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Glioblastoma is characterized as one of the deadliest cancers in humans. The survival time is not improved by standard treatment.
Although immunotherapy has revolutionized cancer treatment, the current therapy targets for glioblastoma patients are not
satisfied. We systematically analyzed the expression patterns, predictive values, and immunological characteristics of PTPN18
in glioblastoma. The independent datasets and functional experiments were employed to validate our findings. Our data
showed that PTPN18 is potentially cancerogenic in glioblastoma with advanced grades and poor prognosis. High expression of
PTPN18 correlated with CD8+ T cell exhaustion and immune suppression in glioblastoma. In addition, PTPN18 facilitates
glioblastoma progression by accelerating glioma cell prefiltration, colony formation, and tumor growth in mice. PTPN18 also
promotes cell cycle progression and inhibits apoptosis. Our results illustrate the characterization of PTPN18 in glioblastoma
and highlight the potential value as an immunotherapeutic target for glioblastoma treatment.

1. Introduction

Glioblastoma multiforme (GBM) is the most common malig-
nant tumor possessing up to 60% of primary brain tumors [1].
Despite improvements in independent and combinatorial
treatments involving chemotherapy and radiotherapy, the
survival rate of GBM remains very miserable [2]. The median
survival is about 12 to 15 months after identification, and less
than 3-7% of patients survive for more than five years [3]. Gli-
oma cells conquer the immune system to reshape the micro-
environments that benefit their development [4]. Since the
unsatisfactory outcome after standard treatment, immuno-
therapy merits in-depth investigation as an additional option.
Immune checkpoint inhibitors (such as nivolumab and pem-
brolizumab) have been used to treat GBM. Nevertheless, their
efficiency has been discrepant and unpredictable in most

GBM patients [5, 6]. Therefore, it is imperative to explore
the effective therapeutic targets for GBM treatments.

PTPN18 is a member of the protein tyrosine phosphatase
superfamily, which is involved in the progression and recur-
rence of multiple cancers [7]. The activity of PTPN18 is regu-
lated by the different oxidation states of sulfur in its catalytic
cysteine (C229 site), such as sulfenic acid (RSO-), sulfinic acid
(RSO2-), or sulfonic acid (RSO3-) [8, 9]. Ectopic expression of
PTPN18 facilitates cell growth and tumorigenesis of colorectal
cancer. PTPN18 triggers MYC signaling by interacting with
MYC and increases CDK4 protein expression in colorectal
cancer [10]. A study also demonstrated that PTPN18 pro-
motes endometrial cancer cell line proliferation andmetastasis
but inhibits their apoptosis [11]. We previously performed the
pan-cancer analysis of classical protein tyrosine phosphatases
[12] and confirmed that PTPN18 can inhibit breast cancer
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metastasis [13]. However, the potential functions and mecha-
nisms of PTPN18 in glioblastoma remain unclear. In the pres-
ent study, we explored the role of PTPN18 in glioblastoma
progression with immune response. Our data revealed that
PTPN18 exhibits potential cancerogenic properties in glio-
blastoma with a poor prognosis. Mechanistically, PTPN18
positively correlates with immune suppression and CD8+ T
cell exhaustion and promotes glioblastoma progression by
regulating the cell cycle and apoptosis. Together, PTPN18
may be a promising target for attenuating tumor immunosup-
pression for glioma treatment.

