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Abstract

A molecular diagnosis from the analysis of sequencing data in rare Mendelian diseases has a 

huge impact on the management of patients and their families. Numerous patient phenotype-aware 

variant prioritisation (VP) tools have been developed to help automate this process, and shorten 

the diagnostic odyssey, but performance statistics on real patient data are limited. Here we identify, 

assess, and compare the performance of all up-to-date, freely available, and programmatically 

accessible tools using a whole-exome, retinal disease dataset from 134 individuals with a 

molecular diagnosis. All tools were able to identify around two-thirds of the genetic diagnoses 

as the top-ranked candidate, with LIRICAL performing best overall. Finally, we discuss the 

challenges to overcome most cases remaining undiagnosed after current, state-of-the-art practices.

Molecular diagnosis in rare Mendelian diseases using phenotype-aware VP 

software tools

With approximately 80% of rare diseases having a genetic origin, identifying the correct 

causative variants in rare Mendelian single-gene disorders creates a greater potential for 

informed clinical management through precision medicine or recommendation for drug 

trials, rather than only treating evident symptoms. Improvements in sequencing genetic 

information at scale through parallelisation (next-generation sequencing) have enabled 

greatly increased quantities of genomic data production at lower overall costs, as shown 
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by the recent completion of the 100,000 Genomes Project in the UK [1]. Whole-exome 

sequencing (WES) is still the most commonly used method, as the exome (~2% of the 

human genome) harbours ~85% of currently known disease-causing sequence variants [2]. 

The candidate variants from a typical WES experiment are often derived from 60 000 to 100 

000 variants affecting protein-coding regions, of which nearly all will be benign or unrelated 

to the disease [3]. However, the filtering and review process can still involve many tens, if 

not a few hundreds, of candidate variants and is usually both time-consuming and expensive 

if done via manual analysis by multidisciplinary clinicians and scientists. Around one-third 

of children born with rare genetic diseases do not live to see their fifth birthday [4], so it is 

vital that their molecular diagnosis is rapid and yet, the traumatic wait time for patients is 

often lengthy (e.g., a median of 6 years in the 100,000 Genomes Project) [1]. VP software 

offers the possibility of identifying the correct disease-causative variants more efficiently, 

sometimes within minutes. These tools usually discard large quantities of likely benign, 

common variants through filtering strategies based on publicly available (e.g., gnomAD) and 

in-house sequencing databases.

The vast majority of VP tools are still only able to prioritise single-nucleotide variants 

(SNVs) and small insertion/deletions (indels) formatted as variant call format (VCF) files. 

To determine likely rare disease-causative SNVs/indels, VP tools usually incorporate several 

existing in silico pathogenicity prediction tools that can restrict the patients’ VCF files 

to variants of interest based on a range of methods. They include function-prediction 

methods (e.g., MutationTaster, PolyPhen-2, SIFT), which are based on the likelihood of each 

missense variant causing pathogenic changes to protein structure or function; phylogenetic 

conservation methods (e.g., GERP++, phastCons, phyloP), which measure the degree of 

conservation at a given nucleotide site; other more recent methods, which concern a 

tailored use of deep neural networks (e.g., MVP, PrimateAI); and ensemble methods (e.g., 

CADD, DANN, REVEL), which integrate information from multiple component methods 

[5]. Despite the availability of this wide range of in silico pathogenicity prediction tools, 

improvements are still needed to discriminate pathogenic from benign variants with a 

reported median specificity of 65%; furthermore, with sensitivities ranging from 51% to 

96% (median, 88%), relying only on algorithm-predicted variant pathogenicity is known to 

still generate a large number of false positive candidates [5].

With the aim of automating the manual prioritisation of candidate variants made by 

clinicians and scientists where the relevance of a certain gene variant to a patient’s 

phenotype is taken into account, virtually all recent VP software tools have now enabled 

the incorporation of standardised patients’ phenotypic terms, drawing from the more than 

15 000 terms of the Human Phenotype Ontology (HPO) [6]. This has ultimately been a 

significant addition; for example, Exomiser (among the first VP tools of its kind) [7,8] 

demonstrated an increased top prioritisation of the correct diagnosed causative variants from 

20–77% (using only variant-based filtering) to 96–97% (with the addition of patients’ HPO 

terms) using simulated sequencing data and across different mode of inheritances (MOIs) as 

well as from 3% to 74% using real patient data and inferred MOIs [9].

