxygen levels, led to the
formation of mitochondria that we know nowadays [4]. As a result
of this, mitochondria incorporated transport proteins, acquired
cristae structure, and integrated metabolic pathways and fission-
fusion machinery with the host cell thereby providing an
evolutionary advantage compared to prokaryotic cells [5, 6]. Many
parallels can be drawn between mitochondria and bacteria
including their morphology. Mitochondria and bacteria also harbour
circular DNA containing CpG-rich motifs. Furthermore, gram-
negative bacteria and mitochondria both have a double phospho-
lipid membrane layer—the inner and outer membrane. The inner
membrane encapsulates the cytosol of gram-negative bacteria and
the matrix of mitochondria and is rich in the phospholipid
cardiolipin. The space between the two membranes is referred
to as the periplasmic space in gram-negative bacteria and the
intermembrane space in mitochondria [6].

Mitochondria contain several DAMPs that can be released upon
mitochondrial stress or damage (Fig. 1). These DAMPs include
mitochondrial DNA (mtDNA), cardiolipin, N-formyl peptides
(NFPs), and reactive oxygen species (ROS) but also metabolites
such as adenosine triphosphate (ATP) and succinate [3]. NFPs are
mainly found in bacteria where formyl modified methionine
initiates protein synthesis [7]. These NFPs are a chemoattractant
for host phagocytes and can be recognised by formyl peptide
receptors on the plasma membrane [8, 9]. Due to its bacterial
ancestry, mitochondrial formylation of methionine is required for
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Fig. 1 Overview of mitochondrial-derived DAMPs. Mitochondria
contain DAMPs that can be exposed upon mitochondrial stress and
damage. These DAMPs include succinate, N-formyl peptides, dsRNA,
mtDNA, ROS, cardiolipin, and ATP. Loss or exposure of these DAMPs
activates several immune pathways including transcription of type |
interferons and NF-kB target genes, inflammasome activation, and
the recruitment of immune cells.

translation initiation of mtDNA-derived mRNA [7] and will there-
fore be recognised by the same formyl peptide receptors. In
addition, detection of the extracellular mitochondrial metabolite
succinate has shown to enhance the immune response of
dendritic cells [10]. mtDNA is one of the most investigated DAMPs
over the past few years, especially in the context of mitochondrial
apoptosis. The striking similarities between mtDNA and bacterial
DNA leads to its recognition by endosomal Toll-like receptor 9
(TLR9) [11, 12]. In addition, cytosolic DNA from any source can be
detected by the 2'3'-cyclic GMP-AMP (cGAMP) synthase (cGAS)
leading to an interferon type | response by the stimulator of
interferon genes (STING) [13-15]. A third mitochondrial DAMP
shared with bacteria is the phospholipid cardiolipin. Exposure of
mitochondrial cardiolipin can lead to mitophagy where it
functions as an ‘eat-me’ signal [16]. Several studies imply a role
for cardiolipin in mitochondrial apoptosis by facilitating BAX pore
formation especially in the context of tBID [17-19], however the
extent by which cardiolipin is required for mitochondrial apoptosis
is highly variable. In addition, cardiolipin is also known to induce
NLRP3 inflammasome activation upon the presence of PAMPs or
antibiotics [20, 21]. Furthermore, the NLRP3 inflammasome can
also be activated by mtDNA and mitochondrial-derived ROS
[22-25].

In this review, we discuss mitochondrial-driven inflammation
during cell death and how this is silenced during apoptosis.
Furthermore, we speculate about potential new mitochondrial-
driven immunogenic pathways based on bacterial similarity.
Finally, we discuss how mitochondrial-dependent inflammation
may be therapeutically exploited to improve cancer treatment.

