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Review article
Inherited and acquired errors of type I interferon
immunity govern susceptibility to COVID-19 and
multisystem inflammatory syndrome in children
Giorgia Bucciol, MD, PhD,a,b COVID Human Genetic Effort*, and Isabelle Meyts, MD, PhDa,b Leuven, Belgium
Since the beginning of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-
19) pandemic, global sequencing efforts have led in the field of
inborn errors of immunity, and inspired particularly by
previous research on life-threatening influenza, they have
revealed that known and novel inborn errors affecting type I
interferon immunity underlie critical COVID-19 in up to 5% of
cases. In addition, neutralizing autoantibodies against type I
interferons have been identified in up to 20% of patients with
critical COVID-19 who are older than 80 years and 20% of fatal
cases, with a higher prevalence in men and individuals older
than 70 years. Also, inborn errors impairing regulation of type I
interferon responses and RNA degradation have been found as
causes of multisystem inflammatory syndrome in children, a
life-threatening hyperinflammatory condition complicating
otherwise mild initial SARS-CoV-2 infection in children and
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young adults. Better understanding of these immunologic
mechanisms can aid in designing treatments for severe
COVID-19, multisystem inflammatory syndrome in children,
long COVID, and neuro-COVID. (J Allergy Clin Immunol
2023;151:832-40.)

Key words: COVID-19, SARS-CoV-2, multisystem inflammatory
syndrome in children, type I interferon

In December 2019, the coronavirus severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) emerged as a novel
human pathogen causing coronavirus 2019 disease (COVID-19),
an infection characterized by pneumonia and acute respiratory
failure in a significant proportion of cases (5%-15%).1-3 Like
other respiratory viruses, SARS-CoV-2 enters and infects respira-
tory epithelial cells, mostly by binding to the angiotensin-
converting enzyme 2 (ACE2) receptor, where it replicates. It
can then spread to other organs, mainly through a viremic phase.
The detection of viral components through pattern recognition re-
ceptors (including Toll-like receptors [TLRs], retinoic acid–
inducible gene I [RIG-I]-like receptors, and nucleotide-binding
oligomerization domain [NOD]-like receptors [NLRs]) and cyto-
solic sensors (such as cyclic guanosine monophosphate–AMP
synthase), activates an antiviral response in infected epithelial
cells as well as in leukocytes governing the innate immune
response, such as macrophages, monocytes, dendritic cells, neu-
trophils, and innate lymphoid cells.4,5 Type I and type III inter-
feron signal through the interferon receptors (IFNAR1/2 for
type I interferon and IFNLR1/IL10RB for type III interferon)
and signal transducer and activator of transcription (STAT) 1
and 2, which combine with interferon regulatory factor 9
(IRF9) to induce the expression of interferon-stimulated genes
responsible for antiviral defense. The interferon response needs
to be finely tuned to strike a balance between virus clearance
and prevention of excessive inflammation, which can be further
exacerbated by the viral-induced activation of the inflammasome
and cause a cytokine stormmediated by inflammatory cell death.5

From the start of the pandemic, around 0.5% to 1% of patients
died and 2% to 4% experienced critical disease globally.6,7 Risk
factors for critical COVID-19 are age (with a doubling of the
risk every 5 years of age), male sex, and comorbidities such as
obesity, type 2 diabetes, and chronic lung disease.7,8 However,
the impact of the comorbidities in terms of odds ratio is at best
limited and does not explain the striking interindividual vari-
ability in severity of disease following SARS-CoV-2 infection.
In an attempt to explain this variability, several international con-
sortia have searched for rare or common human genetic variants
on a large scale that could modify the risk of infection or of severe
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COVID-19.9-14 In particular the COVID Human Genetic Effort
(www.COVIDHGE.com) has made landmark discoveries to
explain critical COVID-19. Consequently, a better understanding
of the key players in human defense against SARS-CoV-2 led to
the finding of other, acquired, immunologic risk factors. Finally,
research has also concentrated on puzzling complications of
COVID-19, such asmultisystem inflammatory disease in children
(MIS-C), long COVID, and ‘‘COVID toes.’’ Here, we review the
findings that have cast light on defects of innate immunity causing
susceptibility to COVID-19 and MIS-C (summarized in Tables I-
III14-36 and Fig 1). The implication of these findings on the imple-
mentation of targeted treatment in patients with inborn errors of
immunity or their phenocopies is beyond the scope of this review,
and we refer readers to a previous review on this topic.37
MONOGENIC TYPE I INTERFERON DEFECTS AND

