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The combination of traditional Chinese medicine (TCM) and Western medicine is a promising method for treating rheumatoid
arthritis (RA). Combining the two fully exploits the advantages of Western and TCM to treat RA and has the potential to greatly
improve the therapeutic effect on RA. In this study, we developed a combination drug training set by using 16 characteristic
variables based on the characteristics of small molecules of TCM ingredients and Food and Drug Administration-certified
combination drug data downloaded from the DrugCombDB database. Furthermore, we compared the prediction and
classification abilities of five models: the k-nearest neighbors, naive Bayes, support vector machine, random forest, and
AdaBoost algorithms. The random forest model was selected as the classification and prediction model for Western and TCM
and Western combination drugs. We collected data for 41 small molecules of TCM ingredients from the Traditional Chinese
Medicine Systems Pharmacology database and 10 small molecule drugs commonly used in anti-RA treatment from the
DrugBank database. Combinations of Western and TCM for anti-RA treatment were screened. Finally, the CellTiter-Glo
method was used to determine the synergy of these combinations, and the 15 most predicted drug combinations were carried
out experimental verification. Myricetin, rhein, nobiletin, and fisetin had high synergy with celecoxib, and rhein had high
synergy with hydroxychloroquine. The preliminary findings of this study can be further applied for practical clinical anti-RA
combined treatment strategies and serve as a reference for clinical treatment of RA with integrated Western and TCM.

1. Introduction

Modern medical research has demonstrated that many dis-
eases often present complex pathogenic mechanisms, and
consequently, the past methods for treating diseases with
drugs are no longer adequate. In recent years, drug combina-
tion has been reported to offer clear advantages in treating
tumors, AIDS, cardiovascular diseases, osteoarthritis, and
other complex diseases; it has been widely implemented in
clinical practice [1-4], with treatment methods based on

combined drugs demonstrating advantageous synergistic
effects, or a “1 + 1 > 27 effect. The therapeutic effects of two
or more drug combinations are greater than those achieved
when each drug is used alone. Therefore, developing and
evaluating potentially synergetic combination drugs,
whether for development of new drugs or clinical treatment
optimization, are essential. However, most existing combi-
nation drugs have been developed on the basis of limited
clinical experience or experimental strategies. Verified com-
bination drugs with synergistic therapeutic effects currently
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comprise a small portion of listed drugs. Therefore, making
full use of knowledge of existing drug combinations, discov-
ering new drug combinations based on well-accepted and
understood drugs, and establishing a model for evaluating
the synergistic effects of drug combinations are key concerns
that must be addressed.

Rheumatoid arthritis (RA) is a chronic, systemic, inflam-
matory disease of the synovial and other joints. RA is a
chronic progressive autoimmune disease [5], and its under-
lying pathogenesis is currently unclear. However, studies
have reported that the incidence of RA increases with age
due to infection and inflammatory mediators, and approxi-
mately 0.3%-1.0% of the global population is affected by
the disease every year [6, 7]. At present, the drugs used in
clinical treatment of RA are mainly nonsteroidal anti-
inflammatory drugs (NSAIDs), disease modifying antirheu-
matic drugs (DMARDs), and biological macromolecular
therapy. Because RA is complex, several studies have
explored different combination therapy strategies for its
treatment [8-10]. However, some therapeutic drugs, such
as methotrexate, may produce unfavorable side effects [11,
12]. Therefore, if sole use of anti-RA combination therapy
has the potential to produce unfavorable side effects, long-
term use in patients with RA may do greater harm. Tradi-
tional Chinese medicine (TCM) has long been used to treat
RA, and several studies have found that combined anti-RA
TCM and a compound prescription have not only anti-
inflammatory, analgesic, immune regulation, and multilevel
and multilink therapeutic effects but also the advantages of
high safety, few adverse reactions, and low cost. Such a com-
bination has gained attention in studies of RA treatment and
has increasingly attracted international attention [13, 14].

Therefore, we propose that the combination of Western
medicine and TCM may be a promising method for improv-
ing the efficacy of anti-RA treatments and reducing side
effects. Through their combination, the advantages of both
Western medicine and TCM can be fully exploited to
improve the therapeutic effects of RA treatment. However,
because numerous active ingredients in TCM and hundreds
of listed Western medicines have been reported to be effec-
tive in anti-RA treatments, the potential drug combinations
are in the thousands or even tens of thousands. This multi-
tude of combinations cannot feasibly be evaluated or verified
through clinical practice and trials; therefore, the most prac-
tical method for identifying potential combinations would
be to use drug data for existing combination drugs to model,
evaluate, and screen potential anti-RA combinations of
Western medicine and TCM and then experimentally vali-
date these models. Therefore, in this study, we developed a
classification and prediction model for combining Western
and TCM drugs based on characteristics obtained through
small molecule research on TCM and existing data on com-
bined drugs. This model was developed using machine
learning modeling followed by manual screening of anti-
RA combination drugs. Through experimental verification,
we identified effective combinations of Western and TCM
drugs for treating RA; these findings can serve as a reference
for clinical treatment of RA by using such combined treat-
ment. The flow chart illustrating the process of drug discov-
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ery and verification for anti-RA integrative medicine
through machine learning modeling is displayed in Figure 1.

2. Materials and Methods

2.1. Data Collection and Collation. The DrugCombDB data-
base (http://drugcombdb.denglab.org/) is a comprehensive
combinatorial drug database [15] containing integrated drug
combinations from various data sources. To ensure the reli-
ability of the research data, we first downloaded the Food
and Drug Administration- (FDA-) provided known drug
combination dataset from the database (up to May 31,
2019). The molecular formula, Chemical Abstracts Service
(CAS) number, canonical simplified molecular-input line-
entry system (SMILES), and other chemical informatics data
corresponding to each combination of drugs and their action
targets were collected from the DrugBank database (https://
go.drugbank.com/).

