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Abstract

Motivation: The findings from genome-wide association studies (GWASs) have greatly helped us to understand the
genetic basis of human complex traits and diseases. Despite the tremendous progress, much effects are still needed
to address several major challenges arising in GWAS. First, most GWAS hits are located in the non-coding region of
human genome, and thus their biological functions largely remain unknown. Second, due to the polygenicity of
human complex traits and diseases, many genetic risk variants with weak or moderate effects have not been identi-
fied yet.

Results: To address the above challenges, we propose a powerful and adaptive latent model (PALM) to integrate
cell-type/tissue-specific functional annotations with GWAS summary statistics. Unlike existing methods, which are
mainly based on linear models, PALM leverages a tree ensemble to adaptively characterize non-linear relationship
between functional annotations and the association status of genetic variants. To make PALM scalable to millions of
variants and hundreds of functional annotations, we develop a functional gradient-based expectation–maximization
algorithm, to fit the tree-based non-linear model in a stable manner. Through comprehensive simulation studies, we
show that PALM not only controls false discovery rate well, but also improves statistical power of identifying risk
variants. We also apply PALM to integrate summary statistics of 30 GWASs with 127 cell type/tissue-specific func-
tional annotations. The results indicate that PALM can identify more risk variants as well as rank the importance of
functional annotations, yielding better interpretation of GWAS results.

Availability and implementation: The source code is available at https://github.com/YangLabHKUST/PALM.

Contact: macyang@ust.hk or wanxiang@sribd.cn or jin.liu@duke-nus.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past 15 years, genome-wide association studies (GWASs)
have greatly deepened our understanding of genetic basis of human
phenotypes (Hu et al., 2022; Xiao et al., 2022). As of December
2022, more than 6180 GWASs and 458 000 associations between
single nucleotide polymorphisms (SNPs) and human phenotypes
have been reported at the GWAS catalog. Despite the fruitful find-
ings from GWASs, much efforts are still needed to address the chal-
lenges in GWASs. First, nearly 90% of the genome-wide significant
SNPs are located in the non-coding regions (Welter et al., 2014).
The molecular processes and pathways through which these SNPs

affect complex phenotypes largely remain unclear. It is highly
demanding to systematically examine their biological roles. Second,
due to the polygenic genetic architectures, the identified genome-
wide significant SNPs can only explain a small proportion of herit-
ability (Wray et al., 2018). This implies that many SNPs with small
or moderate effects have not been identified. It is highly desired to
have reliable statistical methods for risk SNP prioritization.

To address the above problems, valuable information other than
GWAS summary statistics should be utilized. Functional annotation
serves as a promising source of auxiliary information (Hu et al.,
2017). In recent years, large genomics consortia have been making
great efforts on creating various functional annotations, including
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epigenomic maps and gene expression data (Kundaje et al., 2015;
The GTEx Consortium, 2020). Emerging functional annotations re-
veal that SNPs with different genomic features are not equally im-
portant. Trait-associated SNPs are often enriched in gene regulatory
regions or regions near expressed genes in specific tissues or cell
types (Cai et al., 2020; Pickrell, 2014). Key tissues, cell types and
regulatory regions associated with diseases can be systematically
localized with the knowledge of enrichment pattern (Breeze et al.,
2022; Shi et al., 2020).

The rich functional information of human genome and evidence
from enrichment analysis provide us with an unprecedented oppor-
tunity to (i) prioritize more risk SNPs and (ii) detect trait-relevant
cell types or tissues to better understand the biological mechanism
of common traits/diseases. In statistics, the two-groups model
(TGM) (Efron, 2008) is widely adopted for false discovery rate
(FDR) control in the multiple testing problem. In recent years, sev-
eral methods have been built on the TGM for integrating functional
annotations with GWAS summary statistics. To name a few, GPA
(Chung et al., 2014) extends the TGM by simultaneously modeling
both pleiotropy and functional annotations. FDRreg (Scott et al.,
2015) allows the prior of SNP association status to be modulated by
covariates through a regression model. Along this direction, a latent
sparse mixed model (LSMM) (Ming et al., 2018) further extends the
regression model to handle a large number of annotations and detect
relevant functional annotations. Very recently, GPA-Tree
(Khatiwada et al., 2022) generalizes GPA by using a decision tree to
adaptively specify the prior of SNP association status.

Despite the above progress, the existing methods still have their
own limitations. First, most existing methods assume a linear rela-
tionship between functional annotations and the association status.
Ignoring the potential non-linearity may undermine the valuable in-
formation embedded in functional annotations and thereby degrade
the performance of prioritizing risk SNPs. Although GPA-Tree
adopts the decision tree algorithm to characterize the potential non-
linearity, a single decision tree often cannot fully capture the rela-
tionship between functional annotations and association status. In
addition, a single decision tree is known to be not very stable
(Breiman, 2001). This may lead to an unsatisfactory control of
FDR. Second, most existing methods, e.g. GPA and FDRreg, were
designed to integrate a small number of functional annotations.
They may not be able to scale up to a large number of functional
annotations in integrative analysis. New statistical methods are
highly demanding to address these limitations.