2. Materials and Methods

2.1. Data Source. The pan-cancer analyses were based on The
Cancer Genome Atlas (TCGA) Research Network. RNA-seq
data for the transcriptional expression of 33 types of cancer
were downloaded using TCGAbiolinks R package [14]. The
somatic mutation data were acquired from the MC3 project
of TCGA PanCanAtla [15]. The copy number variations
(CNVs) data were downloaded from Broad GDAC Firehose
in January 2016 (https://gdac.broadinstitute.org/). GISTIC2
was employed to define the significant gain or loss in genomic
regions [16]. The clinical data associated with TCGA patients
were obtained from the published study [17] or downloaded
using TCGAbiolinks R package. We downloaded the gene
expression profiles from TCGA project and the Genotype-
Tissue Expression (GTEx) project recomputed by the UCSC
Xena project depending on a defined pipeline. The BH-
adjusted P value < 0.05 was regarded as the differentially
expressed genes in each cancer type. Validation data of glioma
was required from the Chinese Glioma Genome Atlas
(CGGA) and Gene Expression Omnibus (GEO) [18]. Other
datasets were performed through the GlioVis dataset [19].
The cell line data were acquired from the Broad Institute Can-
cer Cell Line Encyclopedia (CCLE) and the Genomics of Drug
Sensitivity in Cancer (GDSC) databases [20, 21].

2.2. Survival Analysis. The survival analysis was analyzed
using the Kaplan–Meier method with the log-rank test by
the survival R package. The cut-off point in each set was esti-
mated using the survminer R package. P value < 0.05 was
defined as significant.

2.3. Estimation of Immunological Characteristics in the TME.
Immune cell infiltration was estimated using the published
study based on CIBERSORT [22]. CIBERSORT is a deconvo-
lution computation algorithm that can quantify hematopoietic
cell composition based on the normalized gene expression
matrix [23]. Since the cancer immunity cycle indicates what
events are initiated to the killing of cancer cells [24], Xu et al.
evaluated these events using a single sample gene set enrich-
ment analysis (ssGSEA) based on bulk RNA-seq data [25]. T
cell dysfunction and exclusion (TIDE) was used to predict
cancer immunotherapy response [26]. Finally, we collected
information on 129 immunomodulators involving antigen
presentation, cell adhesion, coinhibitor, and costimulator
from a previous study [27].

2.4. Functional Enrichment. Gene set enrichment analysis
(GSEA) was used to analyze the potential functions of
PTPN18 in glioma between the PTPN18 high and low
groups [28]. An interactive network was constructed using
Metascape to show the functional characteristics of PTPN18
and related genes [29].

2.5. Human Tissue Samples Collection. All human samples
used in this study were collected from patients subjected to
clinical surgery in the First Affiliated Hospital of Bengbu
Medical College (Bengbu cohort) and stored at -80°C.

2.6. Immunohistochemistry. Target tissues were cut to 4μm
thick, then deparaffinized, and rehydrated with xylene and
graded alcohols (from 100% to 70%). After antigen retrieval
with 5mM citrate buffer, 3% H2O2 was used to inactivate
endogenous peroxidase. The sections were blocked with goat
serum for 30min at room temperature and incubated with
primary antibodies overnight at 4°C. The sections were
washed with phosphate-buffered saline (PBS) three times
and incubated with a biotinylated secondary antibody at
room temperature for 2 h. Diaminobenzidine was used as a
chromogen substrate. Finally, the sections were counter-
stained with hematoxylin. Antibody information is listed in
Supplementary Table 1.

2.7. Cell Culture and Transfection. U118-MG and U-251-MG
cell lines were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; HyClone, Thermo Fisher) supplemented with 10%
fetal bovine serum (FBS; HyClone, Thermo Fisher) and 1%
penicillin/streptomycin. U87-MG cell line was cultured in
Eagle’s minimum essential medium (EMEM; HyClone,
Thermo Fisher) supplemented with 20% fetal bovine serum
and 1% penicillin/streptomycin. All cell lines were maintained
at 37°C in a humidified 5% CO2 chamber. Lipofectamine 3000
(Thermo Fisher) was applied to transient transfection for plas-
mids and siRNAs following the manufacturer’s instruction.

2.8. Western Blotting. After 48 h transfection, cells were lysed
on the ice, and equivalent amounts of denaturized proteins
from each sample were separated using SDS-PAGE and then
transferred to PVDF membranes. The membranes were
incubated overnight with target primary antibodies at 4°C
before blocking with 5% BSA in TBST at room temperature
for 1 h. The membranes were washed with TBST three times,
each for 5min, followed by incubation with secondary anti-
bodies at room temperature for 1 h. The blots were scanned,
visualized, and analyzed using the ChemiDoc system
(BioRad) and Image Lab software (BioRad). Antibody infor-
mation is listed in Supplementary Table 1.