Furthermore, we searched “Rheumatoid Arthritis” on
the Traditional Chinese Medicine Systems Pharmacology
(TCMSP) database (https://tcmspw.com/) to retrieve target
Chinese medicine ingredient data reported to be relevant
to treating RA. We obtained the main small molecules
chemical information from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/). In addition, several common
anti-RA drugs were selected from the DrugBank database
along with those discussed in the literature and those recom-
mended by clinicians. All small molecule data for the TCM
ingredients (collected from the TCMSP) and for known
anti-RA Western drugs were combined in pairs to form
the final prediction sample set.

2.2. Construction of Combined Drug Characteristic Variables

2.2.1. Drug Combination Features Based on Molecular
Fingerprint Similarity. Canonical SMILES of all drugs were
collected from the DrugBank and PubChem databases, and
the 1024-dimensional molecular fingerprints for each of
the small molecule drugs were calculated using DRAGON
software (version 7.0). The fingerprint similarity (Sgp)
between two small molecule drugs was then calculated using
Tanimoto coefficient-based similarity:

AeB

: 1
1A]1* +||B* - A«B W

SFP<dA’ dB> =

where A is the 1024-dimensional molecular fingerprint fea-
ture vector corresponding to the small molecule drug d,,, ||
A|| is the vector length, B is the 1024-dimensional molecular
fingerprint feature vector corresponding to the small mole-
cule drug dy, ||B|| is the vector length, and AeB is the vector
inner product.

2.2.2. Drug Combination Characteristics Based on Small
Molecule ADME Similarity. To predict the adsorption, distri-
bution, metabolism, and excretion (ADME) characteristics of
each drug, Canonical SMILES for all small molecule drugs
were imported into the SwissADME online system (http://
www.swissadme.ch/) [16]. We selected 12 indicators as char-
acteristic indexes for our ADME similarity calculations:


http://drugcombdb.denglab.org/
https://go.drugbank.com/
https://go.drugbank.com/
https://tcmspw.com/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.swissadme.ch/
http://www.swissadme.ch/

BioMed Research International

molecular weight, heavy atoms, aromatic heavy atoms, frac-
tion Csp3, rotatable bonds, H-bond acceptors, H-bond
donors, molecular refractivity, topological polar surface area,
Silicos-IT Log P, and Silicos-IT LogSw. All ADME indexes
were first normalized, and the Euclidean distance was then
used to calculate the similarity value S,z of ADME:

SADME = li (xf‘ —xf)zl > (2)

i=1

where x/ is the ADME index corresponding to the drug small
molecule d, and x? is the ADME index corresponding to the
drug small molecule dj (n = 12).

2.2.3. Drug Combination Characteristics Based on Sequence
Similarity of Small Molecular Targets. The action targets of
all drugs were obtained from DrugBank and the TCMSP,
and the protr package (version 1.6.2) based on R language
was used to obtain the sequence of action protein targets
of all small molecule drugs. The sequence similarity between
the two target proteins, Sg.q(d,, dg), was calculated using the
Smith-Waterman algorithm. The maximum, minimum,
median, and mean values of the sequence similarity S, (
d,, dy) between all target proteins of the d, andd, were
included in the characteristic variables as Sg.qmae
Sseqmed> A1 Sgeqmean» TESpectively.

SSeqmin >

2.24. Drug Combination Characteristics Based on GO
Functional Similarity of Small Molecular Targets. To calculate
the gene ontology (GO) functional similarity S;(d,, dg) of
the two drugs d, and d, we used the GOSemSim package (ver-
sion 2.14.2). Similarly, the minimum, maximum, median, and
mean values of the GO functional similarity S, (d,, dy) of
the two drugs d, and dj were included in the characteristic var-
iables as Somin> SGomax> SGomed> AN SGomeans T€SPectively.

2.2.5. Drug Combination Characteristics Based on Pathway
Similarity of Small Molecule Targets. We used the cluster-
Profiler package (version 3.14.3) to perform a Kyoto Ency-
clopedia of Genes and Genomes (KEGG) Pathway
enrichment analysis on all drug small molecule targets. We
then screened the enrichment pathways of all targets based
on p value < 0.05 and g value < 0.05. A vector, P = (p;, p,,
---,p,,)> consisting of all pathways was constructed according
to the enriched pathways, {p,|k=1,2,---,n} (where n is the
number of pathways). If a target was enriched in a pathway
Py in the target set T, of the drug small molecule d,, then
the value was set as pf =1 at the corresponding position of
the drug small molecule A pathway vector P,, and if not, it
was set as 0:

A
k

1, T,np +O,
p ={ 4 NPy (3)

0, others.
The target pathway vector Pj of the drug small molecule

djy can be similarly obtained using a string similarity formula
to calculate the pathway similarity value (Spyhyay) Of two

drugs:

P,eP;

Spathway (4> dp) = EAETR (4)

where ||P,|| and || Pg|| are path vector lengths and P, - Py is
the vector inner product.

