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ABSTRACT: As an advance in hydrofunctionalization, we herein report that alcohols add to 1,3-dienes with high regio- and
enantioselectivity. Using Ni-DuPhos, we access enantioenriched allylic ethers. Through the choice of solvent-free conditions, we
control the reversibility of C—O bond formation. This work showcases a rare example of methanol as a reagent in asymmetric
synthesis.

D rawing inspiration from ether-containing pharmaceut- butadiene using ethanol; racemization and isomerization were
icals,’ :;1grochemicals,2 and natural products,3 chemists also observed (Figure 1).“1”d Through our independent
strive to identify useful C—O bond-forming methods. Hydro- investigations, we discovered a complementary and enantio-
functionalization represents an attractive approach to construct selective Ni-catalyzed hydroalkoxylation of dienes. Petroleum
C—X bonds from feedstock olefins.” In contrast to carbon- and feedstocks and readily available dienes can be transformed into
nitrogen-based nucleophiles, chalcogen nucleophiles are under- chiral allylic ether building blocks with high regio- and
developed as coupling partners.” In most cases, alkynes or enantiocontrol via Ni-catalysis under solvent-free conditions
allenes have been used as substrates for hydroalkoxylation, with (Figure 1)."

high regioselectivity and enantioselectivity,’ albeit using Our laboratory has pursued the hydrofunctionalization of
precious metal catalysts, such as Rh,” Ru,® Pd,” or Au'’ (Figure 1,3-dienes, including hydroamination,* hydrothiolation,'* and

1). The asymmetric hydroalkoxylation of readily available hydrophosphinylation.> In these reports, conjugated dienes
could be transformed via metal—z-allyl intermediates to
Hydroalkoxylation Route to Chiral Ethers produce the corresponding 1,2- and/or 1,4-addition products.
Compared to amines (with nucleophilicity N = 13.2 on the

O/_' Rh,Ru o/O Q—OH ! Mayr scale'®) and thiols (N = 23.4), alcohols (N = 9.6)

<Pd—7 E O)\/ m— R S ; present a unique challenge and opportunity due to their lower
O/\ : ot carth-abundent motal catalvel E nucleophilicity.

( goar canthrabunaant me'al calaysss . With this challenge in mind, we chose methanol (1a) and 1-

Towards Enantioselective Ni-Catalysis phenyl-1,3-butadiene (2a) as the model substrates and

OR OEt surveyed a wide range of metal catalysts. We found that the

Ar \/LM Challenges desired branched allylic ether (3aa) was obtained by using Ni-

© Ve o eOEt reversible C-O bond catalysis with ethereal solvents. We studied the hydro-

B wAN activation occurs with Ni alkoxylation of diene 2a with methanol (1a) using different

ﬂﬁfl(%t ()2_331‘3)3: f«?u(tg;es’ é20§(1)l2 selectivity issues for bidentate phosphine ligands in the presence of Ni(cod),

branched diones putaione conjugated dienes (Table 1). With JosiPhos (L1), BINAP (L2), and SKP (L3)

racemic 85:15 er, 2.6:1 bil ligands, no product formation was detected. Yet, the BPE (L4)

Ni(cod), OMe and DuPhos families (LS and L6) afforded promising results.

(R,R)-DuPhos ) . . 3 .
XX + MeOH ---- it R/\/LMe With LS as the ligand, we obtained excellent regioselectivity for
, , Up to 96:4 er the allylic ether 3aa (>20:1 rr) with 14% yield and 92:8 er by
linear dienes o . i
This communication >20:1 using ‘Pr,O; other ethereal solvents (such as THF or

cyclopentyl methyl ether) showed lower reactivity and
enantioselectivity. The linear diene 2a showed no reactivity
under the conditions previously reported by Mazet."'
However, in accordance with studies by Mazet''S and

Figure 1. Proposal for hydroalkoxylation of 1,3-dienes.

dienes has attracted attention and warrants further studies,
especially using earth-abundant catalysts."" With Ni-catalysis,
Mazet and co-workers demonstrated the promising addition of
alcohols to 2-substituted 1,3-dienes to yield racemic allylic
ethers (Figure 1).''¢ By applying a chiral phosphinooxazoline
ligand, they achieved an isolated enantioselective example.
However, they observed a decreasing enantiomeric ratio during
the course of the experiment. Sauthier and co-workers
disclosed a Ni-catalyzed enantioselective hydroalkoxylation of
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Table 1. Survey of Ligands and Conditions”

Ni(cod), (10 mol%)

L* (11 mol%) OMe

Ph Me

3aa

MeOH + pp "N

solv., temp.