2.9. Colony Formation Assay. Cells were seeded in six-well
plates at a density of 1000 cells. After two weeks of growth, col-
onies were fixed with paraformaldehyde for 30min andmarked
with 0.1% crystal violet solution for 15min. Finally, an optical
microscope was used to counter the number of colonies.

2.10. Tumorigenesis in C57BL/6 Mice. Male mice (six weeks
old, C57BL/6mice) were acquired fromCharles River (Beijing,
China) and fed in the house in a pathogen-free condition. All
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procedures were approved by the Institutional Committee on
Animal Care of Northeastern University. Murine glioma
GL261 cells stably expressing PTPN18 and empty vector were
injected subcutaneously into mice’s right super lateral tissue
(six mice per group, 6 × 107 cells in serum-free DMEM). Mice
were anatomized after 10 days. Western blot was used to
detect the protein level of the target gene.

2.11. Cell Cycle and Apoptosis Analysis.Cell cycle and apoptosis
were analyzed using propidium iodide (1mg/ml) and
ribonuclease-A (10g/ml) (PI/RNase; BD Biosciences) and
Annexin V/PI assay by flow cytometry (BD Biosciences, Frank-
lin Lakes, NJ, USA) following manufacturer’s instruction.

2.12. Statistical Analysis. Statistical analysis and graphical
visualization were performed in R, version 4.0.0 (https://
cran.r-project.org/). The student’s t-test and the Wilcoxon
rank-sum test were used to compare normally distributed
and nonnormally distributed variables. The P values were
two-sided and adjusted according to the Benjamini–Hoch-
berg (BH) approach to control the false discovery rate
(FDR). A BH-adjusted P value < 0.05 was considered statis-
tically significant unless otherwise indicated.

3. Results

3.1. PTPN18 Exhibits Potential Cancerogenic Properties in
Glioblastoma. We comprehensively analyzed the gene expres-
sion profiles from TCGA and GTEx, and observed that
PTPN18 was highly expressed in some types of cancer, such
as low-grade glioma (LGG) and GBM, compared with normal
tissues (Figure 1(a)). The upregulation of PTPN18 was further
validated in three independent glioma datasets (Figure S1A-C).
PTPN18 was additionally expressed in various cancer cell lines,
including glioma cell lines, according to the bulk data from the
CCLE and GDSC datasets (Figure S1D-F). We also found that
the expression of PTPN18 was significantly correlated with the
stratification of glioma (Figure S1G-L). The pan-cancer
expression pattern of PTPN18 provoked us to investigate its
predictive value. The pan-cancer survival analyses were
performed using the Cox regression model and log-rank test
involving overall and cancer-specific survival. As shown in
Figure 1(b), PTPN18 was an independent prognostic
biomarker in some types of cancer. PTPN18 was associated
with worse survival in LGG and GBM from TCGA and three
independent glioma datasets (Figure 1(b); Figure S2A-C).
Consistent with the overall survival, PTPN18 demonstrated a
significant association with cancer-specific survival in seven
types of cancer, including LGG and GBM (Figure S2D-E).

Based on the high expression and association with worse
survival of PTPN18 in LGG and GBM (Figure 1(c)), we
further explored the correlation of PTPN18 with clinicopath-
ological characteristics. We found that patients with high
expression levels of PTPN18 have an advanced grade and
short survival time, presenting more aggressively than the
low PTPN18 expression group (Figures 1(d) and 1(e)). These
data suggested that PTPN18 might exclusively serve as a
potential cancerogenic gene to promote glioma progression.