2.2.6. Drug Combination Characteristics Based on Distance
of Small Molecule Targets in Human PPI Network. The dis-
tance and network proximity of small molecule targets of
different combinations of drugs on the human protein-pro-
tein interaction (PPI) network were calculated to measure
the synergy characteristics of combination drugs within the
PPI network:

1

1+ efm'm (d(ab)) >
1

1 + e~max (d(ab))’
1

1 4 ¢-med(d(ab)) >

1
SpPImean <dA’ dB) - m ’

_ SPPImean <dA’ dA) + SPPImean <dB’ dB>
2

SppImin <dA’ dB> =
Sepimax(da> dp) =

Sppimed{da> dp) =

Snp <dA’ dB) = SPPImean <dA’ dB)

(5)

where d (a, b) is the shortest path distance between two
protein targets, aand b, within the PPI network (calculated
using the igraph package [version 1.2.6]), (d,z) = 1/||A|| x
1Bl Yaca, pepd(a.b), ||A]l is the number of targets for the
drug small molecule d,, and ||B|| is the number of targets
for the drug small molecule dj. The human PPI background
network used in the calculation was derived from the litera-
ture [17]; the PPI network contained a total of 16677 pro-
teins and 243603 interactions.

The Tanimoto coefficient-based similarity, Euclidean
distance, and cosine similarity calculations used in this paper
were calculated using the philentropy package (version
0.4.0) based on R language (version 4.0.2).

2.3. Construction and Selection of Combination Drug
Prediction Model. To comprehensively determine and select
an appropriate machine learning model for modeling and
prediction in this study, we selected different machine learn-
ing classifiers for use with the training set and the verifica-
tion set and compared their classification accuracies. In
this study, we selected and compared five classical machine
learning models: the k-nearest neighbors (k-NN) [18], naive
Bayes (NB) [19], support vector machine (SVM) [20], ran-
dom forest (RF) [21], and AdaBoost classifiers [22]. The
caret package (version 6.0-86), the klaR package (version
0.6-15), the svmRadial model in the kernlab package (ver-
sion 0.9-29), the randomForest package (version 4.6-14),
and the ada package (version 2.0-5) were used for the k-
NN, naive Bayes, support vector machine, random forest,
and AdaBoost classifiers, respectively.
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F1GURE 1: Flow chart of drug discovery and verification for anti-RA integrative medicine through machine learning modeling.

Furthermore, we used established sample training sets to
compare the classification prediction effects of the five
machine learning models. First, the sample set was divided
into prediction training sets and internal validation sets at
a 7:3 ratio. Then, the prediction training set was input into
the five machine learning models, and the machine learning
models were trained using three sets of 10-fold cross-
validation. The trained machine learning models were eval-
uated using the internal validation sets, and the model with
the best classification prediction effect was selected as the
final drug prediction model for the Western and TCM drug
combinations.

2.4. Evaluation of Machine Learning Models. In this study,
we defined precision rate as the proportion of positive sam-
ples correctly predicted by the model out of all positive pre-

dictions, recall rate as the proportion of positive samples
correctly predicted by the model out of all predictions, accu-
racy as the proportion of positive and negative samples to all
samples correctly predicted by the model, and F1-score as
the overall score of the model when precision rate and recall
rate were given equal weight (calculated using Formulas
(6)-(9), respectively). A higher score indicated a better clas-
sification effect.

TP
P .. = 6
recision TP ¥ FP ( )
TP
1= 7
Recall = 55N @)
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1000 random training sets

FIGURE 2: Training set of prediction samples comprised 1000 training sets of prediction samples randomly selected from 2020 samples of

noncombination drugs and 404 samples of combination drugs.

TaBLE 1: Results of ¢-test and Mann-Whitney nonparametric test
for 16 characteristic variables between different groups.

Feature Noncombination ~Combination f-test Mann—
group group Whitney test
Sep 0.783+£0.087 0.783+0.091 0914 0.664
Sapme 334742994 3.160+2.697 0.167  0.199
Sseqmin  0.014+0.045  0.020£0.070 0109  0.400
Sseqmax  0.066+£0.189  0.173+£0.342  #x .
Sseqmed  0.021+£0.057  0.030+0.084  * .
Sseqmean  0.026 +0.062 0.049+0.105 == * %
Scomn  0236£0.175  0.221+0.193 0.114 .
SGomax 0.523 +£0.239 0.550+0.288 0.061 0.092
Scomed 0.374+0.172 0.369+0.205 0.649 0.532
Scomean  0.376+0.166  0.374+0.194 0825  0.644
Spahway  0.007£0.029  0.014+0.039  #x .
SpPImin 0.867 +£0.092 0.821 £0.142 == * %
SppImax 0.931+0.116 0.934+0.094 0.500 0.889
Sppimed 0.917£0.043  0.910+0.050 ok
Sppimean  0-100 +0.064 0.121 £0.091 == * %
Sup -0.487+0.215 -0.436+0.216 *=* *%
#p < 0.05and"*p < 0.01.
TP + TN
ACCuracy = A N+ PP + TN ®)
Flscore = 2 Precision x Recall 9)

Precision + Recall’

where true positive (TP) indicates a sample is positive and
was predicted to be positive, false negative (FN) indicates a
sample is positive but was predicted to be negative, false pos-
itive (FP) indicates a sample is negative but was predicted to
be positive, and true negative (TN) indicates a sample is neg-
ative and was predicted to be negative.

In the plot of the receiver operating characteristic (ROC)
curve, the horizontal axis represents the false positive rate
(FPR) and the vertical axis represents the true positive rate
(TPR). The area under the ROC curve is the area sur-
rounded by the ROC and its lower coordinate axis and is
represented as AUROC in this paper. In addition, because
the precision and recall rates of the model are not fixed,
when the classification threshold of the model is adjusted,
the precision and recall rates continue to change. The preci-
sion-recall curve represents the relationship between the
precision rate of the ordinate and the recall rate of the
abscissa with the change of the classification threshold p
value; the area beneath this curve is represented as the area
under the precision-recall curve (AUPRC).