The VP software tools to date have been tested on (different) simulated and/or very small 

real patient sequencing datasets, with limited software performance comparison. Strikingly, 
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each specific published tool virtually always claims to outperform the relatively limited 

number of other tools tested from the literature. Here, we set out to perform a thorough 

literature review with the aim of identifying up-to-date phenotype-aware VP software 

tools. Building on a previous benchmarking of VP tool Exomiser [9], we then conducted 

a relatively unbiased software performance comparison of the selected VP tools using a 

dataset of 134 whole-exomes from individuals affected by a range of rare inherited retinal 

diseases (IRDs) and known molecular diagnosis.

Up-to-date phenotype-aware VP software tools

A detailed literature search was carried out to determine a list of phenotype-aware VP 

software tools to use for real patient data benchmarking that would meet the following 

criteria: (i) directly accepting sequencing data formatted as VCF files; (ii) accepting 

HPO terms to describe patients’ phenotypes; (iii) being relatively up-to-date (last updated 

or published since 2018); (iv) freely available for academic use; and (v) with local, 

programmatic access (and therefore safer for use with patient data as opposed to web-based 

access and allowing processing of data at scale).

Literature searches using a combination of keywords (i.e., ‘exome’, ‘genome’, ‘variant 

prioritisation’, and alternative spelling ‘variant prioritization’, and ‘human phenotype 

ontology’) were conducted in PubMed and returned about 400 peer-reviewed journal articles 

(11 March 2022) (Figure 1). Articles were screened to identify those publications that 

involved a VP software tool for rare Mendelian disease. This initially gave a list of 37 

candidate VP software tools [3,8,10-44] to prune according to the aforementioned criteria. 

Remarkably, only seven VP software tools passed all five criteria and were selected as final 

candidates for testing and comparison. Table 1 shows the details of the 37 tools retrieved 

from the literature search and the corresponding selection process.

Most of the tools (33) can directly accept sequencing data as a VCF file, which is the 

standard file format for storing genetic variation data. A total of 28 tools are ‘phenotype-

aware’ as opposed to simply using the genetic variant data for prioritisation; they all allow 

an integrative analysis of the patients’ phenotypes using the HPO, which has become the de 
facto standard for deep phenotyping in the field of rare disease [6]. The most discriminating 

criterion (failed by 23 tools) is our requirement for the VP tool to provide both local 

and programmatic access. Local installation is usually essential to conform to patient data 

privacy and security rules. Also, despite some attractive features web-based tools may seem 

to provide, processing of data at scale via programmatic access is usually vital to guarantee 

efficient analysis pipelines. It has to also be noted that 11 tools were never updated since 

their publication date or 2017 (one in 2013, two in 2014, three in 2015, one in 2016, and 

four in 2017), with corresponding website link broken for one of them (Table 1). This is 

largely a reflection of the challenges of maintaining academic software when resources do 

not exist for such an activity. Finally, Table 2 shows a summary of the different data sources 

that are leveraged within each of the seven remaining VP tool candidates to document the 

type and amount of information each tool relies on, as well as to provide insights into the 

need to update and/or maintain them.
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Four VP software tools successfully downloaded, installed, and run using 

real patient data

Attempts were made to download and install all seven of the selected VP software tools. 

Further illustrating the problems with long-term maintenance of academic software, this 

was not possible for three of them due to inaccessible databases, failing dockers, or 

lack of information in ReadMe files. In particular, for DeepPVP [16], we were unable 

to follow their installation process as no phenomenet-vp docker container exists in 

Docker Hub and the dockerfile recipe provided in their GitHub repository does not build 

in the research computing environment containing our clinical data; Phenoxome’s [42] 

docker pull was successful but there were no further instructions for progression with its 

installation; VARPP [11] download of the required dbNSFP database (version v3.4a) was 

no longer possible. The four remaining VP software tools were finally included in this 

software performance evaluation and comparison using real patient data as they were each 

successfully downloaded and installed as reported next, including a brief description of the 

corresponding VP rationale and algorithms.