3.2. PTPN18 Shapes the Tumor Microenvironment in
Glioblastoma. Cancer development and progression are associ-
ated with the immune cells present in the tumor microenviron-
ment (TME) [30]. For the effective killing of cancer cells, a
series of progressive events are initiated to activate an antican-
cer immune response referred to as the cancer immunity cycle
[24]. In the high PTPN18 group, activities of some steps in the
cycle were downregulated, including cancer antigen presenta-
tion (step 2), priming and activation (step 3), and killing of can-
cer cells (step 7) (Figure 2(a)). The depressed activities of these
steps may affect the infiltration levels of specific types of
immune cells to the TME. We, therefore, analyzed the correla-
tion between the expression of PTPN18 and the infiltration of
25 immune cells in glioblastoma (Figure 2(b)) and validated the
results using immunohistochemistry (Figures 2(c) and 2(d)).
We found that PTPN18 were positively correlated with the
infiltration of Th17 cells, M2 macrophages, and CD4+ memory
T cells but negatively correlated with CD8+ T cells, B cells, and
mast cells. To further explore the association between the
expression of PTPN18 and antitumor immune response, we
thoroughly inspected the immune-related genes with each can-
cer type. A general upregulation of the inhibitory immuno-
modulators was ascertained (Figure S3A).

3.3. PTPN18 Correlates with Immune Suppression and CD8+ T
Cells Exhaustion in Glioblastoma. The reduced proportion
and defective function of CD8+ T cells are mainly attributed
to the immunosuppressive genes and cells in the TME [31,
32]. We then explored the relationship between PTPN18
expression, immune checkpoints, and immunosuppressive cells
involved in T cell exhaustion [33, 34]. We observed that
PTPN18 expression was positively correlated with six immuno-
suppressive genes (PD-L1, PD-1, CTLA4, LAG3, HAVCR2,
and CD244) in most cancers (Figure 3(a)), including glioma
(Figure 3(b)). These immune checkpoints are involved in T cell
activation and lead to the retrogression of T cell function [32].
In addition, we found that PTPN18 was significantly correlated
with tumormutation burden (TMB) andmicrosatellite instabil-
ity (MSI) in several cancers, indicating that PTPN18 may imi-
tate cancer immunogenicity in these cancers (Figure S3B-C).

Subsequently, we estimated the association of PTPN18
expression with the activation of CD8+ T cells and revealed
that the infiltration of CD8+ T cells was adversely associated
with PTPN18 in LGG (cor = −0:063, P < 0:05) and GBM
(cor = −0:147, P < 0:05) (Figure 3(c)). Four immunosuppres-
sive cells, myeloid-derived suppressor cell (MDSC), tumor-
associated macrophage (TAM), cancer-associated fibroblasts
(CAF), and regulatory T cell (Treg), can inhibit the infiltration
of immune cells, especially CD8+ T cells, into the TME and
suppress their functions within the tumor [34, 35]. PTPN18
expression was positively correlated with four immunosup-
pressive cells and their representative markers (Figure 3(d)).

3.4. Functional Analysis of PTPN18 in Glioblastoma. The
enrichment analyses indicated that multiple cancer hallmark-
related pathways varied notably between PTPN18 high and
low groups, including immune response, intercellular signal-
ing, metabolism, and other biological pathways (Figure 4(a)).
Glutamatergic synapse, gap junction, ErbB signaling pathway,
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Figure 1: Continued.
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cGMP-PKG signaling pathway, and cortisol synthesis and
secretion were significantly upregulated (Figure 4(b); FDR <
0:05). Primary immunodeficiency, antigen processing and
presentation, ECM-receptor interaction, Th17 cell differentia-
tion, p53 signaling pathway, B cell receptor signaling pathway,
and T cell receptor signaling pathway were significantly down-
regulated (Figure 4(b); FDR < 0:05). Furthermore, the biolog-
ical functions enrichment of PTPN18 and its related genes
were explored using Metascape. Network of Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) terms colored according to cluster and P values were
demonstrated (Figures 4(c) and 4(d)). Consistent with the
GSEA results, PTPN18 was involved in anticancer immune
response, which may advance the immunosuppressive micro-
environment of glioma, as a clear example of inflammation-
related cancer.

