Skip to main content
. 2023 Feb 9;9(2):e13520. doi: 10.1016/j.heliyon.2023.e13520

Table 4.

The structure and parameters of the CNN and GRU.

Model Parameter Value
CNN Conv1 layer1 filters: 8, kernel size: 3, activation: “relu”
Max pooling layer1 pool_size: 2, strides: 2
Conv1 layer2 filters: 16, kernel size: 5, activation: “relu”
Max pooling layer2 pool_size: 2, strides: 2
Conv1 layer3 filters: 32, kernel size: 5, activation: “relu”
Max pooling layer3 pool_size: 2, strides: 2
Conv1 layer4 filters: 64, kernel size: 3, activation: “relu”
Max pooling layer4 pool_size: 2, strides: 2
Flatten
Dense1 units: 128, activation: “relu”
Dense2 units: 10, activation: “softmax”
Loss function Categorical Cross-entropy
Optimizer Adam
learning rate 0.02
Epoch 20
Batch size 256
GRU GRU layer1 units: 128, return_sequences = True
GRU layer2 units: 256, return_sequences = False
Flatten
Dense1 units: 256, activation: “relu”
Dense2 units: 10, activation: “softmax”
Loss function Categorical Cross-entropy
Optimizer Adam
learning rate 0.02
Epoch 20
Batch size 256