In this article, we propose a powerful and adaptive latent model
(PALM), to integrate GWAS summary statistics with functional
annotations. Unlike existing methods, PALM uses a tree ensemble as
the non-linear model to characterize the relationship between func-
tional annotations and the association status. To make PALM scal-
able to hundreds of annotations and millions of genetic variants, we
develop a functional gradient-based expectation–maximization
(EM) algorithm, where the posterior of SNP association status is
evaluated at the E-step, and a new tree is added into the model in
the M-step by a boosting strategy (Friedman, 2001). In such a way,
our model can become more and more flexible, resulting in a stable
improvement over existing methods. Through comprehensive simu-
lations, we demonstrate that PALM can not only well control false
positive rate but also significantly improve the statistical power of
prioritizing risk SNPs over the existing methods. We then apply
PALM to prioritize risk SNPs of 30 GWASs by integrating 127 cell-
type-specific functional annotations and illustrate that PALM out-
performs compared methods in most GWASs. In addition, with the
boosted tree algorithm and the regularization strategy, PALM can
handle missing values and shows its robustness. Moreover, PALM
can automatically rank the relative importance of functional annota-
tions, offering more interpretable biological results.

2 Materials and methods

2.1 Powerful and adaptive latent model
Suppose we have performed hypothesis testing to examine whether
a SNP is associated with a given phenotype in GWAS and obtained

the P-values of genome-wide SNPs fp1; p2; . . . ; pMg, where M is the
number of SNPs. We introduce a latent variable Zj 2 f0;1g to
indicate the association status of the j-th SNP. We consider a
TGM, where the P-value of each SNP is either from a null group
(Zj ¼ 0) or a non-null group (Zj ¼ 1) according to its association
status:

Nullgroup ðZj ¼ 0Þ : pj � Uð0;1Þ;
Non-nullgroup ðZj ¼ 1Þ : pj � Betaða; 1Þ: (1)

The above TGM assumes that P-values from the null group
follow the uniform distribution Uð0; 1Þ and P-values from the
non-null group follow the beta distribution with shape parameter
a and 1, where 0 < a < 1 is used to model the fact that P-values
tend to be closer to 0 for associated SNPs. In the basic TGM, the
prior probabilities of latent variable are common for all the SNPs:
p0 :¼ PrðZj ¼ 0Þ; p1 :¼ PrðZj ¼ 1Þ; j ¼ 1; . . . ;M (Efron, 2008).
Thus, the determination of SNP association status only relies on
the ‘direct’ evidence—P-values from GWAS summary statistics.
In other words, all the SNPs are treated with equal prior.
However, SNPs are actually not equally important and SNPs with
biological functions tend to be enriched in GWAS signals (Schork
et al., 2013). Functional annotations from the concerted efforts of
large genomic consortia provide ‘indirect’ evidence to determine
SNP association status. Therefore, it is an exciting opportunity to
combine the functional annotations as indirect evidence with the
direct evidence (P-values from GWAS) to increase the power of
prioritizing risk SNPs and offer more biologically interpretable
GWAS results.

Suppose we have collected annotations in a matrix A 2 R
M�L,

where L is the number of functional annotations, entry Aj;l corre-
sponds to the annotation status of the j-th SNP given by the l-th
functional annotation. In the simplest case, Aj;l is binary, where
Aj;l ¼ 1, and Aj;l ¼ 0 means that SNP j can be active or inactive
according to the l-th functional annotation, respectively. In our for-
mulation, we allow Aj;l to be a continuous variable. For example, a
higher value in Aj;l can indicate SNP j is more likely to have a func-
tional role. To model the relationship between functional annota-
tions and SNP association status, we assume that the prior of SNP
j’s association status can be modulated by its functional role as pj0 ¼
PrðZj ¼ 0jAjÞ and pj1 ¼ PrðZj ¼ 1jAjÞ, where Aj is the j-th row of
the annotation matrix corresponding to the j-th SNP, j ¼ 1; . . . ;M.
More specifically, we relate the association status Zj with Aj

through the logit link as:

log
PrðZj ¼ 1jAjÞ
PrðZj ¼ 0jAjÞ

¼ FðAjÞ; (2)

where F can be a linear or non-linear function. For example, LSMM
(Ming et al., 2018) and FDRreg (Scott et al., 2015) choose F to have
a linear form, FðAjÞ ¼ b0 þ Ajb. However, such a model is limited
to the linear relationship between the association status and the
annotations in the logit scale. In real data analysis, functional anno-
tations may influence the SNP association status in a much more
complicated way (Przybyla and Gilbert, 2022). As the number of
SNPs is usually more than 1 million, it gives us an opportunity to
learn a more complex model structure than linear models.