SEVERE COVID-19
The initial focus of the COVID Human Genetic Effort was

centered on inborn errors of type I interferon immunity in patients
with life-threatening COVID-19.15,27,38,39 SARS-CoV-2 and
influenza are both RNA viruses affecting the respiratory tract
and causing life-threatening pneumonia. Thus, it was hypothe-
sized that predisposition to critical COVID-19 and influenza
could be allelic. Zhang et al therefore analyzed 3 genetic loci un-
derlying influenza susceptibility (TLR3, IRF7, and IRF9) and 10
additional closely related loci involved in antiviral responses
(TRIF, TRAF3, TBK1,UNC93B1, IRF3, STAT1, STAT2, IFNAR1,
IFNAR2, and NEMO) in 659 patients of all ages with critical
COVID-19 and a control group of 534 individuals with mild or
asymptomatic COVID-19.15 They found an enrichment in mono-
allelic and biallelic pathogenic variants in 8 genes (TLR3,
UNC93B1, TRIF, TBK1, IRF3, IRF7, IFNAR1, and IFNAR2) in
the patients but not in the control group. A defect of TLR3- and
IRF7-dependent type I interferon immunity was demonstrated
in cells with complete IRF7 and IFNAR1 deficiency, as were an
impaired intracellular response to infection with SARS-CoV-2
in vitro and significantly lower serum type I interferon levels
in vivo.15 These findings were confirmed by several additional re-
ports of autosomal recessive IRF7, IFNAR1, TBK1, and TYK2
deficiency in patients with critical COVID pneumonia, including
in children.16,18-20,25

Subsequently, the hypothesis that an enrichment of deleterious
variants in the X chromosome could explain the higher proportion
of males affected by severe COVID-19 was tested by using an
unbiased approach.21 This led to the discovery of X-linked reces-
sive TLR7 deficiency in about 2% of males with critical COVID-
19 pneumonia, including children.20-23 The penetrance of severe
SARS-CoV-2 infection appears to be high, but not complete, for
the described recessive defects and lower for dominant defects.
Interestingly, patients with autosomal recessive IFNAR1 or
IRF7 deficiency had not previously developed severe disease
following live viral vaccine administration, influenza virus infec-
tion, or other viral infections,40-45 as has been described for earlier
cases of individuals with pathogenic biallelic variants in these
genes. This observation illustrates the variable expression of the
phenotype as well as the redundancy of type I interferon re-
sponses for human defense against most viruses. Finally, some
cases of critical SARS-CoV-2 pneumonia in patients with
myeloid differentiation factor 88 (MyD88) or IRAK4 deficiency
have also been reported.26,46,47 MyD88 and IRAK4 are essential
mediators of signaling downstream from TLR7, and a role for
MyD88 in controlling pulmonary replication of SARS-CoV-1 in
mice was previously shown.48 Also, impaired type I/III interferon
production following SARS-CoV-2 infection was shown in vitro
in plasmacytoid dendritic cells from a patient with IRAK4
deficiency.49