1a 2a

SSX_r(Bu), OO
PhP” g PPh,
St o™

PPh, Ph,P
JosiPhos (L1) BINAP (L2) SKP (L3)
NR NR NR
R, R = Me, L5, 14%, 92:8 er

Ph
. = Y -
Ph L R = Et, L6, 5%, 78:22 er
P. R = Me, L5, 75%, 91:9 er
PN (60 °C, no solvent)
. Ph
‘Ph
BPE (L4)
13%, 88:12 er

R = Me, L5, 95%, 96:4 er

(0 °C, no solvent)
DuPhos R = Me, L5, 94%, 96:4 er

(0 °C, no solvent)?
“Reaction conditions: 1a (0.1 mmol), 2a (0.3 mmol), Ni(cod), (10
mol%), ligand (11 mol%), Pr,O (0.1 mL), 60 °C, 4 h. Isolated yields.

Enantiomeric ratio (er) was determined by HPLC. bUsing 2.5 mol%
Ni(cod), and 2.8 mol% LS, 10 h.

Sauthier,'"™ we found that the enantioselectivity decreased

dramatically with prolonged reaction times. To our delight, we
discovered that this decrease in enantioselectivity over time
could be overcome by performing the experiment neat (i..,
without solvent). Under solvent-free conditions, we isolated
the enantioenriched ether 3aa in 75% yield and 91:9 er. When
the temperature was lowered to 0 °C, the enantioselectivity
was increased to 96:4 er with excellent yield (95%, 4 h).
Furthermore, the catalyst loading could be decreased to 2.5
mol% (94% yield, 96:4 er, 10 h). This represents a rare
example of methanol as a reagent in asymmetric synthesis.'’

With these conditions in hand, we investigated the
hydroalkoxylation of various 1,3-dienes with methanol 1a
(Table 2). Products bearing both electron-donating and
electron-withdrawing groups on the phenyl ring were obtained
with high reactivities and enantioselectivities (3ba—3ha, 66—
94% yield, 81:19—96:4 er). This protocol tolerates heterocycle-
substituted 1,3-dienes such as 2i (R = 2-furyl) and 2j (R! = 2-
thienyl) to afford the corresponding allylic ethers 3ia (92%
yield, 95:5 er) and 3ja (65% yield, 93:7 er). In addition,
hydroalkoxylation of alkyl-substituted 1,3-diene 2k and
feedstock butadiene 2l gave the corresponding products 3ka
and 3la in 31% and 48% yields with 88:12 er and 80:20 er,
respectively.'® Moreover, addition of methanol (1a) to
branched diene 2m provided the allylic ether 3ma in 77%
yield with 62:38 er and >20:1 rr. Overall, these results
demonstrate the first asymmetric hydroalkoxylation of dienes
without erosion of the enantiomeric ratio.

Next, we examined the addition of various alcohols 1 to
diene 2a (Table 3). We found that a variety of alcohols could
be transformed into chiral ethers with good reactivity and
selectivity. High reactivities (60—95% yield) and enantio-
selectivities (91:9—96:4 er) are obtained by using alcohols that
bear phenyl, chloro, and trimethylsilyl groups (3ab—3aj).
Hydroalkoxylation of diene (2a) with natural product
(=)-citronellol (1k) furnishes the desired ether (S,S)-3ak in
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Table 2. Hydroalkoxylation of Various Dienes”

Ni(cod), (10 mol%)

L5 (11 mol%) OMe
MeOH + p1I"\"Xv \/l\
neat RN Me
1a 2 3
>20:1 rr
OMe OMe OMe
MeO Me F
3ba, 45 °C, 15 min 3ca,10°C,1h 3da,0°C,2h