APOPTOSIS—AN IMMUNOSILENT FORM OF CELL DEATH
Mitochondrial apoptosis is regulated by pro- and anti-apoptotic
BCL-2 family members. Upon pro-apoptotic stress, activated BAX
and BAK induce mitochondrial outer membrane permeabilization
(MOMP). MOMP causes the release of soluble intermembrane
space proteins, including cytochrome ¢, SMAC and OM|, into the
cytosol. Cytochrome ¢ binds apoptosis protease activating factor 1
(APAF1) leading APAF1 to oligomerise into a heptameric structure
called the apoptosome that activates initiator caspase-9. Active
caspase-9 cleaves and activates the effector caspases caspase-3
and caspase-7 leading to rapid cellular demolition (Fig. 2) [26].
Apoptosis can also be engaged through activation of death
receptors (extrinsic pathway), such as the TNF and TRAIL receptor,
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at the plasma membrane. Complex formation at the death
receptors allows for the activation and cleavage of caspase-8
which initiates cell death through cleavage and activation of
caspase-3 and -7 or MOMP through the cleavage of pro-apoptotic
BID into tBID [27-29]. Interestingly, tBID has recently been found
to induce MOMP independently of BAX and BAK [30].

Everyday, billions of cells die in our bodies, requiring effective,
non-immunogenic clearance to maintain tissue homoeostasis.
Apoptosis allows the cell contents to be encapsulated in apoptotic
bodies which will be engulfed by phagocytes. Phagocytosis of
dying cells, termed efferocytosis, prevents the release of cellular
DAMPs, such as lactate dehydrogenase, HMGB1, and ATP, thereby
maintaining an immunosilent environment even in the presence
of extensive cell death. Failure to clear apoptotic bodies by
efferocytosis leads to secondary necrosis and the release of
immunogenic DAMPs [31, 32]. In addition, apoptotic cells create
an anti-inflammatory microenvironment through the release of
immunosuppressors such as interleukin-10 (IL-10), TGF-3, and
PGE, [33-35].

APOPTOTIC CASPASES ARE KEY DETERMINANTS OF THE
INFLAMMATORY OUTPUT OF CELL DEATH

Caspase activity is essential for the execution of apoptotic
hallmarks, nonetheless under caspase-inhibiting conditions cells
still die in response to widespread MOMP [26]. MOMP causes
extensive mitochondrial dysfunction by progressively diminishing
mitochondrial respiration [36], causing MOMP to be the point of
no return in intrinsic apoptosis.

It is estimated that over 1500 caspase substrates exist in the
proteome [37], including regulators of immune signalling pathways
and DAMP expression. Inhibition of caspases after MOMP increases
NF-kB and type | interferon responses leading to increased pro-
inflammatory cytokine production [38-40]. Active caspases cleave
and silence DAMPs and key regulators of immune pathways. For
example, the DAMP IL-33 is cleaved by caspase-3 and -7 leading to
its inactivation [41]. In addition, caspase-dependent cleavage of
cGAS, mitochondrial antiviral signalling protein (MAVS), interferon
regulatory factor 3 (IRF3), NF-kB essential modulator (NEMO), and
IkB kinase  (IKKB) blocks type | interferon responses and NF-kB
signalling [42-44]. Furthermore, caspases also directly interfere with
the production of immunogenic proteins through caspase-
dependent cleavage of the initiation factors elF4G, elF2B and elF2q,
thereby blocking cap-dependent protein translation [45].

Caspases not only play a role in the regulation of MOMP-
induced inflammation, but also regulate the immune response
during death receptor induced cell death. Delayed cell death and
increased cytokine and chemokine production is observed upon
combination treatment with caspase inhibitors and death receptor
ligands Fas or TRAIL [46, 47]. In addition, the ‘find me’ signals
produced during Fas-induced cell death were upregulated during
caspase inhibition and promoted phagocyte chemotaxis [46].
Activation of death receptors can lead to MOMP via cleavage of
BID into tBID, however these papers do not discuss a role for
mitochondrial permeabilization in inflammation through death-
receptor mediated apoptosis.

