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Abstract
As of 25 January 2022, over 349 million individuals 
have received a confirmed diagnosis of covid-19, 
with over 5.59 million confirmed deaths associated 
with the SARS-CoV-2 virus. The covid-19 pandemic 
has prompted an extensive global effort to study 
the molecular evolution of the virus and develop 
vaccines to prevent its spread. Although rigorous 
determination of SARS-CoV-2 infectivity remains 
elusive, owing to the continuous evolution of the 
virus, steps have been made to understand its 
genome, structure, and emerging genetic mutations. 
The SARS-CoV-2 genome is composed of several 
open reading frames and structural proteins, 
including the spike protein, which is essential 
for entry into host cells. As of 25 January 2022, 
the World Health Organization has reported five 
variants of concern, two variants of interest, and 
three variants under monitoring. The mutations 
harboured in these variants confer an increased 
transmissibility, severity of disease, and escape 
from neutralising antibodies compared with 
the primary strain. The current vaccine strategy, 
including booster doses, provides protection from 
severe disease. As of 24 January 2022, 33 vaccines 
have been approved for use in 197 countries. In 
this review, we discuss the genetics, structure, 
and transmission methods of SARS-CoV-2 and 
its variants, highlighting how mutations provide 
enhanced abilities to spread and inflict disease. 
This review also outlines the vaccines currently in 
use around the world, providing evidence for every 
vaccine's immunogenicity and effectiveness.

Introduction
Seven coronaviruses can infect humans, all 
belonging to the alpha or beta subgroups, including 
229E (alpha), NL63 (alpha), OC43 (beta), and 
HKU1 (beta).1 Over the past two decades, three 
notable beta coronaviruses (severe acute respiratory 
syndrome coronavirus (SARS-CoV) in 2002; Middle 
East respiratory syndrome coronavirus (MERS-CoV) 
in 2011; and most recently, severe acute respiratory 
syndrome 2 (SARS-CoV-2) in 2019) have emerged 
and caused severe illness, resulting in debilitating 
disease and worldwide deaths. SARS-CoV-2 is the 
pathogen responsible for the current coronavirus 
2019 (covid-19) pandemic and has caused more than 
5.59 million deaths in around two years and resulted 
in multisystem illness in several million people.2

All viruses change and mutate over time, with 
most changes having little to no impact. However, 
some mutations could alter its pathogenic or 

transmission potential and might, therefore, 
increase disease severity or hinder the effectiveness 
of vaccines and therapeutic strategies. The World 
Health Organization3 classifies variants of concern 
as SARS-CoV-2 variants that increase transmissi-
bility, disease severity, or virulence or that decrease 
the effectiveness of public health measures, diagnos-
tics, therapeutics, or vaccines. Variants of interest 
are variants with genetic changes predicted to 
enhance the virulence and transmissibility of the 
virus, which have been identified to cause commu-
nity transmission in multiple countries and pose a 
possible risk to global public health. Lastly, variants 
under monitoring are those with genetic changes are 
suspected to affect virus characteristics and have 
currently unclear phenotypic or epidemiological 
effects. Variants under monitoring are not typically 
assigned a name until they are upgraded to variants 
of interest or concern. The full working definitions of 
variants of concern, variants of interest, and variants 
under monitoring can be found on the WHO website 
for tracking SARS-CoV-2 variants (www.who.int/en/​
activities/tracking-SARS-CoV-2-variants/).3 As of 25 
January 2022, WHO reports five variants of concern 
(alpha, beta, gamma, delta, and omicron), two vari-
ants of interest (lambda and mu), and three variants 
under monitoring.3 Former variants of concern, 
variants of interest, or variants under monitoring 
have been reclassified as "formerly monitored vari-
ants," owing to these variants no longer circulating, 
having little impact on the epidemiological situ-
ation, or having no concerning properties.3 Since 
the beginning of the covid-19 pandemic, the rapid 
development of effective covid-19 vaccines has taken 
place around the world. As of 24 January 2022, 33 
vaccines have been approved for use in 197 coun-
tries, with 10 vaccines having gained emergency use 
listing approval from WHO.4

In this review, we provide an overview of the 
genome and structure of SARS-CoV-2, describing 
how these elements allow the virus to infect and 
replicate inside of host cells, before outlining how 
certain mutations harboured by SARS-CoV-2 vari-
ants enhance these abilities. Next, we examine the 
current state of vaccine development around the 
world and provide evidence of the effectiveness of 
booster doses.

Sources and selection criteria
We searched PubMed and Embase databases for 
covid-19 related articles published between 1 
January 2020 and 25 January 2022 and for general 
coronavirus related articles published from 1 
January 2000 onwards. Our search terms included 
SARS-CoV-2, covid-19, and specific terms including 
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virology, genome, variants, and vaccine. Additional, 
specific search terms are outlined in online supple-
mental file 1. We performed further manual searching 
for additional articles and data using relevant data-
bases, including ​who.​int, ​gov.​uk, and ​ecdc.​europa.​
eu/​en. Owing to the rapidly evolving nature of the 
literature involving SARS-CoV-2, we also searched 
preprint databases including MedRxiv and BioRxiv. 
We selected studies through different criteria (online 
supplemental file 1), owing to the various topics 
discussed here. Overall, studies were selected on 
the basis of quality and impact factor of publishing 
journal, with real world studies with large sample 
sizes of the greatest interest.