To achieve this goal, we assume that F in Equation (2) is repre-
sented by a tree ensemble:

FðAjÞ ¼ f0 þ
XT

t¼1

ftðAjÞ; (3)

where ft is a regression tree with depth D, t ¼ 1;2; . . . ;T, and T is
the total number of trees. The advantages of the proposed model
are threefold. First, tree ensembles are able to capture more flex-
ible relationship between functional annotations and SNP associ-
ation status. Second, the proposed model naturally inherits several
salient features of regression trees (Breiman et al., 1984), such as
ranking variable importance and handling missing values. Third,
we can develop an efficient algorithm to estimate the non-linear
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model from data, and make it scalable to large-scale real data
analysis.

2.2 Algorithm
It is worthwhile to note that existing boosted tree algorithms can-
not be directly applied here and a stable fitting of the function F is
not an easy task. This is because they are supervised learning algo-
rithms and thus require the response Zj in Equation (2) to be
known. In our formulation, however, Zj is unknown. Therefore,
we need a new algorithm to obtain the tree ensemble in the pres-
ence of latent variables.

To do so, we write down the probabilistic model of the complete
data based on Equations (1) and (2):

Prðp;ZjA; F; aÞ ¼
YM
j¼1

p
1�Zj

j0 ðpj1/ðpj; aÞÞZj ; (4)

where p ¼ ½p1; . . . ; pM�T and Z ¼ ½Z1; . . . ;ZM�T are the vectors of
P-values and latent variables for M SNPs, respectively, /ðp; aÞ ¼
apa�1 is the density function of Betaða; 1Þ, pj1 ¼ 1=ð1þ
expð�FðAjÞÞÞ and pj0 ¼ 1� pj1. Marginalizing over the latent
variables Z, the probabilistic model of the observed P-values
becomes:

PrðpjA; F; aÞ ¼
YM
j¼1

X
Zj2f0;1g

p
1�Zj

j0 ðpj1/ðpj; aÞÞZj

¼
YM
j¼1

½pj0 þ pj1/ðpj; aÞ�:
(5)

Then, we have the marginal log-likelihood function:

log PrðpjA; F; aÞ ¼
XM
j¼1

log ½pj0 þ pj1/ðpj; aÞ�: (6)

Our goal is to fit the tree ensemble F and estimate a by maximiz-
ing the marginal log-likelihood given in Equation (6). To achieve
this goal, we propose a new algorithm, which combines the EM al-
gorithm with the tree boosting algorithm (Chen and Guestrin, 2016;
Friedman, 2001). In the E-step of the ðt þ 1Þ-th iteration,

QðF; ajFðtÞ; aðtÞÞ
¼ EZjp;FðtÞ ;aðtÞ ½log Prðp;ZjA; F; aÞ�

¼ EZjp;FðtÞ ;aðtÞ

XM
j¼1

½ð1�ZjÞ log pj0 þZjðlog pj1 þ log /ðpj; aÞÞ�

¼
XM
j¼1

½qðtÞj0 log pj0 þ q
ðtÞ
j1 ðlog pj1 þ log aþ ða� 1Þ log piÞ�;

where

q
ðtÞ
j1 ¼ PrðZj ¼ 1jpj;Aj; FðtÞ; aðtÞÞ

¼ pj1PrðpjjZj ¼ 1; FðtÞ; aðtÞÞ
pj0PrðpjjZj ¼ 0; FðtÞ; aðtÞÞ þ pj1PrðpjjZj ¼ 1; FðtÞ; aðtÞÞ ;

and q
ðtÞ
j0 ¼ 1� q

ðtÞ
j1 .

In the M-step of the ðt þ 1Þ-th iteration, we aim to increase the
Q function w.r.t. a and F. By solving @Q

@a ¼ 0, we have a closed form
solution to update a as

aðtþ1Þ ¼ �
PM

j¼1 q
ðtÞ
j1PM

j¼1 q
ðtÞ
j1 log pj

:

Then, we update F using the tree boosting strategy as
Fðtþ1Þ ¼ FðtÞ þ �ftþ1, where � 2 ð0; 1Þ is the shrinkage parameter
(Friedman, 2001). To find ftþ1, we approximate the Q function by
its second-order Taylor expansion:

Qðftþ1jFðtÞÞ

¼
XM
j¼1

h
q
ðtÞ
j1 ftþ1ðAjÞ � log ð1þ eFðtÞðAjÞþftþ1ðAjÞÞ

i
þ const

’
XM
j¼1

"
gjftþ1ðAjÞ þ

1

2
hjftþ1ðAjÞ2

#
þ const;

where the first and second derivatives are given by:

gj ¼
@Q

@ftþ1

�����
ftþ1ðAjÞ¼0

¼ q
ðtÞ
j1 �

1

1þ expð�FðtÞðAjÞÞ
;

hj ¼
@2Q

@f 2
tþ1

�����
ftþ1ðAjÞ¼0

¼ � expð�FðtÞðAjÞÞ
ð1þ expð�FðtÞðAjÞÞÞ2

:

With the data fAj;� gj

hj
gM

j¼1, we fit a new regression tree bf tþ1 by
solving the optimization problem:

bf tþ1 ¼ argmax
ftþ1

XM
j¼1

1

2
hj �

gj

hj
� ftþ1ðAjÞ

� �2

: (7)

Then, the tree ensemble becomes:

Fðtþ1ÞðAjÞ ¼ FðtÞðAjÞ þ �bf tþ1ðAjÞ:

Accordingly, the prior of SNP association status is updated as:

pðtþ1Þ
1j ¼ 1

1þ expð�Fðtþ1ÞðAjÞÞ
:

Clearly, information in functional annotations is gradually built
in to modulate the prior of SNP association status. The marginal
log-likelihood given in Equation (6) can be increased in each EM
step and the convergence of EM algorithm is guaranteed.

2.3 Regularization and missing values
For PALM, the regularization is determined by the combination of
the number of trees and the shrinkage parameter. Recall that a new
tree is fitted into our model in each M-step of the EM algorithm. To
determine the optimal number of trees, we use K-fold cross-
validation, where we choose K ¼ 5 as the default setting. Then, we
fit model again on the entire dataset and obtain the final model
based on the optimal number of trees determined by cross-
validation. For PALM, the shrinkage parameter � 2 ð0; 1Þ can be
used to reduce the impact of each tree and it is also known as the
‘learning rate’. A smaller value of � typically improves model stabil-
ity and has better generalization ability (Friedman, 2001). We
choose � ¼ 0:1 as the default setting.

One important feature of PALM is its ability to handle missing
values. In general, there are two common approaches to deal with
missing values for tree-based methods. The first approach is choos-
ing a direction for ‘missing’. The second approach is constructing a
series of surrogate splits for each node (Hastie et al., 2009). In
PALM implementation, we utilize the XGBoost package, which
handles missing values with the first approach. Specifically, a default
direction is added to each tree node in the training stage. During the
testing stage, if one SNP misses an annotation, it will be classified
into the default direction of the corresponding node. Importantly,
the default directions are learnt from the data by the sparsity-aware
split finding approach rather than pre-fixed (Chen and Guestrin,
2016).

2.4 Identifying risk SNPs with FDR control and ranking

the importance of functional annotations
With the fitted model, we can obtain the estimated parameterba;bp j1 ¼ 1

1þexpð�FðTÞðAjÞÞ ;bp j0 ¼ 1� bp j1 and posterior probability

PrðZj ¼ 1jpj;Aj; FðTÞ;baÞ ¼ bp j1/ðpj ;F
ðTÞ ;baÞbp j0þbp j1/ðpj ;FðTÞ ;baÞ. Given its P-value and an-

notation vector, the local FDR of the j-th SNP can be estimated as:
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cfdrj :¼ PrðZj ¼ 0jpj;Aj;baÞ ¼ 1� PrðZj ¼ 1jpj;Aj;baÞ. We control the

global FDR by direct posterior probability approach (Newton et al.,
2004). Specifically, we first sort the estimated local FDR in an

ascending order: cfdrð1Þ � cfdrð2Þ � . . . � cfdrðMÞ, then find the larg-

est k satisfying: dFdrðkÞ �
Pk

j¼1
bfdr ðjÞ

k � s, where s is the pre-specified

global FDR control level, e.g. s ¼ 0:1. Finally, SNPs whose order is
smaller than or equal to k will be declared to be associated with the
phenotype.

Functional annotations may not be equally important for priori-
tization of risk SNPs. Recall that the importance of a variable
ranked in the tree algorithm is given by the total reduced error when
a node of the tree is splitted on this variable. The more error reduced
by splitting on a variable, the more important of the variable is. By
inheriting the merit of regression trees, the model given by PALM
can be used to rank the importance of functional annotations.
Specifically, the variable importance of the l-th annotation is
given by

I l ¼
1

T

XT

t¼1

I t;l; (8)

where I t;l is the importance of the l-th annotation evaluated at the
t-th tree. With the importance of functional annotations, PALM’s
output is very helpful for biologically meaningful interpretation of
GWAS results.

3 Results

3.1 Simulation study
We conducted comprehensive simulation studies to gauge the per-
formance under different function F and signal parameters. First, we
generated P-values of the null group from uniform distribution
Uð0; 1Þ. For P-values of the non-null group, we used a ‘bimodal’ dis-
tribution: lj � 0:48Nð�2; 1Þ þ 0:04Nð0;16Þ þ 0:48Nð2;1Þ. Then
z-score zj was generated by adding a random noise to lj:
zj � Nðlj; 1Þ, and the corresponding P-value was calculated by the
tail probability of zj: pj ¼ 2ð1� UðjzjjÞÞ, where U is the cdf of
Nð0; 1Þ. Clearly, the P-values from the non-null group are different
from the beta distribution given in our model [Equation (1)]. The
simulation here is designed to evaluate the robustness of our pro-
posed method in the presence of model misspecification.