The corresponding code for all analyses is available as a repository at https://github.com/

whri-phenogenomics/VPSoftware_review.

Exomiser

Exomiser [7-9,45] is a freely available Java software tool that automates filtering and 

prioritisation of variants contained in VCF files from sequencing of rare disease patients 

(and, if available, their family members). A range of user-defined variant filtering 

criteria can be applied based on JANNOVAR [46] functional annotation, minor allele 

frequency, and expected inheritance pattern, amongst others. Each filtered variant is then 

prioritised according to a variant score based on its rarity and in silico algorithm-predicted 

pathogenicity, which is in turn combined with a corresponding gene-specific phenotype 

score. The latter is obtained via the PhenoDigm algorithm [37] and is calculated based on 

the semantic similarity between the user-provided HPO-encoded patient’s phenotype and the 

phenotypic annotations of genes in known human diseases, orthologs in mouse and zebrafish 

model organisms, and phenotypes of protein–protein associated neighbours [7].

The download and installation of Exomiser version 13.0.0 (released on 23 September 

2021) were straightforward, following a comprehensive ReadMe file accessed via 

Exomiser’s GitHub pagei. We used a Bash script to create a single-sample-analysis-

settings.yml file starting from the preset-exome-analysis.yml example file 

provided and containing the Exomiser analysis settings per each patient from the IRD 

dataset. Exomiser was then run using the following command line per each single-sample 

analysis for the IRD patient WES dataset (Java version 17.0.0; Exomiser variant and 

phenotype databases version 2109; default Ensembl transcript annotation):

java -Xms2g -Xmx4g -jar exomiser-cli-13.0.0.jar -analysis 

single-sample-analysis-settings.yml

i https://github.com/exomiser/Exomiser/blob/master/README.md 
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A few representative sections of the HTML output file from the analysis of one single 

sample are reported in Figure S1 in the supplemental information online. Tab-separated 

(tsv) output files containing a variety of relevant information for the filtered and prioritised 

variants (including functional annotation, allele frequency in publicly available databases, 

the gene-specific phenotype score, the variant score, and the Exomiser combined score) 

were also obtained and processed for software performance evaluation and statistical 

comparison, as described later and in the supplemental information online.

PhenIX

PhenIX (i.e., phenotypic interpretation of exomes) [44] is a computational method that 

evaluates and ranks variants based on their rarity and predicted pathogenicity, as well as the 

semantic similarity of the HPO terms used to describe the patients' phenotypes to those of 

thousands of human Mendelian diseases as reported in OMIM and Orphanet (last updated in 

2019).

PhenIX is available within Exomiser. Therefore, it did not require any additional download 

and installation, can be run in the same way as Exomiser, and produces similar output files.

It exploits the same variant filtering framework of Exomiser, while its semantic similarity 

algorithm is enabled by replacing Exomiser option ‘hiPhivePrioritiser: {}’ with 

‘phenixPrioritiser: {}’.

LIRICAL

LIRICAL (i.e., likelihood ratio interpretation of clinical abnormalities) [35] exploits the 

likelihood ratio (LR) statistical framework. Not only does it ultimately rank the candidate 

variants but it also provides an estimate of the post-test probability of candidate diagnoses 

and calculates the extent to which (LR) each provided HPO-encoded abnormality (and, if 

VCF files are available, genotype too) is consistent with the diagnosis.

LIRICAL version 1.3.4 (released on 26 September 2021) was downloaded by git cloning 

the corresponding GitHub repositoryii and installed following the clear instructions from 

the corresponding ‘readthedocs’ pagesiii. LIRICAL makes use of the Exomiser variant and 

phenotype databases (we enabled database version 2109). The preferred input format for 

LIRICAL is Phenopacketsiv, an open standard, also adopted within the Global Alliance for 

Genomics and Healthv, for sharing detailed phenotypic descriptions linked with disease, 

patient, and genetic information.