The relevance of interferon-mediated immunity in the context
of COVID-19 has also been confirmed by the findings of several
population-based genome-wide association studies. For example,
a recent genome-wide gene-based rare variant association
analysis confirmed enrichment in rare loss-of-function variants
in TLR7, TYK2, and several IRF7- and TLR3-dependent type I
interferon immunity loci50; in addition, other genome wide asso-
ciation studies have demonstrated significant association of crit-
ical infection with variants involved in interferon signaling
(IFNAR2, TYK2, CCR2, and IL10RB) and cytosolic double-
stranded RNA (dsRNA) sensing (2’-5’-oligoadenylate synthetase
1 gene [OAS1], OAS2, and OAS3).11,51 Other significant effects
were found for loci related to the blood group and within the
3p21.31 region (possibly affecting ACE2 expression) regarding
susceptibility to infection with SARS-CoV-2, and several loci
related to lung disease regarding risk of severe infection.10,11
AUTOIMMUNE PHENOCOPIES OF TYPE I

INTERFERON DEFECTS
Monogenic defects of antiviral immunity explain only a minor

proportion of the patients with critical COVID-19 in the popu-
lation younger than 60 years (estimated as 1%-5%).52 The hy-
pothesis that the presence of serum neutralizing autoantibodies
against type I interferons could mimic these inborn errors in a
larger proportion of severely affected patients was then raised.
This phenocopy mechanism is well known in the field of immu-
nodeficiencies. Indeed, autoimmune phenocopies of mendelian
susceptibility to mycobacterial disease, invasive pneumococcal

http://www.COVIDHGE.com


TABLE I. Inborn errors of type I interferon immunity underlying susceptibility to severe COVID pneumonia

Gene Inheritance Other known phenotypes Reference(s)

IRF7 AR Influenza pneumonia 15-17

AD NA

IFNAR1 AR Fatal susceptibility to live viral vaccines, HLH 15,18-20

AD NA

TLR7 XLR NA 20-23

TLR3 AD Influenza pneumonia, herpes simplex encephalitis 15,24

UNC93B1 AD NA (AR herpes simplex encephalitis) 15

TICAM1 AD Herpes simplex encephalitis 15

TBK1 AD Herpes simplex encephalitis 15,25

IRF3 AD Herpes simplex encephalitis 15

IFNAR2 AD NA (AR fatal susceptibility to live viral vaccines) 15

STAT2 AR Influenza pneumonia, fatal susceptibility to live viral vaccines, HLH 20

TYK2 AR Susceptibility to mycobacteria and viruses, hyper-IgE syndrome 20

MYD88 and IRAK4 AR Pyogenic infections 26, 47

Mechanism is disruption of an essential mediator of type I interferon responses. Proportion of severe COVID pneumonia in young patients (<60 years) explained in 1% to 5% of

cases.

AD, Autosomal dominant; AR, autosomal recessive; NA, not applicable; XLR, X-linked recessive.

TABLE II. Autoimmune phenocopies of type I interferon

defects underlying susceptibility to severe COVID pneumonia

Phenocopies of type I interferon defects Reference(s)

Patients treated with recombinant IFN-a or IFN-b

Patients with autoimmune conditions:

d SLE, myasthenia gravis, thymoma

d Autoimmune polyendocrinopathy syndrome 1

(APS1, AIRE mutations)

d Immune dysregulation, polyendocrinopathy,

enteropathy, XL (IPEX, FOXP3 mutations)

d RAG1/RAG2 hypomorphic mutations

Circulating auto-Abs in otherwise healthy

individuals, mostly men and those older than 65 y

27-33

Mechanism is neutralizing autoantibodies against type I IFN. Proportion of critical

COVID pneumonia is explained in 15% to 20% of cases.

IPEX, Immunodysregulation polyendocrinopathy enteropathy X-linked; SLE,

systemic lupus erythematosus; XL, X-linked.
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disease, and chronic mucocutaneous candidiasis have been attrib-
uted to neutralizing autoantibodies against the cytokines IFN-g,
IL-6, and IL-17A/F, respectively.53-57 The presence of autoanti-
bodies against type I interferon in patients with a variety of con-
ditions, inborn and acquired, has been known for several decades.
These include patients with elevated levels of type I interferon,
such as those receiving therapy with IFN-a or IFN-b for multiple
sclerosis or patients with SLE, patients with broad autoimmune
diseases (such as thymoma and myasthenia gravis), and patients
with immune defects of central or peripheral tolerance (such as
autoimmune polyendocrinopathy syndrome 1, combined immu-
nodeficiency with autoimmunity due to mutations in RAG1 or
RAG2, and immunodysregulation polyendocrinopathy enteropa-
thy X-linked syndrome).58-64