To determine whether the j-th P-value was from the null group
or the non-null group, we assumed that the probability for the non-
null group pj1 was specified as

pj1 ¼
1

1þ expð�FðAjÞÞ
; (9)

and the prior probability for the null group was pj0 ¼ 1� pj1. For
the true function F, to examine the performance of PALM in multiple
aspects and compare it with other methods, we consider five cases:

ðAÞ F ¼ �3;
ðBÞ FðAj;1;Aj;2Þ ¼ �3þ 1:5Aj;1 þ 1:5Aj;2;
ðCÞ FðAj;1Þ ¼ �4:25þ 2A2

j;1 þ 2A2
j;2 � 2Aj;1Aj;2;

ðDÞ FðAj;1;Aj;2;Aj;3;Aj;4;Aj;5Þ ¼ �4þ 4 sinðpAj;1Aj;2Þ
þ2ðAj;3 � Aj;4Þ2 þ Aj;4 þ 0:5Aj;5;

ðEÞ FðAj;1;Aj;2Þ ¼
(

1� 6A2
j;1 if Aj;2 ¼ 0;

�1þ 2Aj;1 � 6A2
j;1 if Aj;2 ¼ 1:

(10)

Case (A) serves as a negative control, where all annotations are
irrelevant; Case (B) is a linear relationship with two relevant annota-
tions; Case (C) is a simple quadratic function with interaction
among two annotations; Case (D) is a more complicated function
with a quadratic term and a sinusoidal term involving five relevant
annotations; and Case (E) is a case function involving interaction be-
tween a continuous annotation A:;1 and a binary annotation A:;2.

We generated annotation matrix A whose entries were from uniform
distribution Uð�1;1Þ. For Case (E), first we generated a categorical
vector for A:;2 and then specified pj1 by Equation (9) and generated
the association status Zj � Bernoulliðpj1Þ; j ¼ 1; . . . ;M.

We set the number of SNPs M 2 f2� 104; 5� 104; 1� 105g and
the number of annotation variables L 2 f50; 100g. Methods in com-
parison include three methods using only GWAS summary statistics:
two-groups model of P-values (TGM-Pval), two-groups model of
z-scores (TGM-Zval) and the Benjamini–Hochberg (BH) procedure,
and three methods integrating functional annotations with GWAS
results: LSMM, GPA-Tree and PALM. Here, we considered fitting
PALM with Tree depths 1 and 2, denoted as PALM-D1 and PALM-
D2, respectively. PALM-D1 can characterize the non-linear relation-
ship with additive models, and PALM-D2 is a more flexible non-
linear model by allowing interaction among annotations. For each
method, we use the default parameter setting. We controlled global
FDR at the nominal level 0.1, and evaluated the empirical FDR as
the fraction of falsely identified SNPs among all the identified SNPs
and statistical power as the fraction of correctly identified SNPs in
the non-null group of each method.

Figure 1a shows the comparison of PALM with the above meth-
ods. One can see that FDR was well controlled at the nominal level
(s ¼ 0:1) in all scenarios for both PALM-D1 and PALM-D2. Except
GPA-Tree, all the compared methods controlled their FDR at the
nominal level. The unsatisfactory FDR control of GPA-Tree could
be attributed to the instability of a single tree (Breiman, 1996).
When all the annotations were irrelevant to the association status of
SNPs [Case (A)], methods integrating annotations had almost the
same power with the standard BH procedure. This is a desired prop-
erty, indicating that these integrating methods do not overuse anno-
tations when they are irrelevant. When the relationship was of a
linear form [Case (B)], methods integrating annotations had a sig-
nificant gain in statistical power compared with methods only using
summary statistics. This case illustrates the benefit from incorporat-
ing annotation information. Here, PALM achieved comparable
power with LSMM which was designed for modeling linear relation-
ship, indicating that PALM did not overfit despite its flexibility. In
the presence of both non-linearity and two-way interactions [Case
(C)], PALM-D2 was the winner as expected. PALM-D1 outper-
formed LSMM because it can model non-linearity while LSMM
cannot. For Case (D), PALM-D2 outperformed other methods
again. The superiority of PALM-D2 became clearer in the increasing
trend of M, as the model can be better fitted with a larger number of
SNPs. In this scenario, there was a notable gap between the power
of GPA-Tree and PALM-D2, indicating that a single decision tree
could not accurately capture some complicated relationship between
association status and annotations. For Case (E), the power of
PALM and GPA-Tree was roughly matched, dominating other
methods but GPA-Tree tended to produce more false positives. In
summary, PALM remarkably increased statistical power for various
relationship between annotations and association status. We also
conducted additional simulations with alternative z-score distribu-
tion shapes, i.e. ‘big-normal’, ‘near-normal’, ‘skew’ and ‘spiky’. The
patterns of FDR control and statistical power for all the compared
methods are similar to Figure 1a. Details can be found in
Supplementary Figures S1–S4. In GWAS, the z-scores of SNPs are
typically calculated from a linear model with individual data. We fur-
ther investigate the performance of these methods under the setting
where z-scores are obtained from linear regression with simulated
genotype and a realistic heritability. The patterns of FDR and power
are similar to Figure 1a (see Supplementary Fig. S5), validating the ef-
fectiveness of PALM with z-scores generated from a linear model.