We used a Python script to create a Phenopacket single-sample-phenopacket.json 

per each patient from the IRD patient WES dataset. LIRICAL was then run using the 

following command line per each single-sample analysis:

ii https://github.com/TheJacksonLaboratory/LIRICAL.git 
iii https://lirical.readthedocs.io/en/latest/ 
iv https://github.com/phenopackets 
v www.ga4gh.org/ 
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java -jar LIRICAL.jar phenopacket -p single-sample-

phenopacket.json-e path/to/Exomiser-data-directory -x 

prefixOfOutputFile -tsv -output-directory path/to/output-

directory

A few representative sections of the HTML output file from the analysis of one single 

sample are reported in Figure S1 in the supplemental information online. Tab-separated (tsv) 

output files containing relevant information for the candidate prioritised diagnoses, together 

with the corresponding filtered variants (including rank, post-test probability, and LR), were 

also obtained and processed for software performance evaluation and statistical comparison, 

as described later and in the supplemental information online.

Xrare

Xrare [30] concerns a newly developed phenotypic similarity measure called emission-

reception information content (ERIC), which is claimed to be somehow robust to imprecise 

and noisy clinical phenotypes and to be a machine learning approach (i.e., a gradient 

boosting decision tree algorithm implemented in XGBoost [47]) that can jointly model 

phenotypic features and multiple genetic features, including American College of Medical 

Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guideline-

based features for VP.

Xrare was downloaded and installed converting the Docker image xrare-

pub-2015.docker.tar.gzvi into a Singularity container (xrare-2015.simg) due to preferences 

of the Queen Mary University (QMUL) Apocrita high-performance computing (HPC) 

facility.

Per each single-sample analysis in the IRD patient WES dataset, we first ran the Xrare 

module via singularity run xrare-2015.simg and then an R script with core code 

consisting of the command xrare() with arguments vcffile and hpoid (i.e., a single-

sample gzipped VCF file and a corresponding string of HPO terms, e.g., as ‘HP:0001156, 

HP:0001363, HP:0010055’), respectively.

If xrare(), not being a robust function, did not halt execution due to ‘system run_annotation 

is failed’ errors, tsv output files containing a variety of relevant information for the 

filtered and prioritised variants (including functional annotation, allele frequency in publicly 

available databases, many pathogenicity prediction variant scores, the ACMG/AMP-based 

classification, and the Xrare score) were produced and processed for software performance 

evaluation and statistical comparison, as described later and in the supplemental information 

online.

vi https://web.stanford.edu/~xm24/Xrare/ 
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Real patient WES dataset with known molecular diagnosis and HPO-

encoded clinical diagnosis

We assessed the performance of the four successfully downloaded and installed VP software 

tools using the same real patient WES dataset that was previously described and used in 

a benchmarking of Exomiser [9]. Briefly, the dataset consists of 134 individuals who had 

been clinically diagnosed with IRD by a consultant ophthalmologist at Moorfields Eye 

Hospital and the University College London Institute of Ophthalmology (London, UK) 

and had also received a molecular diagnosis (i.e., ‘solved’) based on SNVs and/or indels 

from the analysis of their respective WES data (Tables S1 and S2 in the supplemental 

information online). All patients had been sequenced as singletons. For this review and 

software performance comparison analysis, we used a more recent version of single-sample 

VCF files than the ones used previously [9], which were obtained as described in the 

supplemental information online. As to the phenotypic information, each of the 19 clinical 

diagnoses observed in the real patient WES dataset had been assigned a parsimonious, 

fixed list of most representative HPO terms (from one single term to six terms) by three 

ophthalmologists with expertise in IRD diagnosis (Table S1 in the supplemental information 

online). Encoding the patient’s clinical diagnoses into HPO terms can overcome the need 

for single patient-specific HPO terms and has already proven to be effective [9]; however, 

many tools now exist that facilitate an efficient collection of patients’ HPO-encoded clinical 

phenotypes and/or can automate the extraction of human disease phenotypes from free 

text clinical notes as well as electronic health records [48-52]; also, large-scale sequencing 

projects now require the availability of patients’ phenotypes encoded as HPO terms as study 

requirements [1]. Evaluations based on patient-specific HPO terms would additionally be 

affected by how specific and extensive these terms were (annotation sufficiency) and how 

thorough the reference disease annotations are in terms of covering both common and rarely 

observed signs and symptoms.