3.5. PTPN18 Promotes Glioblastoma Progression by Enhancing
Immune Suppression. To better address whether PTPN18 was
correlated with glioma tumorigenesis, we analyzed the genomic
alterations of PTPN18 and found that PTPN18 presented low
mutational frequency across cancers with widespread CNV
alterations (Figure S4). We further applied clinical specimens
and observed that PTPN18 was significantly overexpressed in
glioma samples contrasted with the paired adjacent samples
at the protein level (Figure 5(a)). The ectopic expression and

knockdown experiments were performed to evaluate the
effect of PTPN18 on cell growth. We found that the
overexpression of PTPN18 notably enhanced the growth
velocity in different glioma cell lines (Figure 5(b)), while
PTPN18 silencing inhibited cell growth (Figure 5(c)).
Consistent with the above results, ectopic expression of
PTPN18 promoted colony formation, while PTPN18
silencing inhibited colony formation (Figure 5(d)). To further
elucidate the role of PTPN18 on glioblastoma progression, we
evaluated the immune cell infiltration in C57BL/6 mice. We
observed that glioblastoma cells stably expressing PTPN18
significantly promoted tumor growth (Figures 5(e)–5(g)).
Moreover, PTPN18 prevented CD8+ T cells and M1
macrophages infiltrated into the lesion of tumor but
accelerated Th17 cells and M2 macrophages infiltrating in to
tumors (Figure 5(h)).

3.6. PTPN18 Promotes the Proliferation and Inhibits Apoptosis
of Glioma Cell Lines. Cancer progression is closely connected
with the regulation of cell cycle and apoptosis. We therefore
performed cell cycle and apoptosis analysis on PTPN18 in
glioma cells. Results showed that the proportion of cells in the
G0/G1 phase decreased after PTPN18 overexpression but
increased after PTPN18 knockdown (Figure 6(a)). Moreover,
the proportion of cells in the S phase was significantly increased
after PTPN18 expression but decreased after knockdown of

Log−rank
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Figure 1: Potential cancerogenic properties of PTPN18 in human cancer. (a) The expression pattern of PTPN18 of pan-cancers in TCGA
combined with GTEx. The thick line in the center of each box represents the median value. The bottom and top of the boxes are the 25th
and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. The statistical difference of two groups
was compared through the Mann–Whitney U test. ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001; ns: not significant. (b) Prognostic value of
PTPN18 in different cancer types from TCGA datasets. (c) Potential cancerogenic properties of PTPN18 in cancers. (d) Expression of
PTPN18 is associated with the grade in glioblastoma. (e) Kaplan–Meier curves for patients with high and low expression of PTPN18 in
the glioblastoma.
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Figure 2: The effect of PTPN18 on immunological characteristics. (a) Deviations for the cancer immunity cycle between the PTPN18 high
and low groups in glioblastoma. The thick line in the center of each box represents the median value. The bottom and top of the boxes are
the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. The statistical difference of
two groups was compared through the Mann–Whitney U test. ∗P < 0:05, ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001; ns: not significant. (b)
Correlation between PTPN18 and infiltrated immune cells in glioma. (c) Representative IHC images of infiltrated immune cells in
glioblastoma. (d) Quantification of (c) using Image-Pro Plus.
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PTPN18 (Figure 6(a)). To further explore the role of PTPN18
in cell cycle distribution, we examined the cell cycle-related
proteins, such as Cyclin A, Cyclin B1, Cyclin D1, Cyclin D3,
Cyclin E, CDK1, CDK2, and CDK4. Importantly, we observed
that the expression of Cyclin A, Cyclin B1, and CDK1 was
upregulated after PTPN18 overexpression but downregulated
after PTPN18 knockdown (Figures 6(b) and 6(c)). However,
the Cyclin D3, Cyclin E, and CDK2 expressions were downreg-
ulated after PTPN18 overexpression but upregulated after
PTPN18 knockdown (Figures 6(b) and 6(c)). The expression

of Cyclin D1 and CDK4 was not significantly different influ-
enced by PTPN18 (Figures 6(b) and 6(c)). In sum, PTPN18
promotes cell cycle progression through modulating multiple
cell cycle proteins.