PALM can automatically rank relevant annotations. Figure 1b
shows the relative variable importance evaluated by PALM
[Equation (8)]. In Case (A) with no enriched annotations, the rela-
tive importance of all annotations was evaluated to be null. In other
words, no annotation was assessed to be relevant in prioritizing risk
variants, explaining why PALM had the same power with BH pro-
cedure in this scenario. In Case (B) where each of the two relevant
annotations took half of the contribution to the prior probability,
the variable importance assessed by PALM was consistent with the
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function design [Equation (10)]. For Cases (C) and (E), PALM also
correctly ranked the importance of functional annotations. Note
that in Case (D), due to the different tree depths, the importance
ranked by PALM-D1 and PALM-D2 are different. Theoretically,
trees with Depth 2 can model interactions but trees with Depth 1
cannot. Hence the importance ranked by PALM-D2 is supposed to
be more accurate than that by PALM-D1. Since PALM-D1 cannot
model interactions and A1, A2 only appear together while A3, A4

have independent terms, it is reasonable that PALM-D1 underesti-
mates the importance of A1, A2, making A3, A4 look more import-
ance. Moreover, PALM can quantify interaction effects between
two annotations using Friedman’s H-statistic (Friedman and
Popescu, 2008). Details about H-statistic and pairwise interaction
estimation of the first five annotations in Cases (B–E) can be found
in Supplementary Section S1.3.

Compared with other existing methods, a unique property of
PALM is its superior ability to handle missing values in functional
annotations. By taking advantage of the XGBoost implementation,
PALM is able to handle missing values by the sparsity-aware split
finding strategy (Chen and Guestrin, 2016). To evaluate the influ-
ence of missing values in the annotation matrix on the performance
of PALM, we conducted simulations under different missing value
rates, i.e. mrate 2 f0:05;0:1;0:2;0:4g. Figure 1c shows that missing
value rates have little influence on FDR control. For the statistical
power, it is not affected by missing values in Case (A) when no an-
notation was enriched. In other cases where some annotations were
enriched, the statistical power gradually decreased when missing
value rate increased due to the loss of annotation information.
However, a small fraction of missing values (e.g. 5% and 10%) had
a very minor effect on the performance of PALM. Even when 40%
of the annotations were missing, the power were still higher than
methods without integrating annotations, suggesting that PALM
was able to efficiently utilize available annotations to improve risk
variants prioritization. Similar conclusion about the influence of
missing value rates can be drawn for other z-score distributions
(Supplementary Figs S7–S10). To our best knowledge, other meth-
ods cannot handle the missing value issue in a proper way.

The computational time of PALM mainly depends on the CV
folds K, the tree depth D, the number of variants M and the number
of annotations L. Figure 1d shows that with the same CV folds and
tree depth, the computational time is roughly linear with M and L in
all scenarios. For the optimal number of trees, it generally increases
with M and decreases with D in the same trend of overfitting risk.
Besides, the optimal number of trees is closely related to the relation-
ship between the association status and annotations. For Case (A),

only a small number of trees in the final model are allowed; for
Cases (B), (C) and (E) with relatively simple non-linear relationships,
PALM-D2 has fewer trees than PALM-D1 as PALM-D2 is more
prone to overfitting; for Case (D), PALM-D2 is assigned with more
trees than PALM-D1 to better learn the relatively complicated non-
linear relationship. This adaptive regularization mechanism helps
PALM well control FDR and improves statistical power.

PALM shows great robustness under different hyper-parameter
settings. First, by applying PALM with 2-fold CV and 5-fold CV to
the same simulated data, we find that the FDR and power are almost
the same under different scenarios for both PALM-D1 and
PALM-D2 (Supplementary Fig. S14). Second, the shrinkage param-
eter � has little influence on the performance of PALM. However, it
has some impact on the number of trees of the final model after
cross-validation (Supplementary Fig. S15). In particular, a very
small shrinkage parameter (e.g. � ¼ 0:01; 0:05) will lead to a larger
number of trees in the final model, thus more time-consuming. The
default shrinkage � ¼ 0:1 is chosen as it can well control FDR and
achieves great power with a reasonable computational cost. Third,
even with Tree depth 3 or 4, PALM does not suffer from severe FDR
inflation (Supplementary Fig. S16).