Software performance evaluation and statistical comparison using the IRD patient WES 
dataset

Each selected VP software tool was run on each of the 134 whole-exomes from the 

IRD dataset using default commands as described in the available documentation. Also, 

to perform a fairly unbiased software performance comparison, the corresponding output 

was processed in a way that would mimic IRD diagnostics and produce a relatively 

homogeneous set of criteria across tools. Finally, we noted the rank at which each VP 

tool outputted the known diagnosed disease variant(s) per each IRD patient and ran a set of 

statistical tests to assess pairwise agreement. More details are provided in the supplemental 

information online.

LIRICAL, Exomiser, and Xrare performed similarly at assigning the correct causative 

variants first rank for about two-thirds of the patients (100, 99, 98, respectively, out of 134) 

(Table 3, Figures 2 and 3A, and Figure S2 in the supplemental information online), while 

PhenIX performed the worst with 93 patients. The known diagnosed variants were ranked 

top 5 in about 93% of the dataset by LIRICAL and PhenIX and about 90% by Exomiser, 

while Xrare remained at 88% for both top 5 and top 10 ranking categories. LIRICAL 
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showed the best performance also at assigning the correct causative variants top 10 ranks 

for over 96% of the dataset, closely followed by PhenIX and Exomiser. We also calculated 

precision estimates from statistical confusion matrices for the correctly diagnosed variants 

matched in the first rank, up to the fifth rank, and up to the tenth rank by each of the tested 

VP software tools (Figure 3B). For example, should a clinical geneticist review the top five 

candidates, with precision estimates equal to about 0.2 for all four VP tools, one in five 

reported variants would be the correct ones. These results are similar to those reported in 

previous studies on other clinical cohorts where diagnoses were detected as the top ranking 

candidate in 60% of cases for LIRICAL [35], 77% for Exomiser [1], ~40% and ~80% for 

Xrare [30], whilst PhenIX reported a mean rank of 2.1 [44]. A further evaluation of several 

tools on two clinical datasets showed performances of 41–51%, 15–26%, 16–43%, and 38–

51% of diagnoses identified as the top-ranked candidate for LIRICAL, Exomiser, PhenIX, 

and Xrare, respectively [53], but the settings for Exomiser and PhenIX differed markedly 

from those used here in terms of pathogenicity prediction algorithms as well as frequency 

and non-PASS variant filtering [58].

All VP software tools showed the same median rank equal to 1, with Exomiser presenting 

with the highest maximum rank (123), while Xrare demonstrated the smallest one (5.5). 

Importantly, the latter is based on Xrare having missed (‘Filtered out/Not prioritised) 16 

correct diagnoses out of 134. That is the highest number overall, with Exomiser and 

PhenIX having missed six each and LIRICAL the lowest number of four. In particular, 

the latter four genetic diagnoses were missed by all VP tools due to the corresponding 

variants being flagged as low quality in the VCF file (three) or not called at all due to low 

coverage (one). Additionally, Exomiser and PhenIX chose to prioritise different variants for 

the correct gene other than the correct ones for two samples each, and Xrare either only 

partially outputted/did not output at all 11 diagnoses (seven homozygous, four compound-

heterozygous) or missed one diagnosis due a genotype mismatch in the VCF file (the latter 

was rescued by Exomiser and PhenIX as a ClinVarvii, ‘whitelisted’ variant).