To determine the influence of PTPN18 on cell apoptosis,
an Annexin V-FITC/PI staining test was executed and evalu-
ated by flow cytometry.We observed that PTPN18 overexpres-
sion slightly inhibited cell death more than the control.
However, PTPN18 knockdown facilitated cell apoptosis
(Figure 6(d)). The expression of antiapoptotic protein BCL2
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Figure 3: PTPN18 correlates with immune suppression and CD8+ T cell exhaustion in glioblastoma. (a) Correlation between PTPN18 and
six immunosuppressive molecules across 33 types of cancer. The dots represent cancer types. The Y-axis represents the Spearman
correlation, while the X-axis represents −log 10P. Quadrant I: PTPN18 expression positively correlates with immunosuppressive genes,
FDR < 0:05; quadrant II: PTPN18 expression positively correlates with immunosuppressive genes, FDR > 0:05; quadrant III: PTPN18
expression negatively correlates with immunosuppressive genes, FDR > 0:05; quadrant IV: PTPN18 expression negatively correlates with
immunosuppressive genes, FDR < 0:05. (b) Correlation between PTPN18 and six immunosuppressive molecules in glioma. (c)
Correlation of PTPN18 expression with activated CD8+ T cells in different types of cancer. (d) Correlation of PTPN18 expression with
immunosuppressive cells (MDSC, TAM, Treg, and CAF) and their representative markers. TPM: transcripts per million.
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was upregulated by PTPN18 overexpression but downregu-
lated by PTPN18 knockdown. In addition, the expression of
proapoptotic proteins BAX, BID, and BAK was downregulated
by PTPN18 overexpression but upregulated by PTPN18
knockdown (Figures 6(e) and 6(f)). Together, these results sug-
gest that PTPN18 is a potential oncogene in glioblastoma and
may be a promising target for glioblastoma treatment.

4. Discussion

The crucial role of PTPN18 in tumorigenesis and abnormal
PTPN18 expression in different cancer was described in pre-
vious studies [10, 11, 36]. In this study, we demonstrated the
upregulation of PTPN18 in glioblastoma compared with nor-
mal tissue from TCGA and other independent datasets, which
were validated using human specimens at the protein level.
Moreover, PTPN18 significantly correlated with tumor pro-
gression and poor survival, indicating the potential cancero-
genic properties of glioblastoma. Aberrantly expressed genes
are accustomed to identifying molecular mechanisms of bio-
logical conditions [37]. Some studies reported that overexpres-
sion of PTPN18 promotes the cell growth and tumorigenesis
of colorectal cancer [10] and accelerates endometrial cancer
cell line proliferation and metastasis [11]. However, to our

knowledge, the information regarding the effect of PTPN18
on glioblastoma progression is limited. We explored the
association of the expression of PTPN18 with clinicopatho-
logical parameters and prognostic value to present more per-
spectives on the pathologic role of PTPN18 in glioblastoma
progression. Our results showed that patients with higher
PTPN18 expression have an advanced grade and correlate
with the poor OS of glioblastoma. These data indicate that
PTPN18 could serve as the prognostic biomarker for
patients with glioblastoma and might be a promising target
for glioblastoma treatment.