2.5. In Vitro Cell Experiment Verification

2.5.1. Cell Culture and Reagents. RAW264.7 cells were pur-
chased from the American Type Culture Collection. The cul-
ture reagents included Dulbecco’s modified Eagle medium
(DMEM; Gibco, C11995500CP), Roswell Park Memorial
Institute (RPMI) 1640 (Gibco, C11875500BT), fetal bovine
serum (Bio IND, 04-002-1A), antimycotic (Lifetechnologies,
15240-112), phosphate-buffered saline (PBS), pH 7.4 (Gibco,
10010-023), trypsin-EDTA (0.05%; Lifetechnologies, 25300-
054), bovine serum albumin (Lifetechnologies, 15561012),
and CellTiter-Glo (CTG; PROMEGA, G7572). Consumables
and instruments included a cell culture plate (Corning), cell



6 BioMed Research International

SFP 50 SADME SSeqmin SSeqmax
. I 1004 . . 1004 s 1
0.9 40 .
N 0.75 + 0754 3 H
30 [
0.6 :
0504 3 : 050 4,
. 20 H .
0.3 . !
’ 10 : 0.25 | : 0254 .
! i+ d
0.0 4 . 0 | 0.00 4 0.00
T T T T T T T T
E £ E E g & g B
) ) ) B ) ) k) B
g g g £ g £ g g
o 3 ) 3 [} S S S
o = = g
=} =] =] =}
Z Z Z Z
SSeqmed SSeqmean SGOmin SGOmax
004 . . 04 . . 12 5 12
H . ) i
0.75 - : 0754, h 0.8 08 4
0504 ¢ 0504 ° l
. . 0.4 - 0.4
0254 % 025 |
1 0.0 - 0.0 4
0.00 l 0.00
T T T T T T
£ £ g £ § E g £
< s} < ) <= ) = =
g g g g g £ £ g
o =] =] o =] =} o =]
] Q o ? o Q@ o ?
g = = o
=} =} =] =}
Z Z Z Z
12 4 SGOmed 1.2 o SGOmean SPalhway SPPImin
) 0.5 . .
. N
0.4 . 1.0 7 é
0.8 0.8
5 3 -
0.3 : 0.8
0.4 - 0.4 o2d 1 t ¢
. 0.6 4
0.1 *
0.0 4 0.0 l
0.0 4 0.4 o
T T T T T T T T
g & g & g & g &
B B B ) 5 B i) )
£ £ £ £ - £ £
o ? o ? o Q@ o ?
g g = o
=} =} =] =}
Z Z Z Z
SPPImax sPPImed SPPImean Snp
L0 e e 1.0 1004 o .
e -
0.75 . . ‘ 0.75 o
0.8 .
050 4 . . . 0504 ¢ H
i
0.25 4 064 ° * 0.25 4 |
000 4 - . ° * 0.00 -
T T T T T T T T
- - g £ g E
< s B} s 2 ) < o
I £k £k £ £
] ? o ? o ? ] ?
g g = o
=} =} =] =]
Z Z Z Z
Group

& Combination

& Non-combination

FIGURE 3: Violin diagram of value distribution of 16 characteristic variables in training sample set.

culture flask (Corning), microplate tester (BioTek, HM-1), 2.5.2. Experimental Procedure and Methods. First, the differ-
and conventional instruments, such as a CO, incubator  ent compounds were diluted with DMEM medium to the
(Thermo 3111) and biosafety cabinet (Heal Force,  desired concentrations of the experimental design, namely,
HESAFe-1200LC). 0, 0.032, 0.16, 0.8, 4, 20, and 100 M. The cells were then
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counted and inoculated into 96-well culture plates at 2000
cells/100 uL/well; 90 uL of culture medium (including
serum) was added to each well for overnight culture, and
10uL of drug solution was added. After a 48h culture,
CTG was used to detect the proliferation of RAW264.7 cells;
CTG (100 uL) was added to each well, the content of which
was incubated at room temperature in a dark environment
for 10 min. The chemiluminescence value of each well was
measured at 500 ms using enzyme calibration.

2.5.3. Combination Index Measurement. In this study,
according to the principle of the median effect—specifically
by employing the Chou-Talalay model [1]—the synergistic
effect between each set of drugs was analyzed, and the effects
of integrated Western and TCM drugs on RA cell lines were
evaluated using the combination index (CI). The CI indi-
cates the degree of drug synergy, addition, or antagonism
for any given drug combination:

> (10)

where when CI =1, the two drugs have an additive effect,
when CI < 1, the two drugs have a synergistic effect, and
when CI > 1, the two drugs are antagonistic. D, and Dy rep-
resent the concentrations of the two drugs, d, and d, when
administered in combination, and (D), and (Dy), repre-
sent the concentrations of the two drugs, d, and d, when
they have been administered alone and the combined drug

inhibition rate has been reached.

In Formula (11), f ,and f, are the inhibition and survival
rates, respectively, when the two drugs are combined, f_ =
1-f,, D,, is the median dose, and m is the curve coefficient
(calculated according to half-maximal inhibitory concentra-
tion (IC,) theory).

In this study, CompuSyn software (http://www
.combosyn.com/) was used to calculate the CI values of the
drug combinations to evaluate whether each screened com-
bination of Western and TCM drugs had synergistic thera-
peutic effects.

(11)

2.6. Statistical Analysis. Data were expressed as the mean +
standard deviation, and a t-test and Mann-Whitney non-
parametric tests were performed using IBM SPSS Statistics
(version 26.0).