RELEASE OF MTDNA BY EXPANDING BAX/BAK PORES INDUCES
A TYPE | INTERFERON RESPONSE

Under caspase-inhibited conditions, mitochondrial apoptosis
induces a type | interferon response initiated by the detection
of cytosolic mtDNA (Fig. 3) [39, 40]. Our lab and others have
demonstrated that mtDNA is released through the formation and
gradual expansion of BAX/BAK pores during mitochondrial
apoptosis [48-51]. However, BAX and BAK are only known to
form pores in the outer mitochondrial membrane, leaving the
inner membrane intact as observed using electron microscopy
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Fig.2 Overview of necroptotic, apoptotic and pyroptotic signalling pathways. Binding of ligands to one of the death receptors (e.g. TNF or
Fas) initiates pleiotropic signalling leading to cell survival, inflammation, apoptosis or necroptosis, mediated by the key signalling protein
RIPK1. Upon caspase-8 inhibition, RIPK1 forms the necrosome with RIPK3 leading to phosphorylation and activation of MLKL causing
membrane permeabilization and necroptosis. Activation of initiator caspases (caspase-8) by death receptors leads to cleavage and activation
of executioner caspases (caspase-3 and -7) causing apoptosis. The intrinsic pathway requires an intrinsic apoptotic stimulus which activates
pro-apoptotic BCL-2 family members BAX and BAK. Upon their activation pores are formed in the mitochondrial outer membrane leading to
the release of intermembrane space proteins (including cytochrome ¢ and SMAC). Release of cytochrome ¢ allows apoptosome formation
which recruits and activates caspase-9 followed by the activation of the executioner caspases. SMAC binds to XIAP, thereby blocking the
caspase-inhibiting potential of XIAP. MOMP is also initiated by the extrinsic apoptotic pathway through BID cleavage by caspase-8.
Furthermore, cells can die via pyroptosis through DAMP recognition by TLRs leading to inflammasome activation and subsequently caspase-1
activation. Caspase-1 cleaves gasdermins (GSDM) of which the N-terminal cleavage fragments form pores in the plasma membrane. In
addition, caspase-1 cleaves pro-IL-1p and pro-IL-18 into their mature forms that are released via GSDM pores.

[50]. How mtDNA is released from its encapsulation by the inner
mitochondrial membrane into the cytosol is currently unknown.
Assembly of BAX/BAK pores determines how fast mtDNA will be
released. Activation of BAK rapidly causes pore formation and BAX
recruitment, yet the incorporation of BAX molecules, which slows
down pore formation, eventually results in a larger pore size [49].
Although the formation of BAX/BAK pores results in efficient
permeabilization and therefore mitochondrial cell death, the pores
formed by either BAX or BAK are sufficient to induce MOMP
independently of the other.

The presence of DNA in the cytosol, either nuclear, mitochondrial,
or pathogenic, serves as a cellular warning signal caused by
pathogen infection or cellular dysfunction. Detection of cytosolic
DNA by cGAS enables its dimerisation and subsequent generation
of the second messenger cGAMP by using ATP and GTP. Generation
of the dinucleotide cGAMP allows activation of the endoplasmic
reticulum resident protein STING [13-15, 52-57]. Upon its activation
STING translocates to the Golgi where it activates TANK-binding
kinase 1 (TBK1) leading to STING phosphorylation [58, 59]. Active
TBK1 phosphorylates the transcription factor IRF3, leading to its
dimerisation, nuclear translocation, and subsequent transcription of
interferon stimulated genes [59-61]. Furthermore, activation of
TBK1 can also activate the NF-kB pathway through phosphorylation
of the IKK complex [62].

Released mtDNA can also be detected by TLR9 and the NLRP3
inflammasome [22-25, 63, 64]. Endosomal TLR9 recognises
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hypomethylated CpG-rich motifs present in bacterial and mtDNA.
Detection of circulating mtDNA by TLR9 appears to be fundamental
in the development of non-alcoholic steatohepatitis (NASH). Mice
lacking TLR9 were protected against NASH development when on a
choline-deficient amino acid-defined diet [63]. Elevated levels of
oxidised mtDNA were detected in hepatocytes and plasma of mice
and patients. In addition, treatment of TLR9 antagonist reduced
NASH symptoms in mice [64]. The NLRP3 inflammasome also
detects oxidised mtDNA [22-25]. The NLRP3 inflammasome acts
both downstream and upstream of mtDNA release as it facilitates
the formation of the mitochondrial permeability transition pore
(mPTP) [22], however it is debatable if formation of the much
smaller mPTP is sufficient enough to enable mtDNA release into the
cytosol [65]. It is currently unknown if detection of mtDNA by TLR9
or the NLRP3 inflammasome plays a role in MOMP-induced
immunogenic cell death.