The clinical relevance of anti–type I interferon autoantibodies
was unclear for several decades, and no association with viral
infections was reported, except in a patient with varicella-zoster
and some patients with RAG1 or RAG2 deficiency and severe
chickenpox.60,65,66 Indeed, although the presence of anti–type I
interferon autoantibodies was being utilized as a diagnostic crite-
rion for autoimmune polyendocrinopathy syndrome 1 (APS-1)
and an inverse correlation between high titers of these antibodies
and type 1 diabetes had been described, a clinical correlate for
increased susceptibility for infection was lacking.67 At the begin-
ning of the pandemic, an early report illustrated the critical course
of COVID-19 pneumonia in an Italian patient with APS-1.68

Bastard et al then tested the hypothesis that autoantibodies against
type I interferons could underlie severe COVID-19 and initially
found that at least 10% of patients of all ages with critical pneu-
monia had neutralizing autoantibodies against IFN-a, IFN-v, or
both and that the rate of severe or critical pneumonia increased
to 86% in patients with APS-1 with these neutralizing anti-
bodies.27,28 The study group also confirmed that this resulted in
low or undetectable serum IFN-a levels during acute SARS-
CoV-2 infection in all patients.27 Strikingly, 94% of these patients
were men, which could contribute to the higher prevalence of se-
vere COVID-19 in males.27

The association of neutralizing autoantibodies against type I
interferons and critical COVID-19 was confirmed by many
independent studies.28,29,69-76 It was shown that neutralizing auto-
antibodies against IFN-a or IFN-v are rare in the general popula-
tion (they are present in less than 1% of those between 20 and 70
years old), that their prevalence increases with age (reaching 4%
of individuals older than 70 years), and that they are present in
about 20% of both patients with critical COVID-19 who are older
than 80 years and individuals with fatal cases in all age
groups.28,29,69-76 The presence of neutralizing anti–type I inter-
feron autoantibodies correlates with an increased risk of death
and an increased infection fatality rate in patients infected with
SARS-CoV-2, and this risk rises with age.30 This effect is seen
both in the general population of patients with COVID-19 and
in patients with APS-1, who showed a significantly higher risk
of critical and fatal disease than did age-matched patients without
the condition.28 Moreover, in a cohort of 48 patients with break-
through severe COVID-19 pneumonia after 2 doses of an mRNA
vaccine, 24% of subjects had autoantibodies neutralizing type I
interferons.31 The presence of neutralizing anti–type I interferon
autoantibodies could therefore explain the atypically severe in-
fections in vaccinated individuals in at least a quarter of cases.31

A role for anti–type I interferon autoantibodies in other severe
viral diseases is being explored further, as these autoantibodies
seem to be correlated with severe herpesvirus infections (eg, se-
vere cutaneous herpes zoster, varicella pneumonia, varicella



TABLE III. Inborn errors of immunity underlying susceptibility to MIS-C

Gene Inheritance Other known phenotypes Reference(s)

XIAP XL Familial HLH 34

CYBB XL Chronic granulomatous disease 14,34

SOCS1 AD Early-onset familial autoimmunity 34,35

OAS1 AR NA 36

OAS2 AR NA 36

RNASEL AR NA 36

Mechanism is excessive inflammatory responses to SARS-CoV-2 due to defective viral RNA degradation and/or dysregulated interferon and inflammasome activation.

AD, Autosomal dominant; AR, autosomal recessive; NA, not applicable; XL, X-linked.