73%, 90:10 er

OMe OMe OMe
cl Me;yN
3fa, 60 °C, 3 h
73%, 81:19 er

85%, 95:5 er 91%, 95:5 er

3ea, 10°C,1.5h
66%, 92:8 er

3ga, 0°C,5h
92%, 96:4 er

OMe OMe OMe OMe
\)\Me = \/LMe = \/'\Me
\_o \_-§
3ha,0°C,5h 3ia, 0°C,2h 3ja,0°C,2h

94%, 95:5 er

OMe
0/\©\ O/\©\ v
M
cy/\/LMe Ph \/LMe Ph bh ¢

3ka, 60°C,1h
31%, 88:12 er®

“Reaction conditions: 1a (0.2 mmol), 2 (0.6 mmol), Ni(cod), (10
mol%), LS (11 mol%). Isolated yields. Enantiomeric ratio (er) is
determined by HPLC. “Pr,0 (2 M) as solvent. “Butadiene (2.0
mmol) in hexane (20%) is used.

92%, 95:5 er 65%, 93:7 er

3la, 60 °C, 20 min
48%, 80:20 er’

3ma, 30°C,2h
77%, 62:38 er

73% yield with >20:1 dr. Alcohols such as isopropanol and tert-
butanol showed no reactivity. Hydroalkoxylation with
secondary alcohols, such as cyclopropanol (11) and cyclo-
pentanol (1m), provide the corresponding allylic ethers 3al
and 3am with high efficiency (88% and 65% vyield,
respectively) and enantioselectivities (97:3 er and 91:9 er,
respectivelgr). In all cases, only one constitutional isomer is
obtained."

On the basis of literature reports and our own observations,
we envision the following mechanistic pathway (Figure 2).
Ligand exchange between 1,5-cyclooctadiene (cod) with a
bidentate phosphine ligand generates intermediate I. Both
alcohol 1 and 1,3-diene 2 bind to Ni via ligand exchange to
generate nickel intermediate II. From here, we imagine that the
hydrogen atom is transferred directly from alcohol 1 to 1,3-
diene 2 through ligand-to-ligand hydrogen transfer
(LLHT)."”™ In accordance with Sauthier and Macgregor’s
hydroalkoxylation of butadiene, we propose a cationic allylic
intermediate ITI where the alkoxide is stabilized by hydrogen
bonding to the alcohol.''! Intermediate III undergoes outer-
sphere nucleophilic attack by the alkoxide at the C3 carbon to
provide product 3. Our proposed mechanism fits with the
convention of classifying nucleophilic attack on 7*-M-z-allyl
intermediates for Pd** and Ni*” allylations. Alkoxides,
considered “soft” nucleophiles, would proceed through outer-
sphere attack.

Alternatively, mechanisms involving a Ni—H insertion have
been previously pr%posed for Ni-catalyzed hydrofunctionaliza-
tion of dienes.'*"” Inspired by Sauthier’s studies, we

https://doi.org/10.1021/jacs.2c12779
J. Am. Chem. Soc. 2023, 145, 3909-3914
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Table 3. Hydroalkoxylation with Various Alcohols”

Ni(cod), (10 mol%)

PP L5 (11 mol%) OR
ROH + pp .
0°C Ph” X" Me
1 2a neat 3
>20:1 rr
OEt OBn o "pn

Ph/\/'\Me

3ab, 4 h, 79%
95:5 er

Ph/\/LMe

3ac, 3 h, 90%
92:8 er

Ph/\)\Me

3ad, 4 h, 75%
94:6 er

3ae, 8 h, 92%
92:8 er

o/\©\ o/\©\ OPMB
Ph/\/LMe F Ph/\/'\Me Me Ph/\/'\Me

3ah, 4 h, 95%
919 er

3af, 4 h, 60%
96:4 er

3ag, 5h, 72%
95:5 er

3ai, 4 h, 93%
94:6 er

3aj, 1h, 78%
94:6 er

A0

Ph/\/LMe

3am, 3 h, 65%

91:9 er®
“Reaction conditions: 1 (0.2 mmol), 2a (0.6 mmol), Ni(cod), (10
mol%), LS (11 mol%), 0 °C. Isolated yields. Enantiomeric ratio (er) is
determined by HPLC. ?60 °C. PMB = p-methoxybenzyl.