IAP DEPLETION ACTIVATES THE NF-kB PATHWAY AFTER
MOMP

Inhibition of caspase activity after MOMP not only elicits a type |
interferon response but also induces activation of the NF-kB
pathway independent of STING function (Fig. 3). The activation of
this pro-inflammatory pathway is mediated through the degrada-
tion of inhibitor of apoptosis proteins (IAPs) leading to stabilisa-
tion of the NF-kB inducing kinase (NIK), phosphorylation and
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Fig. 3 MOMP-induced inflammation. MOMP activates several pro-inflammatory pathways. (1) Under caspase-inhibited conditions MOMP
causes |AP degradation which subsequently leads to NIK stabilisation and accumulation followed by the transcription of NF-kB target genes.
In addition, degradation of IAPs activates caspase-1 and caspase-8 leading to processing and release of IL-1p and IL-18. (2) Cytosolic release of
mtDNA leads to recognition of cGAS which subsequently forms cGAMP out of GTP and ATP. cGAMP is a second messenger for ER-resident
STING initiating its activating and the subsequent transcription of NF-xB target genes and type | interferons. (3) Release of cytosolic dsRNA
leads to its recognition by RIG-l and MDAS5, followed by activation of mitochondria-localised MAVS and a type | interferon response.

degradation of IkBa, and subsequent translocation of the NF-kB
family member p65 [38]. Degradation of IAPs and NIK stabilisation
has been extensively described by drugs called SMAC mimetics
[66, 67], nonetheless degradation of IAPs and subsequent NIK
accumulation was still observed when caspase-independent cell
death was induced in the absence of intermembrane space
proteins SMAC and OMI [38]. MOMP-induced depletion of IAPs has
also been observed in macrophages resulting in activation of
caspase-8 and the inflammasome thereby inducing caspase-1
dependent maturation of IL-1B and IL-18 [68, 69]. How IAPs are
degraded in a SMAC-independent manner during caspase-
independent cell death remains unknown.

MOMP-DEPENDENT RELEASE OF DSRNA INDUCES A TYPE |
INTERFERON RESPONSE

Detection of pathogenic or mitochondrial dsRNA in the cytosol is
enabled by retinoic acid-inducible gene | (RIG-) and melanoma
differentiation-associated protein 5 (MDA5) receptors which subse-
quently mediate the accumulation of MAVS on the mitochondrial
outer membrane [70]. Aggregation of MAVS leads to the activation
and nuclear translocation of IRF3 to mediate an antiviral immune
response [71]. Transcription of mtDNA gives rise to an endogenous
source of dsRNA that is normally degraded through a mitochondrial
complex termed the degradosome. Patients and mice harbouring
mutations in the RNA degradosome complex showed elevated
levels of cytosolic mitochondrial-derived dsRNA and type |
interferon response [72]. The release of mitochondrial dsRNA was
completely blocked upon knockdown of BAX and BAK, indicating
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that dsRNA can be released through BAX/BAK pores. Furthermore,
this response was partially dependent on RIG-I activity and was
completely abrogated upon knockdown of MAVS and MDAS5 [72]. In
addition, a type | interferon response was also observed upon
generation of double strand breaks in mtDNA causing BAX/BAK-
mediated inner membrane herniation of mitochondria. This
response was independent of cGAS-STING signalling and was
driven by the dsRNA sensors RIG-I and MAVS [73]. These studies
suggest that upon MOMP, release of mitochondrial-derived dsRNA
can initiate a type | interferon response through dsRNA sensing by
RIG-I and MDA5 and subsequent aggregation and activation of
MAVS. It is currently unknown how dsRNA, and mtDNA, pass the
inner mitochondrial membrane after MOMP.