FIG 1. Inborn errors of type I interferon (IFN) immunity and their phenocopies causing susceptibility to

severe COVID-19. The activation of the type I IFN responses in respiratory epithelial cells and plasmacytoid

dendritic cells following infection with SARS-CoV-2 is illustrated. Viral particles processed through

endosomes activate TLR3, TLR7, and TLR9. TLR3 signals through UNC93B1, TRIF, TRAF3, TBK1, and

NEMO to induce IRF3. IRF3 is also activated by RIG-I and MDA5, which signal through mitochondrial

antiviral signaling (MAVS) following intracellular sensing of viral nucleic acids. TLR7 and TLR9 signal

instead via MYD88 and IRAK4 to induce IRF7. Both IRF7 and IRF3 are transcription factors driving the

production of type I IFN that in turn bind to their receptor and signal through the STAT1-STAT2-IRF9

complex to induce IRF7 and the transcription of interferon-stimulated genes, which have broad antiviral

activities. Monogenic inborn errors of genes involved in these responses were found in patients with critical

or fatal COVID-19 and are indicated in red. A phenocopy of these inborn errors is represented by neutralizing

autoantibodies against type I IFN, which is also found in a significant proportion of patients with severe

COVID-19. (Created with BioRender.)
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central nervous system vasculitis, and cytomegalovirus infec-
tion), life-threatening yellow fever vaccine associated disease,
and critical influenza pneumonia in almost 5% of patients.71,76-
80 Interestingly, in a recent study of 609 patients with SLE,
anti–type I interferon autoantibodies were found in 11.7% of pa-
tients regardless of age or sex.71 Only 20 of the 71 samples had
neutralizing activity though, and this was significantly associated
with episodes of cutaneous herpes zoster and severe viral infec-
tion, including increased risk of severe COVID-19. Strikingly, pa-
tients with autoantibodies neutralizing several different type I
interferons had the highest risk, and these patients were almost
uniquely women.71 This is in line with the data presented by
Manry et al, which show that the effect of neutralizing autoanti-
bodies against type I interferons on relative risk of death and
infection fatality rate are more important than, for instance,
maleness.30
MIS-C
Children and young adults are mostly spared from critical

COVID-19. However, a few months after the onset of the
pandemic, MIS-C emerged as a severe complication usually
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affecting children a few weeks after a mild or asymptomatic
infection with SARS-CoV-2 in regions in which the incidence of
SARS-CoV-2 infection was high.81-84 MIS-C shows a higher
prevalence in males and individuals of African or Hispanic
ancestry.85 Despite overlapping features with Kawasaki disease,
MIS-C is often diagnosed in older children (in children aged
7.5-12 years with MIS-C versus in children younger than 5 years
with Kawasaki disease), and it has a more severe coursewith mul-
tiorgan dysfunction in more than 70% of patients and shock and
myocarditis in 50% and 90% of patients, respectively.81-84 The
hyperinflammatory state is characterized by elevated levels of cy-
tokines and cytopenia, which often fulfil the diagnostic criteria for
hemophagocytic lymphohistiocytosis (HLH).81-84 As in the case
of critical COVID-19 pneumonia, it was hypothesized that spe-
cific immune defects could predispose toMIS-C. Early studies re-
ported patients with immune dysregulation syndromes and
chronic granulomatous disease (CGD) experiencing extreme
inflammation during SARS-CoV-2 infection classified as HLH
or MIS-C.14,86 Subsequently, a prospective targeted sequencing
approach unveiled inborn errors of suppressor of cytokine
signaling 1 (SOCS1; n 5 2), X-linked inhibitor of apoptosis
(XIAP; n 5 1) and cytochrome B-245 b-chain (CYBB; n 5 1)
in a cohort of children withMIS-C.34,35 SOCS1 is a negative regu-
lator of type I and II interferon responses that binds Janus kinase 1
and 2, impeding activation of STAT1 and STAT2 downstream of
the interferon receptors. SOCS1 haploinsufficiency has been
described in subjects with interferon-driven early-onset familial
autoimmunity and lymphoproliferation.87 Hemizygous loss-of-
function mutations in XIAP cause immune dysregulation
characterized by HLH, inflammatory bowel disease, and inflam-
mation.88 Finally, CGD is a neutrophil disorder caused by impair-
ment in 1 of the subunits of the nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase complex, which includes the prod-
uct of CYBB. Patients with CGD are prone to invasive pyogenic
and fungal infections and granulomatous inflammation. NADPH
oxidase defects also predispose to infection-triggered HLH as
well as to other noninfectious autoimmune and autoinflammatory
manifestations, probably owing to a substantial influx of neutro-
phils that, although impaired in the oxidative function, can still
trigger a strong inflammatory response.89,90 Chou et al showed
an increased inflammatory signature in these children, driven pri-
marily by type I and II interferon and nuclear factor-kB–IL-6 re-
sponses.34 These preliminary findings point to a predisposition to
MIS-C in children with inborn errors of immune dysregulation,
especially affecting regulators of interferon responses. The signif-
icance of these case studies will need to be validated in larger co-
horts of patients.