Ph/\/LMe

3al, 4 h, 88%
97:3 er

3ak, 7 h, 73%
>20:1 dr

Ni(cod),
ligand
ROH
OR (P"'Ni":‘L 1
R1’\/LMe P~ \I R(\\/\
3 ! 2
. ~limiti
outer-sphere turnovetr imiting coordination
attack step
R! R
+ P 6)\ H
P[‘ 3 \‘ _ LT O by
Cpr'_,'§ OR CP’““/(-//‘
[}
H m =R

resting state LLHT

Figure 2. Proposed mechanism via ligand-to-ligand hydrogen transfer
(LLHT).

investigated both acid and base additives to further probe the
Ni—H pathway.''® While no transformation was observed in
the presence of acids (e.g, TFA, xylylic acid, TsOH),
hydroalkoxylation occurred in the presence of bases (e.g,
Et;N, NaOH, ‘BuONa). The observation of hydroalkoxylation
under basic conditions led us to disfavor a Ni—H mechanism.
We conducted 'H NMR experiments (at —60 °C) and did not
observe Ni—H intermediates. While density functional theory
(DFT) studies for this transformation are warranted, LLHT
mechanisms have emerged as more ener%etically favorable for
related Ni-catalyzed hydroarylations.'”**' DFT studies by
Zhou,'** Dang,”'* and Sakai’'"® demonstrated that the LLHT
pathway was favored across different ligands, including DTBM-
Segphos, SpiroAP, and N-heterocyclic carbene, respectively.
In the rate comparison between methanol (la) and
deuterated methanol (d-la) under the standard reaction
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conditions, a secondary (rather than primary) kinetic isotope
effect (KIE = 1.1) is observed (Figure 3A). We postulate that

(A) KIE from two parallel initial rate studies

Ni(cod), (10 mol%) OMe
zf L5 (11 mol%) A
MeOH 0°C Ph/\s
1a aa
K
=14
kp
2a Ni(cod), (10 mol%) OMe P
. L5 (11 mol%) /\/'\/D D
_— >
MeOD 0 Ph
d-1a d-3aa
(B) Deuterium-labeling study
MeOD Ni(cod), (10 mol%) OMe (12% D)
d-1a (0.2 mmol) L5 (11 mol%) A D
§ PR D+ Ph
Ph NN 0°C.4h (40% D) (14% D) D
2a (0.6 mmol) d-3aa recovered 2a

85% 56% based on 2a

(C) Diene geometry study

MeOH Ni(cod), (10 mol%) OMe
1a (0.2 mmol) L5 (11 mol%) \/L
* 5 P >"Me t PR
PhM 0°C. 11 h 3aa, only E-isomer recovered 2a
2a (0.6 mmol) 81%, 96:4 er ZE=T7A1
(Z:E=3:1)

Figure 3. Mechanistic studies.

outer-sphere nucleophilic attack is the turnover-limiting step.
When deuterated methanol is subjected to the standard
reaction conditions, deuterium is only incorporated into the
terminal position of product d-3aa, and diene with deuterium
incorporation is recovered (Figure 3B). The isotopic labeling
observed in the recovered diene suggests that LLHT is a
reversible step. Bzf using Burés’s variable time normalization
analysis (VTNA),”* we studied the kinetic profile and observed
a first-order dependence on catalyst and zero-order on diene.
Interestingly, the order on alcohol depends on the concen-
tration: inverse order was observed when using a higher
concentration of alcohol (2.38 to 5.95 M). However, fractional
order was observed when using a lower concentration (1.19 to
2.38 M).”* This result suggests that increasing the concen-
tration of alcohol inhibits the outer-sphere nucleophilic attack,
probably due to hydrogen bonding. On basis of these results,
we postulate intermediate III as a catalyst resting state.
Monitoring of the reaction by *'P NMR shows peaks that are
consistent with intermediate IIL.** To examine whether such a
resting state is detectable, we subjected an authentic catalytic
solution to electrospray ionization mass spectrometry (ESI-
MS) analysis. At low voltage (Frag = 80 V), we observed a
prominent signal with m/z 538.2289, which supports
intermediate III but does not rule out the possibility of a
Ni-species with OMe associated.”*