Finally, taking LIRICAL as the reference VP tool given that it showed the best performance 

estimates overall (Table 3, Figures 2 and 3, and Figure S2 in the supplemental information 

online), we used statistical tests which are tailored to assess agreement between two raters 

to gain insights into whether any VP tool performed significantly better (Table 3). The 

agreement with LIRICAL’s performance (i.e., same disease-causing variant ranked same 

by the two VP tools) did not exceed 70% for any of the other three tested VP tools 

(i.e., 69%, 67%, and 62% for Exomiser, PhenIX, and Xrare, respectively); corresponding 

‘fair’, ‘fair’, and ‘slight’ agreements were observed when calculating the Cohen’s kappa 

values (interpreted according to Landis and Koch’s guidelines, i.e., kappa < 0.00 as ‘poor’ 

agreement, 0.00–0.20 as ‘slight’, 0.21–0.40 as ‘fair’, 0.41–0.60 as ‘moderate’, 0.61–0.80 

as ‘substantial’, and 0.81–1 as ‘almost perfect’ agreement [54]) (Table 3). However, these 

estimates represent a statistically significant difference only when comparing LIRICAL’s 

performance with the overall worse performance of Xrare (Stuart-Maxwell test, P = 1.6 × 

10−3). Interestingly, despite LIRICAL performing best overall, we still observed a relevant 

vii www.ncbi.nlm.nih.gov/clinvar 
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number of molecular diagnoses that were better ranked by the second tool (i.e., 20, 19, 24 

for Exomiser, PhenIX, and Xrare, respectively) (Table 3).

Concluding remarks

Despite numerous publications in the past decade showing the promise of phenotype-aware, 

VP tools for Mendelian diseases, very few are actually available for up-to-date analysis 

and integration into local diagnostic pipelines. Notably, although most tools are freely 

available, they are often developed as web-/app-based access only, without the possibility 

of being installed locally (Table 1). Both those features present major disadvantages. If the 

lack of programmatic access for a certain tool should be seen as impractical, especially 

in large-scale analyses, for example, making a user upload many data files manually on 

a website, the impossibility of installing a tool locally severely limits the usability of the 

tool itself due to strict privacy and security requirements of most, if not all, real patient 

datasets, including the IRD patient WES dataset tested in this review. Guaranteeing local 

tool installation, either with programmatic or web-/app-based access, should be considered 

essential when developing VP software. However, all four tools benchmarked on real patient 

data in this review showed an impressive capacity to prioritise diagnoses and lighten the 

load of clinical geneticists (Table 3 and Figure 2). Each is likely to offer its own advantages 

and disadvantages (e.g., LIRICAL offers an interpretable graphical overview of the evidence 

based on LRs; Figure S1 in the supplemental information online), but it is likely that the use 

of several different approaches will minimise the chance of overlooking a diagnosis.

Each of the assessed tools uses similar approaches to variant filtering and prioritisation, with 

most of the algorithmic differences being in how phenotypic data were used in this process. 

The variant data sources do vary considerably between each tool though (Table 2); this could 

account for performance differences and it is hard to separate it out from any differences due 

to the phenotype prioritisation algorithm. However, Exomiser and PhenIX used exactly the 

same framework and data for variant annotation, filtering, and prioritisation, so the reduced 

performance of PhenIX is due to its human-only, semantic phenotypic similarity approach 

relative to Exomiser’s multispecies algorithm. PhenIX’s underlying reference data have 

not been updated since 2019, so this could also explain much of the observed difference. 

LIRICAL and Exomiser share much of the same data and variant annotation and filtering 

approaches, so the improved performance observed for LIRICAL could well be due to its 

LR statistical approach. Here, Xrare’s use of emission-reception information content and 

XGBoost machine learning approach showed a similar performance to the other tools but 

may well show improved performance on other real clinical datasets where imprecise and 

noisy phenotype annotations have been collected.

Several questions remain to be addressed (see Outstanding questions). The key challenge 

for the future is how to tackle the overwhelming numbers of cases that remain undiagnosed 

even after state-of-the-art data analysis. For example, 75% of cases were undiagnosed in the 

100,000 Genomes Project after whole-genome sequencing and a combination of gene-panel, 

Exomiser, and research analysis [1]. About half of the nearly one million variants reported 

in ClinVar as associated with severe genetic diseases are indeed of uncertain significance 

(VUS) or present conflicting annotations. This exposes how the newly emerging functional 
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variant assays, ideally to deploy at scale, are likely to attract substantial efforts in rare 

disease diagnostics to assess the exact impact of associated variants on gene function [55]. 