Awhole genome/whole exome sequencing approach was used
by the COVID Human Genetic Effort to screen a large cohort of
558 children (aged 0-19 years) with MIS-C. By filtering for rare
homozygous or hemizygous variants (allele frequency <0.01) in
genes involved in antiviral responses, they identified the
OAS-RNase L pathway as a relevant signaling circuit in MIS-
C.36 OAS1, OAS2, and OAS3 are interferon-inducible cytosolic
dsRNA sensors that activate the endoribonuclease RNase L,
which degrades human and viral single-stranded RNA. In this
study, 5 patients with autosomal recessive OAS1, OAS2, or RNA-
SEL deficiency caused by biallelic loss-of-function or hypomor-
phic variants were identified. Variants in these genes were
absent from a control group of 1288 patients with mild or asymp-
tomatic infection and a group of 159 children with COVID-19
pneumonia. Interestingly, these variants are estimated to be pre-
sent in homozygous form in 1 in 10,000 individuals in the general
population, which is consistent with the prevalence of MIS-C. As
such, AR OAS1, OAS2, or RNASEL deficiency could explain
about 1% of MIS-C cases globally. The authors of this same
study36 show that patients’ fibroblasts and gene-edited epithelial
cell lines lacking OAS1, OAS2, or RNASEL are not more suscep-
tible to SARS-CoV-2 infection, nor are OAS1-, OAS2-, or RNA-
SEL-deleted monocytes more permissive to viral replication. On
the other hand, both gene-targeted monocytes and primary mono-
cytes from patients display an exaggerated inflammatory
response to dsRNA or SARS-CoV-2 infection, with hyperproduc-
tion of several proinflammatory cytokines, such as IL-6, CXCL9,
CXCL10, and TNF (the levels of which are also elevated in the
serum of patients with MIS-C), and with an upregulated proin-
flammatory gene expression profile at the transcriptomic level.
Thus, in the absence of functional OAS-RNase L signaling,
hyperinflammation is driven by activation of the RIG-I and mel-
anoma differentiation-associated protein 5 (MDA5)–mitochon-
drial antiviral signaling (MAVS) pathway in response to
cytosolic dsRNA sensing in monocytes. The reason why there
is typically a delay of several weeks between the original infec-
tion and the onset of hyperinflammation in children with MIS-C
currently remains unexplained.36

Finally, several other groups have screened cohorts of children
withMIS-C by means of exome sequencing or targeted panels and
have found enrichment in rare variants in genes related to
autoimmunity, autoinflammation, and immune dysregulation,
including genes underlying HLH (LYST, STXBP2, UNC13D,
PRF1, AP3B1, and DOCK8) and genes involved in the interferon
responses (IFNB1, IFNA21, IFNA4, IFNA6, IFIH1, TLR3,
TRAF3, IRF3, IFNAR1, and IFNAR2); however, most of these
studies do not functionally validate the pathogenicity of the vari-
ants and the correlation therefore remains only hypothetical.18,91-93
DISCUSSION
The emergence of SARS-CoV-2 in December 2019 and into

early 2020 has had a devastating impact worldwide. However, it
has also provided the rare opportunity of studying a novel
pathogen in a completely naive population. As expected from
our knowledge of the human genetics of critical influenza, type I
interferons are central to the human immunologic defense in
COVID-19.