3. Results

3.1. Collection and Collation of Combined Drug Data. We
obtained 946 pairs (comprising 816 drugs) of combinatorial
drug data reported by the FDA from the DrugCombDB
database. We further downloaded all existing small molecule
drug data from the DrugBank database. After name match-
ing and sorting, some small molecule drug data without
key information, such as targets, were removed. In total,


http://www.combosyn.com/
http://www.combosyn.com/

8 BioMed Research International
TaBLE 2: Prediction evaluation results of five machine learning classification models under 1000 random sample training sets.
Model Accuracy Precision Recall F1 score AUROC AUPR
k-NN 0.827 £0.012 0.848 +0.012 0.965+0.013 0.903 £0.008 0.651 £0.024 0.309 +0.033
NB 0.813+£0.014 0.845+0.012 0.949+0.013 0.894 + 0.009 0.617 £0.026 0.269 + 0.031
SVM 0.834+£0.011 0.838 +0.012 0.992 + 0.006 0.909 + 0.007 0.657 £ 0.027 0.330+0.038
RF 0.849 £ 0.012 0.861 £0.012 0.977 £ 0.008 0.915 + 0.007 0.739 £ 0.024 0.460 + 0.039
AdaBoost 0.833£0.011 0.834+0.012 0.998 + 0.004 0.909 + 0.007 0.667 £ 0.027 0.317 £ 0.038
ROC PR
1.0 4 1.0 1
0.8 1 0.8
=t
<
g *] g
9 0.4 1 ~ 044
=
0.2 1 0.2 -
0'0 L T T T T T T 0.0 7
0.0 0.2 04 06 08 10 0.0 02 04 06 08 L0
False positive rate Recall
NB —— Adaboost NB —— Adaboost
— SVM —— SVM

(a)

(®)

Figure 5: ROC and PR curves of five machine learning models for classification prediction.

we included 488 drugs and their corresponding 546 pairs of
combinations. The data obtained for each small molecule
drug mainly included DrugBank ID, canonical SMILES,
and known targets (Supplementary 1; pretreated FDA-
certified combination drug dataset).

3.2. Construction of Combination Drug Training Set. First, using
the method described in Section 2.2, we obtained the molecular
fingerprint similarity value (Sgp), the ADME index similarity
value (Sppyvg)> and the minimum, maximum, median, and
mean of the similarity (Sgeqmin> Sseqmax> Sseqmed> 30 Sseqmeans
respectively) of the drug target sequence between the two small
molecule drugs. The minimum, maximum, median, and mean
values of the GO functional similarity of the drug targets were
S6omin® SGomax SGomed> A Sgomean> Tespectively. The KEGG
pathway similarity value (Sp,gyey); the minimum, maximum,
median, and mean of the shortest path of different drug targets
on the human PPI network (S PPImin, Spppacr Spprmed> and
Sppimean> Tespectively); and the proximity (S,,,) of the different
drug targets were also obtained. Thus, we obtained a total of

16 characteristic variables to predict combinations of Western
and TCM drugs.

In this study, we evaluated 16 characteristic variables
between two drugs for 546 pairs of combined drugs and
removed those for which characteristic variables could not
be calculated or were missing. We obtained a total of 404
positive samples of combined drugs (comprising 488 drugs)
reported by the FDA. Due to a lack of effective noncombina-
tion drug data, we combined the 488 drugs in pairs, removed
the existing combination drug samples and those missing
data, and obtained a total of 45603 noncombination drugs
as negative samples (Supplementary 2; positive and negative
sample training dataset for all drug combinations).

Finally, to construct the training set for the TCM-
combined drug samples, because the number of noncom-
bined drugs should be much larger than that of combined
drugs and to avoid large deviation in positive and negative
samples, we set the ratio of positive to negative samples as
1:5; the number of positive samples was 404, and the num-
ber of negative samples randomly extracted from the 45603
noncombined drug samples was 404 x 5=2020. Through
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TaBLE 3: Small molecules of 41 anti-RA TCM ingredients collected from TCMSP database.
TCMSP ID Name Molecular formula PubChem CID CAS
MOL006505 (-)-Epicatechin C15H1406 72276 490-46-0
MOL006821 (-)-Epigallocatechin gallate C22H18011 65064 989-51-5
MOL008680 Acetaldehyde C2H40 177 75-07-0
MOLO000475 Anethole C10H120 637563 104-46-1
MOL000008 Apigenin C15H1005 5280443 520-36-5
MOL002773 Beta-carotene C40H56 5280489 7235-40-7
MOL000358 Beta-Sitosterol C29H500 222284 83-46-5
MOL003973 Caffeine C8H10N402 2519 58-08-2
MOL008842 Chenodeoxycholic acid C24H4004 10133 474-25-9
MOL000390 Daidzein C15H1004 5281708 486-66-8
MOL000254 Eugenol C10H1202 3314 97-53-0
MOLO013179 Fisetin C15H1006 5281614 528-48-3
MOL000392 Formononetin C16H1204 5280378 485-72-3
MOL000481 Genistein C15H1005 5280961 446-72-0
MOL002467 Gingerol C17H2604 442793 23513-14-6
MOLO000666 Hexanal C6H120 6184 66-25-1
MOL005916 Irisolidone C17H1406 5281781 2345-17-7
MOL000422 Kaempferol C15H1006 5280863 520-18-3
MOL000305 Lauric acid C12H2402 3893 143-07-7
MOL000006 Luteolin CI15H1006 5280445 491-70-3
MOL007990 Militarin C34H46017 171638 58139-23-4
MOL002008 Myricetin C15H1008 5281672 529-44-2
MOL003493 Naphthalene C10HS8 931 91-20-3
MOL003403 Nicotine C10H14N2 89594 54-11-5
MOL005828 Nobiletin C21H2208 72344 478-01-3
MOL006214 Progesterone C21H3002 5994 57-83-0
MOL012297 Puerarin C21H2009 5281807 3681-99-0
MOL000098 Quercetin C15H1007 5280343 117-39-5
MOL012744 Resveratrol C14H1203 445154 501-36-0
MOL002268 Rhein C15H806 10168 478-43-3
MOLO011865 Rosmarinic acid C18H1608 5281792 20283-92-5
MOL006356 Sorbitol C6H1406 5780 50-70-4
MOL007154 Tanshinone ITA CI9H1803 164676 568-72-9
MOL003186 Tripterine C29H3804 122724 34157-83-0
MOL003187 Triptolide C20H2406 107985 38748-32-2
MOL004932 Uralsaponin A C42H62016 128229 103000-77-7
MOL000511 Ursolic acid C30H4803 64945 77-52-1
MOL000635 Vanillin C8H803 1183 121-33-5
MOL000173 Wogonin C16H1205 5281703 632-85-9
MOL009357 Yakuchinone A C20H2403 133145 78954-23-1
MOL009358 Yakuchinone B C20H2203 6440365 81840-57-5