Brain tumors, including glioblastoma, are disreputable for
triggering immunosuppression [38]. We explored the impacts
of PTPN18 expression on the cancer immunity cycle. The
cancer immunity cycle activities reflect the host’s immune
response to cancer and the products of complex immunomod-
ulatory interactions in the TME. Our data showed that
PTPN18 expression was involved in the cancer immunity
cycle and negatively associated with multiple cycle stages. In
particular, consisting of the inhibited activity of priming and
activation in the PTPN18 high group, PTPN18 expression
was adversely associated with PD1, PD-L1, and CTLA4, which
are the inhibitors for priming and activation [24]. These
immune checkpoints repress preexisting cancer immunity to
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Figure 4: Functional enrichment of PTPN18 in glioblastoma. (a) Differences in pathway activities scored by GSEA between the PTPN18
high and low groups in TCGA dataset. (b) GSEA plot depicting representative pathways identified by GSEA between PTPN18 high and
low groups in TCGA dataset. (c) Network of GO- and KEGG-enriched terms colored according to clusters. (d) Network of GO- and
KEGG-enriched terms colored according to P values.
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avoid excessive immune response and lead to immune evasion.
We further estimated the association of PTPN18 expression
with immune infiltration and found that higher expression of
PTPN18 correlated with reduced CD8+ T cells and poor prog-
nosis in glioblastoma. The higher proportion of tumor-
infiltrating CD8+ T cells improves survival and glioblastoma
treatments [39, 40]. Therefore, we hypothesized that increased
expression of PTPN18 led to glioblastoma progression by
decreasing the infiltration of CD8+ T cells. Our study also indi-
cated that PTPN18 expression was significantly associated with

the immune checkpoints and immunosuppressive cells, such as
PD-1, HAVCR2, TAM, MDSCs, and Tregs.

Furthermore, PTPN18 expression is significantly associ-
ated with IL-6 and IL-17 expression. Previous studies found
that IL-6 induced the polarization of monocytes into TAM
and the recruitment of MDSCs in the TME [41, 42]. TAM
is the main contributor to systemic immunosuppression
for GBM, and TAM-derived TGFβ was the essential inducer
for systemic immune tolerance [38]. IL-17 promotes PD-1
and HAVCR2 expression in CD8+ T cells in the TME [43].
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Figure 5: Functional validation of PTPN18 in glioma cells. (a) PTPN18 protein levels were detected in human glioma samples by western
blot. (b) Growth curves demonstrate the effect of ectopic expression of PTPN18 on glioma cell lines. (c) Growth curves demonstrate the
effect of PTPN18 knockdown on glioma cell lines. (d) Colony formation in the cells following the indicating treatment, ∗P < 0:05. (e)
Tumors were harvested and photographed from C57 mice. (f, g) Final tumor volumes and weights were recorded and compared,
∗P < 0:05. (h) Representative IHC images of infiltrated immune cells in C57 mice, ∗P < 0:05, ∗∗∗P < 0:001.
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TAM is thought to have both tumor-suppressing (M1 macro-
phages) and tumor-promoting (M2 macrophages) functions,
giving them a nuanced role in carcinogenesis. Together, these
data indicated that PTPN18 instigates glioblastoma progres-
sion by enhancing immunosuppression.

To further address whether PTPN18 was correlated with
glioma tumorigenesis, we performed enrichment analyses of
PTPN18 in glioblastoma. Our data showed that PTPN18
suppressed various immune response-related pathways and
sustained the immunosuppressive microenvironment [44].
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Figure 6: PTPN18 regulates cell cycle and apoptosis in glioma cells. (a) The effect of PTPN18 on cell cycle distribution. (b, c) Cell cycle-
related genes were detected by western blot. (d) Flow cytometric analysis of early and late apoptotic cells with Annexin V and propidium
iodide (PI). (e, f) Apoptosis-related genes were detected by western blot.
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Functional experiments showed that ectopic PTPN18 pro-
moted cell proliferation, colony formation, and tumor
growth in nude mice, indicating the potential oncogenic role
of PTPN18 in glioblastoma.

5. Conclusions

Overall, our results showed that the upregulation of PTPN18
in glioblastoma might effectively predict clinical prognosis.
Moreover, this study demonstrated that the effect and mecha-
nism of PTPN18 on promoting glioblastoma are mediated by
reducing immune infiltration and enhancing immune sup-
pression, indicating the potential value of targeting PTPN18
as an immunotherapy strategy for glioblastoma.
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