A defective type I interferon response in the first phases of the
viral infection correlates with more severe disease and sustained
viremia driving hyperinflammation and multiorgan involvement
at a later stage.94 A 2-phase pathophysiologicmodel has been pro-
posed; according to this model, uncontrolled viral infection due to
a defective type I interferon response in several inborn errors of
interferon immunity is followed by hyperactivation and
recruitment of leukocytes, which ultimately lead to excessive
inflammation.36,38,86,95,96 Studies investigating the genetic and
immunologic determinants of critical COVID-19 have confirmed
the crucial role of type I interferon immunity by revealing inborn
errors of type I interferon immunity and their autoimmune pheno-
copies underlying critical or fatal COVID-19 (Tables I and II), as
well as common polymorphisms conferring a higher risk of severe
infection. Some of these defects had previously been shown to un-
derlie critical influenza pneumonia (TLR3 and IRF7) or other se-
vere viral infections (IFNAR1, IFNAR2, STAT2, IRF3, TBK1,
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UNC93B1, and TRIF), whereas defects of TLR7 were discovered
as a novel cause of x-linked recessive severe COVID-19 pneu-
monia.15,16,18-21,25 These examples highlight the redundancy of
most of these mediators of type I interferon immunity in as
much as pathogenic loss-of-function variants confer susceptibil-
ity to a very narrow spectrum of viruses. Thus, TLR7 seems
redundant in human defense against influenza but necessary for
defense against COVID-19. Similarly, neutralizing autoanti-
bodies against type I interferon are responsible for up to 20% of
critical and fatal COVID-19 cases and were found in only 5%
of patients with critical influenza pneumonia.28,29,79 T-cell de-
fects typically predispose to severe infection with a broad range
of viruses and opportunistic pathogens, so an increased morbidity
and mortality would be expected in patients with combined im-
mune defects. This is confirmed by the finding of an extremely
elevated fatality rate in children with severe combined immuno-
deficiency before transplantation, whereas survival was 100%
in children who were infected with SARS-CoV-2 after curative
procedures.14,97-102 Very few severe or lethal cases have been re-
ported in patients with combined immunodeficiencies other than
severe combined immunodeficiency, possibly indicating a subtle
role of T-cell immunity in clearing SARS-CoV-2 compared with
the robust contribution of type I interferon responses.39 On the
other hand, the pathophysiologic mechanism underlying MIS-C
seems to be an exacerbated inflammatory process in which the
type I and II interferons, IL-6, and RIG-I-MDA5-MAVS path-
ways play a central role and the monocytes are the key drivers
of inflammation, as confirmed by reports of several inborn errors
of immune dysregulation (defects of SOCS1, XIAP, and CYBB)
and RNA degradation (defects of OAS1, OAS2, and RNASEL) in
children with MIS-C.34-36

On the basis of these findings, attempts to devise a therapeutic
strategy based on modulating the interferon response have been
proposed.37 Avery fine balance between initial activation of anti-
viral and inflammatory responses to control the viral spread and
subsequent downtuning of the inflammation to avoid organ dam-
age seems to be required. The in-depth study of patients with crit-
ical COVID-19 in terms of genetic and immunologic determinants
has undoubtedly expanded the awareness of the genetic (and
immunologic) theory of infectious diseases beyond the realm of
clinical immunology, reaching intensive care physicians and
beyond. Novel inborn errors have been and will continue to be
described in the context of critical COVID-19, furthering our
knowledge and understanding of human immunology. Moreover,
ongoing researchwill aid in understanding othermanifestations of
COVID-19, including long-COVID and neuro-COVID, which
will in turn shed light on the postinfectious manifestations identi-
fied in other infections and their systemic and neurologic sequelae.
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