IMMUNE RESPONSES DURING BACTERIAL INFECTION:
POTENTIAL PATHWAYS FOR MOMP-DRIVEN INFLAMMATION
Even though the first steps of mitochondrial formation occurred 1.5
billion years ago, many similarities can still be observed between
mitochondria and bacteria. Therefore, it may be possible that
deregulation or destruction of mitochondria allows the exposure of
bacterial-like mitochondrial DAMPs thereby initiating immunogenic
pathways similar to cytosol-invading bacteria. Recently, two novel
pathways for cell autonomous immunity after bacterial infection
have been described that may be applicable to mitochondrial-
dependent inflammation during cell death.

Ubiquitylation of mitochondrial proteins is extensively described
for selective autophagic removal of mitochondria through a process
called mitophagy [74], however, in recent years, ubiquitylation of
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cytosol-invading bacteria has also been implicated to induce an
innate immune response [75-77]. Exposure of lipopolysaccharide
(LPS) on the bacterial surface allows for its ubiquitylation which will
be extended by the formation of pro-inflammatory K63- and M1-
linked ubiquitin [77]. Formation of these pro-inflammatory ubiquitin
linkages is crucial for the recruitment and binding of NEMO and
subsequent NF-kB response [75, 76]. The presence of intramito-
chondrial K48- and K63-ubiquitin linkages on mitochondria has
been observed upon mitochondrial permeabilization and was
described to be associated with recruitment of endolysosomes [78].

Recently it has also been described that exposure of glycans on
the bacterial surface can initiate the activation of a cell autonomous
immune response [79-83]. Exposure of glycans recruit galectins to
the bacterial surface which in turn promote the recruitment of IFNy-
inducible GTPases termed guanylate binding proteins (GBPs). These
GBPs can be ubiquitylated by the bacterial E3 ligase IpaH9.8 and are
subsequently degraded by the proteasome, thereby inhibiting anti-
bacterial defence [80, 83]. When not degraded, GBPs form
complexes with LPS and galectins to initiate the recruitment of
caspase-4 to cytosol-invading bacteria. Sensing of cytosolic LPS
activates the inflammasome in a non-canonical manner. Activation
of caspase-4 results in gasdermin D (GSDMD) dependent pyroptosis
leading to the processing and secretion of pro-inflammatory IL-18
[79, 81]. Whether similar processes occur during the permeabiliza-
tion of mitochondria is unclear, however two studies have described
the presence of galectin-3 at mitochondrial-ER sites and its
accumulation on mitochondria after pro-apoptotic stimuli [84, 85]
indicating that similar mechanisms might be involved.

MITOCHONDRIA AS INFLAMMATORY PLATFORMS IN NON-
APOPTOTIC FORMS OF CELL DEATH

Other forms of inflammatory regulated cell death exist including
pyroptosis and necroptosis (Fig. 2). Broadly speaking, the role of
mitochondria in regulating inflammation in these forms of cell
death is less well defined. Necroptosis is a regulated form of
caspase-independent cell death that shares many inflammatory
and morphological characteristics with passive, non-regulated
necrosis. Necroptosis is best described in context of the TNF
receptor complex. Under caspase-8 inhibiting conditions engage-
ment of the TNF receptor complex causes formation of the
necrosome by activating receptor interacting protein kinase 1
(RIPK1) and RIPK3. RIPK3 phosphorylates and activates mixed
lineage kinase domain-like pseudokinase (MLKL). Cells are killed
by the oligomerisation of active MLKL causing permeabilization of
the plasma membrane and subsequent release of DAMPs [86]. A
role for mitochondria in necroptosis is debatable. Mitophagy-
induced depletion of mitochondria did not affect kinetics of
necroptosis [87], however mitochondrial ROS can facilitate the
initiation of necroptosis by enhancing necrosome formation
[88, 89]. So far, no role for mitochondria in necroptosis-induced
inflammation has been described.