When using the mixture of (Z)- and (E)-2a (3:1, Figure
3C), the (E)-product 3aa was obtained in similar yield (81%),
enantioselectivity (96:4 er), and regioselectivity (>20:1 rr),
albeit after 11 h. In comparison, the model substrate (E)-2a
undergoes complete conversion in 4 h (Table 1, 95% vyield,
96:4 er, >20:1 rr). The recovered diene remains enriched in
the Z-isomer (7:1), which suggests isomerization is slow
compared to alcohol addition.””

We performed crossover studies to understand the
reversibility of C—O bond formation (Figure 4A). When

https://doi.org/10.1021/jacs.2c12779
J. Am. Chem. Soc. 2023, 145, 3909-3914
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(A) Cross-over study

Ni(cod), (10 mol%)

OMe L5 (11 mol%) OBn
BnOH + —_— \)\
Ph Me 0°C,3h Ph/\ Me
1c 3aa neat 3ac
96:4 er not obtained
OMe
BnOH \/'\ Ph/\/\\
1c Ni(cod), (10 mol%) Ph/\ M
L5 (11 mol%) e
* om - recovered 3aa 2a
\/'\ ®  Pr,0(2M),0°C,3h  82%, 955 er 13%
PR """Me
3aa, 96:4 er PR Me

3ac, 5%, 91:9 er

(B) Mazet's conditions without solvent

A Ni(cod), (5 mol%)  Ar : : o, :
r L7 (6 mol% 1Ph,P i
BnOH + )\/ ( o) s Me Fe N‘J :
7 45°C ' @ “ipy !

Ar = 4-Ph-CgH, neat OBn n

1c 2n 3nc ! L7 '

4 h, 24%, 85:15 er
24 h, 56%, 85:15 er

Figure 4. Reversibility studies.

product 3aa was subjected to otherwise standard reaction
conditions, in the presence of 1 equiv of benzyl alcohol 1¢, no
trace of 3ac was detected after 3 h; the er value of recovered
starting material 3aa (96:4 er) was constant. However, when a
related crossover experiment was performed in the presence of
the solvent ‘Pr,O, we observed formation of 3ac (91:9 er) and
diene 2a (13% yield). In Sauthier and Macgregor’s study on
hydroalkoxylation of butadiene, the overall hydroxylation
reactions are computed to be only marginally exergonic with
modest barriers. This energetic profile is consistent with a
reversible process at an elevated temperature (80 °C)."""" We
reason that solvent-free conditions enable transformation at
lower temperature (0 °C) and thus result in a kinetically
controlled process that avoids racemization.

The activation of C—O bonds under Ni-catalysis in solvent
has been investigated both theoretically and experimentally.*®
While a number of pathways are possible, we observe that the
major isomer of 3ac generated from 3aa has the same
configuration as the starting 3aa. The net retention of
stereochemistry initially observed could result from an Sy2
pathway involving double inversion.”®® Alternatively, stereo-
retentive oxidative additions have also been observed by
Watson, Jarvo, and Hong.%""c’ﬁl In regards to racemization,
Doyle has shown the feasibility of Syl-like pathways.*®
Solvent-free conditions prevent reversible C—O bond for-
mation, and this phenomenon may have broader applications.
As an example, we investigated Mazet’s conditions for
transforming 2n to 3nc; without solvent, we found that
racemization did not occur as previously observed when
mesitylene was the solvent of choice (Figure 4B)."'

Hydroalkoxylation represents an attractive way to transform
dienes into allylic ethers. By using Ni-catalysis, we have
achieved the first enantioselective hydroalkoxylation of linear
dienes with various alcohols without racemization. The
allylation works well with a broad range of alcohols and
tolerates different functional groups such as halogens, esters,
and silanes. Insights from this study will guide future olefin
couplings with chalcogen nucleophiles.
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