this, a training sample set was formed containing 2424 sam-
ples, and the training set was repeated 1000 times to ran-
domly generate 1000 prediction training sets of combined
drugs, as displayed in Figure 2.

3.3. Analysis and Screening of Characteristic Variables in
Combination Drug Training Set. A t-test and a Mann-Whit-

ney nonparametric test were used to determine whether sig-
nificant differences existed between the 16 characteristic
variables in the combined drug group and those in the non-
combined drug group (p <0.05). The results revealed that
Seps SADME> Sseqmin> SGOmax> SGOmed> SGOmean> and Sppyy,,  did
not significantly differ between the combined drug and non-
combined drug groups (p>0.05). Significant differences
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TaBLE 4: Information from DrugBank database for 10 common anti-RA small molecule drugs.
ID Name Molecular formula PubChem CID CAS
DB00316 Acetaminophen C8HINO2 1983 103-90-2
DB00328 Indometacin C19H16CINO4 3715 53-86-1
DB00482 Celecoxib C17H14F3N302S 2662 169590-42-5
DB00563 Methotrexate C20H22N805 126941 59-05-2
DB00586 Diclofenac C14H11CI2NO2 3033 15307-86-5
DB00788 Naproxen C14H1403 156391 22204-53-1
DB00795 Sulfasalazine C18H14N405S 5339 599-79-1
DB01097 Leflunomide CI12H9F3N202 3899 75706-12-6
DB01611 Hydroxychloroquine C18H26CIN30 3652 118-42-3
DB14006 Choline salicylate C12H19NO4 54686350 2016-36-6

TaBLe 5: Combination data for 15 most predicted drug

combinations.

Group TCM ingredient Anti-RA drug Count
1 Eugenol Acetaminophen 993
2 (-)-Epicatechin Celecoxib 957
3 Rosmarinic acid Celecoxib 946
4 Chenodeoxycholic acid Acetaminophen 929
5 Eugenol Diclofenac 912
6 Eugenol Naproxen 910
7 Myricetin Celecoxib 908
8 Chenodeoxycholic acid Diclofenac 898
9 Chenodeoxycholic acid Naproxen 897
10 Rhein Celecoxib 894
11 Anethole Naproxen 854
12 Anethole Diclofenac 853
13 Nobiletin Celecoxib 832
14 Fisetin Celecoxib 791
15 Rhein Hydroxychloroquine 770

were found in the SSeqmax’ SSeqmed’ SSeqmean’ SPathway’ SPPImin’
Sppimed> SppImean> a1A Sy, between the two statistical tests
(p<0.05). Statistical differences were found in Sgn,,, in
the nonparametric tests (p < 0.05). All statistical tests were
performed in IBM SPSS Statistics (version 26.0), and their
data are presented in Table 1. The violin diagrams of the dis-
tribution of characteristic variables in different groups were
completed using ggplot2 (version 3.3.5) and are displayed
in Figure 3.

An rfe function using the caret package was used to
screen the 16 characteristic variables. A random forest
model was used as the selection function, which was functi
ons =rf Funcs, and the method was cross-validation, which
was method="cv." The others parameters were set to
default. The training set was repeated 1000 times to extract
feature variables from 1000 randomly generated training
set samples, and each extracted feature variable set was
recorded. The frequency of each feature variable in the
1000 feature selections was counted; the results are displayed
in Figure 4.

As illustrated in Figure 4, eight characteristic variables,
namelY’ SPathway’ SGOmin’ SGOmax’ SSeqmin’ SSeqmax’ SSeqmean’
Sppimean> and S, had appearance frequencies of over 70%
after 1000 characteristic screenings. Sp,ihyay a0d Sgomin Were

identified as key characteristic variables for predicting com-
bined drugs. The other eight indicators had appearance fre-
quencies below 70%; for example, Sgp had a rate of less than
10%. Thus, we removed the group of indicators with fre-
quencies lower than 70% and included the top eight indica-
tors as feature variables for subsequent machine learning.

3.4. Comparison and Selection Results of Machine Learning
Models. The five included machine learning models were
subjected to three replicates of 10-fold cross-validation
under 1000 random samples to evaluate the predictive clas-
sification performance of different models. The results are
displayed in Table 2, and the ROC and PR curves of the five
models are presented in Figure 5.