Pyroptosis is often initiated upon pathogen invasion and relies
upon activation of the inflammasome signalling pathway [90].
The canonical pyroptotic pathway is initiated by inflammasome
assembly upon stimulation of PRRs leading to the activation of
caspase-1 by autoproteolytic cleavage. Activation of inflamma-
some can also occur in a non-canonical manner through detection
of cytosolic LPS, leading to the activation of caspase-4 (human) or
caspase-11 (mouse). Activation of caspase-1 causes GSDMD
cleavage thereby allowing pore formation of the N-terminal
domain into the plasma membrane [91-95]. In addition, active
caspase-1 can cleave pro-IL-1B and pro-IL-18 into their mature
forms allowing release of pro-inflammatory IL-13 and IL-18
through GSDMD pores prior to cell lysis [92]. Current research
implies that pyroptosis affects mitochondrial homoeostasis by
reducing the membrane potential, deregulating ion homoeostasis,
blocking mitophagy, and inducing MOMP [96-98]. In addition,
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formation of GSDM pores can induce the release of mtDNA
directly and independently of cell lysis [99, 100]. However, a type |
interferon response seems to be largely dampened during
pyroptosis through cleavage of cGAS by caspase-1 and inhibition
of the cGAS-STING pathway through potassium efflux via GSDM
pores [98, 101]. It is unclear why an antiviral immune response
through type | interferons during pyroptosis would be dampened,
while simultaneously initiating an acute immune response
through the cleavage and secretion of IL-13 and IL-18.

MINORITY MOMP: CAN SUBLETHAL CASPASE ACTIVITY BLOCK
MOMP-INDUCED INFLAMMATION?

While apoptosis is a potent tumour suppressor mechanism,
engaging apoptosis can have oncogenic effects if not executed
properly. Under sublethal apoptotic stress only a few selective
mitochondria undergo MOMP, a process termed minority MOMP
[102]. Our lab recently described that this selective mitochondrial
permeabilization is dependent on mitochondrial fitness. Dysfunc-
tional mitochondria block BAX retrotranslocation thereby accu-
mulating BAX on the mitochondria, making them more prone to
MOMP under sublethal stress [103]. Following sublethal apoptotic
stress, cells rapidly accumulate DNA damage through caspase-
activated DNase and the mitochondrial DNase EndoG [102, 104].
DNA damage acquired by sublethal caspase activity causes
genomic instability, cellular transformation, and increased tumor-
igenesis [102, 104]. In addition, sublethal caspase activation has
also been implicated in increased invasiveness in melanoma cells
through the activation of the JNK pathway [105].

In theory, activation of MOMP-induced pro-inflammatory signal-
ling pathways should also occur upon the induction of minority
MOMP. After widespread MOMP, caspase activation blocks the
regulation of various pro-inflammatory signalling pathways. During
minority MOMP caspase activity is generally not high enough to
induce cell death, raising the question if there is a threshold for
caspase activity in blocking inflammatory signalling pathways.
Recently, three separate studies observed increased inflammation
upon the induction of minority MOMP [73, 106, 107]. Pathogenic
infections can induce minority MOMP causing caspase-dependent
DNA damage and the secretion of pro-inflammatory cytokines
[106, 107]. Furthermore, induction of type | interferons was
observed upon minority MOMP caused by the formation of mtDNA
double strand breaks. In this setting, herniation of the inner
mitochondrial membrane through BAX/BAK pores leads to the
release of dsRNA which is subsequently sensed by RIG-I and MAVS
[73]. In these studies, inhibition of caspase activity had minimal
effect on the production of pro-inflammatory cytokines [73, 106],
indicating that sublethal caspase activity does not block minority
MOMP-induced inflammation. It is currently unknown if inflamma-
tion after minority MOMP has any potential benefits for cancer
treatment, however many damaging effects of sublethal caspase
activity have been observed leading to increased transformation
and tumorigenesis, suggesting that apoptotic caspases have a dark
side in cancer.

MITOCHONDRIAL-DRIVEN INFLAMMATION DURING CELL
DEATH: FUNCTION AND POTENTIAL

Emerging evidence in recent years indicates that inducing MOMP-
dependent immunogenic cell death, instead of immunosilent
apoptosis, has potential benefits in invoking anti-tumour immu-
nity and might therefore be a better strategy for cancer treatment
(Fig. 4). For instance, our lab showed that xenografts undergoing
MOMP-induced cell death were regressing under caspase-
inhibiting conditions but continued to grow out when caspases
were active [38]. Here we also established the importance of NF-kB
activation in these tumours as xenografts lacking NEMO, an
essential component of the IKK complex, did not regress upon the
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Fig.4 Anti-tumorigenic immune response upon MOMP-induced immunogenic cell death in tumours. Induction of immunogenic cell death
in cancer cells can be achieved through MOMP in combination with caspase inhibition. Activation of several cell autonomous immune
signalling pathways leads to the transcription and release of type | interferons and NF-kB target genes. Release of cytokines and chemokines
recruits and activates anti-tumour T cells, macrophages and neutrophils thereby enhancing cancer cell death and tumour regression.