Part of the uncertainty around disease-associated variants is also likely to be resolved by the 

ever-increasing availability of sequencing data as well as global data sharing initiatives that 

connect databases of genomic and phenotypic data (e.g., Matchmaker Exchange) [56,57]. 

Yet, this inevitably poses additional challenges, as patient data privacy and security remain 

paramount. Despite the current challenges, many new disease–gene associations are being 

published every month and VP tools, provided they are reasonably up-to-date, offer a 

convenient way to help reinterpret unsolved cases by automated reanalysis and identification 

of new candidates. Finally, a large proportion of unsolved rare disease cases are likely 

to involve noncoding and structural variation that is being overlooked by the current 

sequencing and analysis approaches. Although some progress has been made in VP tools 

offering analysis of these types of variation, algorithm improvements are going to be needed 

before validation and diagnosis of these become feasible at scale.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Next-generation sequencing technologies have made achieving a molecular diagnosis 

for a rare genetic disorder more and more feasible and, in turn, have enabled a more 

personalised clinical management of the affected patients and their families.

Identifying the one or two variants that are responsible for a certain disease phenotype 

from the millions identified by sequencing can be time-consuming and expensive.

Numerous phenotype-aware variant prioritisation (VP) software tools now exist to help 

semi-automate the molecular diagnosis process for rare diseases.

Although many of the published VP tools have many limitations, show a lack of 

maintenance, and become soon unfit for usage, several are up-to-date and demonstrate an 

impressive capacity in prioritising molecular diagnoses when tested on real patient data.

Adopting phenotype-aware VP software tools in diagnostics settings can efficiently assist 

the multidisciplinary teams of clinicians and scientists in reporting genetic diagnoses for 

rare disease.
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Outstanding questions

How can we tackle the overwhelming numbers of rare disease patients that undergo next-

generation sequencing investigations and remain undiagnosed even after state-of-the-art 

data analysis?

How efficiently will the newly emerging functional variant assays be deployed at scale 

in clinical settings to clarify the precise link between disease-associated variants, gene 

function, and the full spectrum of phenotypes?

How can we strike a balance between the pressing need for sharing clinical genomic data 

and complying with patient data security on a global scale?

How efficiently will new algorithms be developed that can reliably prioritise noncoding 

and structural variants to make them available for further validation and molecular 

diagnosis at scale?
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Figure 1. Flow chart of the literature search and filtering criteria used to select the final 
phenotype-aware variant prioritisation (VP) software tool candidates for benchmarking on real 
patient data.
Searches of combinations of keywords (red box) were conducted in PubMed. Phenotype-

aware VP software tool candidates found in the resulting papers (37) were then narrowed 

down to seven final candidates based on five criteria: accepting variant call format (VCF) 

files; accepting Human Phenotype Ontology (HPO) terms; last updated or published since 

2018; freely available; with local, programmatic access. Finally, four VP tools were 

successfully downloaded, installed, and run on real patient data for testing and comparison.
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Figure 2. Bar plot of the percentage categorical distribution of the disease-causing variant 
ranking in the inherited retinal disease (IRD) patient whole-exome sequencing (WES) dataset for 
the four successfully tested phenotype-aware variant prioritisation (VP) software tools.
The ranking results were categorised into five mutually exclusive bins: ‘Top’ (including top 

ties), ‘(2–5)’, ‘(6–10)’, ‘>10’, and ‘Filtered out/Not prioritised’ (FO/NP) (the latter being 

any disease-causing variant(s) failed to be kept in during the filtering/prioritisation step).
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Figure 3. Scatter plots of diagnostic measurements for the software performance of the four 
successfully tested phenotype-aware variant prioritisation (VP) software tools.
(A) Recall (true positive rate) and (B) precision were calculated from confusion matrices for 

the correctly diagnosed variants matched in the first rank, up to the fifth rank, and up to the 

tenth rank by each of the tested VP software tools. Recall (true positive rate) = true positives 

(TP)/actual positives; precision = TP/predicted positives. For Xrare, the recall estimate for 

the ‘up to the fifth rank’ analysis is equal to the recall estimate for the ‘up to the tenth rank’ 

analysis (i.e., 0.88).
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