Through evaluation and comparison of the predictive
ability of the different models, we found that the classifica-
tion index scores of the random forest model were generally
better than those of the other prediction classifiers. There-
fore, the random forest model was adopted as the combined
drug prediction classifier for this study. The parameter was
represented as ntree = 300.

3.5. Prediction Results of Integrative Medicine. We entered
“Rheumatoid Arthritis” into the TCMSP database as a
search term and identified 41 small molecule types in TCM
ingredients that have been used to treat RA. We collected
the target treatment information for each small molecule
and verified it using the Uniprot database (https://www
.uniprot.org/). We collected the molecular formula, Pub-
Chem CID, CAS number, and canonical SMILES data of
each small molecule from PubChem (Table 3).

The information for drugs commonly used in RA treat-
ment was also obtained from DrugBank. In this study, acet-
aminophen, celecoxib, choline salicylate, diclofenac,
hydroxychloroquine, indometacin, leflunomide, methotrex-
ate, naproxen, sulfasalazine, and 10 other common drugs
were selected, as presented in Table 4.

The aforementioned 41 small molecule TCM (collected
from TCMSP) and 10 common anti-RA Western medicine
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FiGurek 6: Effects of myricetin, nobiletin, fisetin, celecoxib, hydroxychloroquine, and rhein on the viability of RAW264.7 cells.

drugs were combined in pairs to obtain potential drug com-
binations: Cj; x C}, =410 combinations. Thus, we obtained
the final prediction sample set (Supplementary 3; drug com-
bination prediction dataset of integrated Western and TCM
drugs).

The results revealed that out of 1000 random sample
predictions, 34, 62, and 114 pairs of Western and TCM
drugs were predicted to be combination drugs more than
500, 100-500, and 1-100 times, and 200 groups were pre-
dicted to be noncombination drugs. In this study, we consid-
ered predictions of more than 100 times to be potential anti-
RA Western and TCM combination drugs, with higher
numbers of positive sample predictions indicating a greater
potential for drug combination. Therefore, we selected the
15 groups that were predicted more than 700 times for sub-
sequent cell experiments. The combination drug informa-
tion is displayed in Table 5 (Supplementary 4; prediction
results of all Western and TCM combinations).

3.6. Experimental Verification Results. Because RAW264.7
cells were used for experimental verification, we first deter-
mined whether a single small molecule had an inhibitory
effect on RAW264.7 cells. We then tested the Western and
TCM drug combinations. Finally, the CI value was calcu-
lated using CompuSyn software to determine whether the
small molecule combinations of the two drugs were
synergetic.

We then applied the method described in Section 2.5.
Based on observations of the proliferation effect of the 15
small molecules on the RAW264.7 cells, myricetin, nobiletin,
fisetin, celecoxib, and hydroxychloroquine significantly
reduced the survival rate of the RAW264.7 cells. The IC,,
values of the myricetin, nobiletin, fisetin, celecoxib, and
hydroxychloroquine were>100, 23.93, 31.19, >100, and
79.43 umol/L, respectively, as presented in Figure 6.

We further tested combinations of Western and TCM
containing these five small molecules (a total of seven pairs)
based on the prediction results of the machine learning
model and calculated the CI values, as displayed in
Table 6. We found that of the seven pairs of Western and
TCM combinations, five of the pairs had CI values less than
0.7, indicating that these drugs have good synergy.

4. Discussion

Machine learning methods have been widely used in many
fields of research, such as text classification [23], sentiment
analysis [24], breast cancer diagnosis [25], web page classifi-
cation [26], and image generation [27]. Many researchers
have used computational and modeling methods to identify
potential combinatorial drugs [17, 28-30], and the use of
machine learning to predict drug combinations has notably
increased in recent years [31-34]. However, nearly all of this
research has focused of combinations of Western drugs.
Combinations of Western and TCM drugs have rarely been
reported, especially within the context of RA treatment.
TCM is a complex system composed of many small mole-
cules with synergistic effects. In recent years, the research
of TCM small molecule is still the focus of modern pharma-
cology. We mainly focused on the prediction of the combi-
nation of small molecule with clear pharmacological effects
in TCM and Western medicines that have been approved
drugs. Therefore, in this study, we examined the small mol-
ecule characteristics of TCM ingredients that differed from
those in Western combination drugs. We developed a
method for complete modeling and prediction to screen
anti-RA combination drugs.

For feature variable construction, we selected drug struc-
tures and ADME features. However, the results of the statis-
tical analyses and feature variable screening revealed that
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TaBLE 6: Effect of seven predicted pairs of Western and TCM combinations on RAW264.7 cell viability.
Combination TCM (pmol/L) Drug (ymol/L) IC50 RAW264.7 cell inhibition rate (%) CI
>100 + 100 Cl<1
100 100 39.31+2.92 CI=0.37
20 100 35.68 +1.49 CI=0.49
Rhein+celecoxib 4 100 38.60 +0.80 CI=0.39
100 20 20.08 £1.22 CI=0.40
100 4 14.22 £ 1.59 CI=0.17
20 20 20.17+£1.49 CI=0.40
8.83 +100 Cl<1
Nobiletin+celecoxib 100 100 96.20 £ 0.24 CI=0.01
100 20 61.50 £ 1.67 CI=0.17
100 + 4 Cl<1
100 100 64.05+0.94 CI=0.06
20 100 37.13+2.13 CI=0.46
Myricetin+celecoxib
4 100 37.96 +1.58 CI=0.41
100 20 53.92+1.59 CI=0.03
100 4 49.97+0.93 CI=0.02
10.89 + 100 CI<1
Fisetin+celecoxib 100 100 99.06 +0.03 CI=0.02
4 100 57.80+1.89 CI=0.88
100 +57.15 Cl<1
Rhein+hydroxychloroquine
100 20 86.88 +0.04 CI=0.28
Epicatechin+celecoxib >100 + 100 CI>1
Rosmarinic acid+celecoxib >100 + 100 CI>1

drug structure similarity and ADME characteristics had no
significant effect on the classification of combination drugs.
Notably, sequence similarity, GO functional similarity, and
the distance of drug targets within the PPI network of the
small molecule drug targets were found to be related to the
combination of drugs, with the similarity value of the drug
target pathway (Sp,way) being identified as a key feature in
combination drugs, both statistically and in feature screen-
ing. Therefore, the synergistic mechanism of two or more
drugs within a pathway may serve as a key reference for
future developments of combined drugs.