3.2 Real data analysis
In the real data analysis, we integrated summary statistics from 30
GWASs (given in Supplementary Table S4) with 9 genic category
annotations and 127 cell-type-specific functional annotations. The
genic category annotations includes: upstream, downstream, exonic,
intronic, ncRNA exonic, ncRNA intronic, UTR3, UTR5 and inter-
genic. The cell-type-specific functional annotations are from
GenoSkylinePlus (Lu et al., 2017). Each entry in the cell-type-
specific annotation matrix is a binary variable indicating whether
one SNP has biological function in a specific cell type. To avoid un-
usually large GWAS signals in the MHC region (Chromosome 6,
25–35 Mb), we excluded SNPs in this region.

We compared the power of risk variants prioritization using
TGM-Pval, LSMM, GPA-Tree, PALM-D1 and PALM-D2.
Figure 2a shows the improvement of PALM-D2, PALM-D1, GPA-
Tree and LSMM against TGM. In general, more risk SNPs can be
identified using PALM than LSMM, GPA-Tree and TGM (numbers
of prioritized risk SNPs are given in Supplementary Tables S2 and
S3). It turns out that GPA-Tree does not perform very well. In sev-
eral GWASs, the number of prioritized SNPs by GPA-Tree was ei-
ther even less than TGM or much larger than PALM-D2, which
may be attributed to the instability of a single tree. Discussion on
the issue of GPA-Tree is in Supplementary Section S2.1. We will

Fig. 1. Simulation results. (a) The comparison of PALM-D1 and PALM-D2 with other related methods, including BH, TGM-Pval, TGM-Zval, LSMM and GPA-Tree. The

number of SNPs M varied at f2� 104; 5� 104; 1� 105g and the number of annotations L ¼ 100. (b) Relative importance of the first five annotations by PALM. (c)

Performance of PALM under different missing value rates of functional annotations. For (b) and (c), the number of SNPs M ¼ 20 000 and the number of annotations L ¼ 50.

(d) Computational time and optimal number of trees of PALM. We varied the number of SNPs M and the number of annotations L with CV folds K ¼ 2
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exclude GPA-Tree from the later discussion. Besides, we have the
following observations. First, integrating annotations in SNP priori-
tization can greatly increase statistical power. The amounts of SNPs
identified by PALM and LSMM dominated those by TGM for all
the GWASs, confirming that annotation enrichment in risk SNPs is
pervasive. Under the global FDR threshold s ¼ 0:1, PALM-D1 and
PALM-D2 achieved at least 10% improvement on 17 and 22
GWASs, respectively. Second, PALM-D1 identified more risk SNPs
than LSMM for the majority of phenotypes, suggesting that the rela-
tionship between annotations and the association status may not be
simply expressed as linear in the logit scale. For instance, under
s ¼ 0:1, 789 SNPs were identified by PALM-D1 compared with 718
SNPs by LSMM for multiple sclerosis; 451 SNPs were identified by
PALM-D1 compared with 429 SNPs by LSMM for bipolar disorder.
On the whole, PALM-D1 identified more risk SNPs than LSMM in
25 and 22 GWASs under s ¼ 0:05 and s ¼ 0:1, respectively. Third,
the overall performance of PALM-D2 is superior to PALM-D1,
which is an extra gain from modeling interaction among annota-
tions. We also perform PALM with Depths 3 and 4 on real data.
The result is shown in Supplementary Figure S21.

Some of the SNPs prioritized under s ¼ 0:1 only by PALM-D2
but not by LSMM or TGM have been reported in other studies. Let
us take several diseases/traits for examples. In the type 2 diabetes
(T2D) GWAS, rs12945601 and rs552707 detected only by
PALM-D2 were identified in larger GWASs (Mahajan et al., 2022;
Xue et al., 2018). For lipid traits including high density lipoprotein
(HDL), low density lipoprotein (LDL) and their closely related dis-
ease—coronary artery disease (CAD), rs799160 and rs892161 iden-
tified only by PALM-D2 were confirmed to be HDL-associated SNP
and LDL-associated SNP, respectively (Klarin et al., 2018; Sinnott-
Armstrong et al., 2021); risk SNP rs7947761 reported by PALM-D2
was confirmed by a recent CAD GWAS (Van Der Harst and
Verweij, 2018). For autoimmune diseases, multiple sclerosis risk
SNP rs6911131, Crohn’s disease risk SNP rs11641184 and lupus

risk SNP rs9782955 identified by PALM-D2 were found to be asso-
ciated with the corresponding diseases (Bentham et al., 2015;
International Multiple Sclerosis Genetics Consortium, 2019; Liu
et al., 2015). For bipolar disorder, PALM-D2 risk SNP rs7618915
was reported in a meta-analysis study (Chen et al., 2013). We take
two SNPs mentioned above to visualize how the functional annota-
tions help to prioritize SNPs (Fig. 2b). Bipolar disorder risk SNP
rs7618915, an upstream SNP, is annotated by the important annota-
tions including Monocytes-CD14þ RO01746 Primary Cells, Brain
Anterior Caudate and Primary B cells from peripheral blood, which
contributes to its high prior probability. Its posterior probability is
given by combining its functional prior and small P-values. For
CAD risk SNP rs7947761, it is an intronic SNP annotated by the im-
portant annotations, such as Lung and Fetal Heart. Although it nei-
ther has the smallest P-value nor prior probability, the combination
of the two results in the highest posterior probability amongst the
nearby SNPs.