induction of MOMP under caspase-inhibiting conditions. In
addition, pharmacological depletion of T cells or the use of
immunocompromised mice blocked tumour regression during
caspase-independent cell death in xenografts indicating that
T cells and an intact immune system are crucial for the anti-
tumorigenic properties observed during caspase-independent cell
death [38].

Anti-tumorigenic effects of caspase-independent cell death was
also observed after irradiation-induced MOMP. Tumour regression
of the irradiated primary tumour deficient for caspase-3, as well
as regression of distant tumours proficient for caspase-3 was
observed [108]. In addition, the importance of a type | interferon
response through cGAS-STING signalling was established in
xenograft tumours undergoing caspase-independent cell death
through irradiation-induced MOMP [109, 110]. Furthermore,
the type | interferon response in these tumours upregulated
programmed death-ligand 1 (PD-L1) thereby dampening T-cell
immunity. Consequently, using PD-L1 inhibitors alongside
caspase-independent cell death further enhanced tumour regres-
sion observed upon irradiation [109]. In addition, autophagy
appears to have a crucial role in dampening the immune response
after irradiation as depletion of key autophagy regulators ATG5 or
ATG7, thereby blocking mitophagy, increased cytosolic mtDNA
after radiotherapy [110]. Irradiation-induced inflammation is
dependent on MOMP as BAX deletion abrogated the presence
of cytosolic DNA and a type | interferon response. Furthermore,
xenograft tumours deficient in ATG5 or ATG7 proved to have a
better abscopal response after irradiation which was dependent
on a type | interferon response [110].

Unfortunately, applying immunogenic cell death by blocking
caspase activity in combination with chemotherapy or irradiation
remains a difficult strategy. The pan-caspase inhibitor Emricasan is
known to accumulate in the liver and was tested in clinical trials
for NASH and liver transplants with limited beneficial effects
[111-116]. In addition, long-term treatment with Emricasan had
adverse effects by increasing neutrophil infiltration in liver
allografts presumably caused by delayed neutrophil apoptosis
[114]. Although various studies have shown great potential for
immunogenic cell death as a therapeutic strategy for cancer in
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mice [38, 108-110, 117], no clinical trials have been performed yet
to determine treatment efficiency in patients.

CONCLUDING REMARKS
In this review we have discussed immunogenic cell death and the
role of mitochondria in inflammatory pathway activation. Although
mitochondrial apoptosis is considered to be immunosilent, various
pro-inflammatory pathways are activated by permeabilised mito-
chondria but silenced by caspase activity. Initiators of mitochondrial-
driven inflammation include the release of mitochondrial dsRNA
and mtDNA thereby initiating type | interferons [39, 40, 72, 73]. In
addition, depletion of IAPs is associated with a NF-kB response after
MOMP [38]. Although most eukaryotic cells contain mitochondria
there are many variations in the number of mitochondria and
formation of the mitochondrial networks, thereby possibly affecting
the threshold for mitochondria to undergo MOMP and the quantity
of DAMPs that are being released. Traces of the bacterial ancestry of
mitochondria are still evident in mtDNA, cardiolipin, and NFPs.
Therefore, it may be possible that other initiators of mitochondrial-
driven inflammation after MOMP can potentially be found in studies
identifying inflammatory pathways upon bacterial infection.
Engaging immunogenic cell death as opposed to immunosilent
apoptosis has great potential for cancer therapy. Several studies
described that engaging pro-inflammatory types of cell death in
tumours improves therapeutic outcomes when compared to the
engagement of non-inflammatory cell death [38, 108-110, 117].
Identification of novel pro-inflammatory pathways might help to
narrow down key inflammatory pathways to improve cancer
therapy by using immunogenic cell death.
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