In constructing the sample training set, we were unable
to collect sufficient noncombined drug data (namely the
number of negative samples) due to limited research data.
Therefore, in the original data, the number of positive sam-
ples was only 1% that of negative samples, which created a
serious imbalance in the number of positive and negative
samples. If the model had been constructed using the origi-
nal datasets, the disproportionate number of negative sam-
ples would have caused overfitting, and the predictions
would have been biased toward the classifications of the
larger number of samples. This would have greatly reduced
the normalizing ability of the models. However, simply

reducing the sample size may have excluded potential drug
combinations in the 45603 samples.

To effectively and reasonably overcome this challenge,
we proposed a method in which multiple training sets were
constructed using random sampling performed 1000 times.
For each instance of modeling, the positive samples
remained unchanged, and a limited number of negative
samples were randomly selected from the total negative sam-
ples; 1000 training sets were randomly composed. The
machine learning model was trained by and predicted the
1000 training sets. The final potential combination drugs
were then determined on the basis of the percentage of each
sample predicted to be a combination drug (positive) in the
1000 learning sessions. However, because the number of
noncombination drugs is generally much larger than that
of combination drugs but large deviations in numbers of
positive and negative samples would cause prediction devia-
tion in the machine learning model, in this study, the ratio of
positive and negative samples was set to 1:5. Through these
changes, we were able to prevent imperfect data sampling of
combined drugs.

In this study, from the prediction and evaluation results
of five different machine learning classification models in
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1000 random sample training sets, the accuracy, precision,
F1 score, AUROC, and AUPR values of RF are the highest
among the five machine learning models. AdaBoost per-
forms best on recall, followed by SVM and RF. The predic-
tion scores of k-NN and NB on these six machine learning
evaluation indexes were lower, suggesting that these two
models may not be suitable for combination drug prediction.
The prediction performance of SVM and AdaBoost is sec-
ond only to that of RF. Therefore, through the evaluation
and comparison of the predictive ability of different models,
we found that the RF classification index scores are generally
better than other predictive classifiers. Therefore, the RF
model is used as the final combined drug prediction classi-
fier, where the parameter ntree = 300. We used the RF clas-
sifier to predict 410 groups of Western and TCM drug
combinations to treat RA and thus preliminarily predicted
96 pairs of potential Western and TCM drug combinations
to treat RA. We used RAW264.7 cells to experimentally ver-
ify the effects of a single drug small molecule on the prolifer-
ation of RAW264.7 cells. We then verified the effects of
combined drugs on the cells. The results revealed that five
of the seven selected pairs of combined Western and TCM
drugs had high synergistic effects, indicating that our model
had high accuracy and practicability. The five optimal com-
binations were Rhein and Celecoxib, Nobiletin and Cele-
coxib, Myricetin and Celecoxib, Fisetin and Celecoxib, and
Rhein and Hydroxychloroquine.

Notably, celecoxib was found to have a higher synergistic
therapeutic effect when combined with several small mole-
cule TCM ingredients, namely, myricetin, rhein, nobiletin,
and fisetin. In addition, rhein did not demonstrate an inhib-
itory effect on RAW264.7 cell proliferation when applied
alone. However, when combined with celecoxib (CI < 0.7),
the combined inhibition rate of 100umol/L rhein and
20 umol/L celecoxib was 35.68%, which was higher than
the rate of each of the two alone. Rhien had high synergy
with hydroxychloroquine.

Notably, triptolide combined with Western drugs, such as
methotrexate, has previously been reported to produce favor-
able results in past experiments [35]. However, the number of
predicted combinations containing triptolide in our model
was not high; it predicted triptolide combined with diclofenac
(75 times), naproxen (75 times), and celecoxib (24 times) but
did not predict triptolide combined with methotrexate (0
times). This may be due to triptolide’s reported clinical toxicity
[36]. Although triptolide has been clinically reported to
improve treatment outcomes, it may not be the best option
for drug combinations and may even lead to more systemic
side effects [37]. Our prediction results may support this
hypothesis. The screening of potential combination of TCM
and Western medicine based on the machine learning com-
bined with experimental validation methods can improve effi-
ciency and reduce research costs.

In conclusion, we constructed combination drug charac-
teristics based on existing combination drug data and char-
acteristics from TCM drug research. Key characteristic
indexes were screened, and a random forest classification
model was used to predict potential combinations of West-
ern and TCM drugs for anti-RA treatment. Through exper-

BioMed Research International

imental verification, we preliminarily demonstrated that this
method of combination therapy for anti-RA treatment can
be applied to clinical practice. In the future, we will conduct
vivo experiments and clinical trials to validate the findings of
this study. In addition, our machine learning model for inte-
grated Western and TCM drug combination can be applied
for predicting not only anti-RA drug combinations but also
TCM combinations for other diseases.
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