We compared the performances of TGM, LSMM and
PALM-D2 on schizophrenia (SCZ) and years of education. The
sample sizes of the four SCZ GWASs increase successively (SCZ1:
n¼17 115 SCZ2: n¼21 856 SCZ3: n¼32 143 and SCZ4:
n¼150 064). In any of the four GWASs, PALM-D2 prioritized
more risk SNPs compared with TGM and LSMM while the major-
ities of SNPs prioritized by TGM, LSMM or PALM-D2 are in
common (Supplementary Figs S23 and S24). This suggests that
PALM-D2 can not only identify most of the SNPs prioritized with-
out utilizing functional annotations but also additional SNPs failed
to be prioritized by TGM or LSMM. Moreover, most of SNPs pri-
oritized by PALM-D2 but not by TGM in a smaller GWAS are
recapitulated in the set of SNPs prioritized by TGM in a larger
GWAS. For examples, under the global FDR threshold 0.1,
PALM-D2 prioritized 1806 additional SNPs not identified by
TGM in SCZ3 while 1049 of them can be detected by TGM in
SCZ4 (Supplementary Figs S25 and S26). The above observations
also hold for 2 years of education GWASs with different sample
sizes (Supplementary Figs S27 and S28).

Figure 3 shows the relative importance of cell-type-specific
annotations ranked by PALM-D2. For autoimmune diseases, mul-
tiple immune cells are found relevant. In particular, Monocyte
CD14þ primary cells play a dominant role in Alzheimer, Crohn’s
disease, inflammatory bowel disease and ulcerative colitis. CD14þ
cells were reported to play an essential role in inflammation and in-
fection, which contribute to the development of the autoimmune
diseases (Ziegler-Heitbrock, 2007). Besides, lymphoblastoid cells
have significant enrichment in rheumatoid arthritis, primary biliary
cirrhosis, multiple sclerosis and lupus, concordant with their roles
in these diseases (Disanto et al., 2012). For lipids traits—HDL,
LDL triglycerides and total cholesterol, liver cells show the most
significant enrichment. In addition, lipid traits are enriched in
monocytes, consistent with previous findings (Krychtiuk et al.,
2014). For psychological diseases/traits including neuroticism, SCZ
and years of education, multiple brain tissues are relevant, includ-
ing angular gyrus, cingulate gyrus, anterior caudate and inferior
temporal lobe. Interestingly, body mass index (BMI) has a similar
enrichment pattern as SCZ and years of education. Indeed, a recent
GWAS result identified 63 shared loci between BMI and SCZ
(Bahrami et al., 2020) and earlier study found the inverse associ-
ation between BMI and education level (Hermann et al., 2011). For
SCZ, PALM ranks K562 leukemia cells as an important annota-
tion. Since SCZ is suggested to be linked to immune system
(Pantelis et al., 2014), Myint et al. (2020) chose K562 cells to
examine the regulatory function of SCZ’s associated SNPs and
found that more than 10% of SCZ’s associated SNPs show statistic-
ally significant allelic difference in driving reporter gene expression
in K562 cells. This suggests that SCZ risk SNPs in K562 cells in-
deed have strong functional annotation signals. Also notice that
adipose cells have a close relationship with T2D, in line with the
well-known result that the development of T2D involves adipose
tissue dysfunction, which links obesity to T2D (Guilherme et al.,
2008).

Fig. 2. Real data analysis results. (a) The improvement on the number of prioritized

risk SNPs for PALM-D2, PALM-D1, GPA-Tree and LSMM compared with TGM

under the global FDR threshold s ¼ 0:05 and s ¼ 0:1. (b) The �logðPÞ-value, prior

and posterior probability of example SNPs prioritized only by PALM-D2 and other

SNPs within 100 kb
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4 Conclusion

We proposed a novel statistical method, PALM, to integrate the
cell-type/tissue-specific functional annotations with GWAS sum-

mary statistics. Comparing with existing methods, PALM can adap-
tively model the flexible relationship among functional covariates
and accommodate a great number of functional annotations. Both

simulation studies and real data analysis demonstrate its great
power in risk variants prioritization with FDR controlled at the

nominal level. Moreover, PALM provides a statistically feasible way
to evaluate the relative importance of each covariate, which makes
the model more interpretable. From the perspective of computing,

the developed EM algorithm is efficient and can scale up to millions
of genetic variants and a large number of annotations. We believe

that PALM can serve as a useful tool for risk SNP prioritization.
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