Table 4.
The structure and parameters of the CNN and GRU.
| Model | Parameter | Value |
|---|---|---|
| CNN | Conv1 layer1 | filters: 8, kernel size: 3, activation: “relu” |
| Max pooling layer1 | pool_size: 2, strides: 2 | |
| Conv1 layer2 | filters: 16, kernel size: 5, activation: “relu” | |
| Max pooling layer2 | pool_size: 2, strides: 2 | |
| Conv1 layer3 | filters: 32, kernel size: 5, activation: “relu” | |
| Max pooling layer3 | pool_size: 2, strides: 2 | |
| Conv1 layer4 | filters: 64, kernel size: 3, activation: “relu” | |
| Max pooling layer4 | pool_size: 2, strides: 2 | |
| Flatten | – | |
| Dense1 | units: 128, activation: “relu” | |
| Dense2 | units: 10, activation: “softmax” | |
| Loss function | Categorical Cross-entropy | |
| Optimizer | Adam | |
| learning rate | 0.02 | |
| Epoch | 20 | |
| Batch size | 256 | |
| GRU | GRU layer1 | units: 128, return_sequences = True |
| GRU layer2 | units: 256, return_sequences = False | |
| Flatten | – | |
| Dense1 | units: 256, activation: “relu” | |
| Dense2 | units: 10, activation: “softmax” | |
| Loss function | Categorical Cross-entropy | |
| Optimizer | Adam | |
| learning rate | 0.02 | |
| Epoch | 20 | |
| Batch size | 256 |