Viral transmission, clinical presentation, and genetic 
susceptibility of covid-19
SARS-CoV-2 is predominantly spread via respiratory 
droplet transmission, spreading between people 
through close contact, coughing, or sneezing. The 
virus can also spread through airborne transmis-
sion, fomite transmission, and via other modes, 
such as through biological material including urine 
and faeces.5 6 The SARS-CoV-2 virus can survive on 
surfaces or survive suspended in air droplets for 
long periods. Indeed, on plastic, stainless steel, and 
glass surfaces, the half life of the virus is around 5.3, 
4.4, and 4.2 hours, respectively,7 with no difference 
seen between SARS-CoV-2 variants.8 Although SARS-
CoV-2 can be detected on inanimate surfaces for hours 
and days, owing to the evaporation of water droplets 
(the viruses’ living environment), the concentration 
of the virus plummets rapidly.9 Protective measures, 
including use of personal protective equipment, 
maintenance of indoor ventilation, and disinfection 
hands and surfaces, can effectively limit the spread 
of SARS-CoV-2.10

Once inside the airways, SARS-CoV-2 can infect 
ciliated, mucus secreting, and club cells of bronchial 
epithelium, type 1 pneumocytes within the lungs, 
and the conjunctival mucosa.11 The clinical pres-
entation of covid-19 is non-specific and heteroge-
neous, and infection can result in a wide spectrum 
of symptoms. After an incubation period of 4-14 
days, symptoms range from mild to severe disease 
and, in some instances, can result in death.12 The 
most common covid-19 symptoms include fever, 
cough, dyspnoea, and fatigue,13 14 while myalgia, 
gastrointestinal issues, cognitive deficits, and other 
symptoms are reported. Asymptomatic individuals 
can also test positive for covid-19.15 16 Although the 
entire population is susceptible to covid-19 infec-
tion, some subgroups within the general population 
are more susceptible to developing poorer clinical 
outcomes.

Risk factors associated with increased proba-
bility of hospital admission, severe disease, and 
fatal outcome with covid-19 have been identified. 
Older age17–19; male sex20 21; belonging to an ethnic 

minority group21 22; and comorbidities including 
diabetes, hypertension, and lung disease,18 23–25 
malignancy, and immunodeficiency26–28 have all 
been associated with more severe covid-19. The 
duration and treatment of covid-19 symptoms will 
also have profound influences on the severity of 
disease and the acute and long term outcomes after 
recovery. The host genetic background is thought to 
have an influence on the susceptibility and severity 
of covid-19, possibly explaining the broad spec-
trum of clinical manifestations that can develop 
in seemingly similar individuals. A meta-analysis, 
consisting of 49,562 patients with covid-19 across 
numerous ancestry groups, identified four gene loci 
associated with susceptibility to covid-19 (SLC6A20, 
RPL24, ABO, PLEKHA4) and nine associated with 
increased risk of severe covid-19 (LZTFL1, FOXP4, 
TMEM65, OAS1, KANSL1, TAC4, DPP9, RAVER1, 
and IFNAR2).29 Meanwhile, genome wide associa-
tion studies spanning across Europe, the US, and the 
UK identified a gene cluster on chromosome three 
(chr3p21.31) as being strongly linked with suscep-
tibility and severity of covid-19.30 31 Polymorphisms 
in the genes of the angiotensin converting enzyme 2 
(ACE2) receptor and transmembrane protease serine 
2 (TMPRSS2) have also been shown to enhance 
SARS-CoV-2 viral entry,32 33 with differential poly-
morphisms seen across ethnic minority populations, 
which might partly explain why certain ethnic groups 
are more susceptible to severe covid-19. Increased 
ACE2 receptor levels have also been associated with 
other risk factors of covid-19, including smoking and 
increasing age.34 The use of polygenetic risk scores 
might be useful in determining an individual’s risk 
for developing severe disease caused by covid-19.35 
A polygenetic risk score infers a person’s risk of 
susceptibility to, or development of, a certain disease 
based on the total number of genomic variations they 
possess. Determining polygenetic risk scores with the 
inclusion of comorbidities, such as chronic obstruc-
tive pulmonary disease,36 or other aspects such as 
coagulation factors,37 could improve the usefulness 
of these scores in determining a person’s risk of 
severe covid-19.

Virology of SARS-CoV-2
SARS-CoV-2 is a positive stranded RNA virus 
belonging to Coronaviridae family. Coronaviruses, 
which have crown-like appearances, are the largest 
known RNA viruses and are thought to primarily 
infect vertebrates.38 39 SARS-CoV-2 belongs to the 
beta genus of the coronaviruses and has a genome 
size varying from 29.8 to 29.9 kb.40 Human corona-
virus genomes consist of a variable number of open 
reading frames (ORFs). Following the typical 5’ to 3’ 
order, the beginning two thirds of the SARS-CoV-2 
genome contains two ORFs (ORF1a and ORF1b) 
that, inside the host cell, are translated at the rough 
endoplasmic reticulum into polyprotein 1a (pp1a) 
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Figure 1 | Genome and structure of SARS-CoV-2. (A) SARS-CoV-2 genome and spike (S) protein amino acid composition. 
The SARS-CoV-2 genome is about 30 000 base pairs (bp) long and consists of open reading frames (ORF) and elements 
that are essential for the virus’ structure. The S protein is responsible for binding and entry into host cells. SARS-
CoV-2 variants of concern contain various S protein non-synonymous mutations that result in amino acid changes in 
the receptor binding domain (orange bracketed text) and the S1/S2 subunit interface (black bracketed text), which 
have been shown to enhance transmissibility of the virus. Variants of concern include alpha (α), beta (β), gamma (γ), 
delta (δ), and omicron (O). (B) SARS-CoV-2 structure. SARS-CoV-2 is an RNA virus that has a crown-like appearance 
and contains four major structural proteins: nucleocapsid (N), spike (S), envelope (E), and membrane (M). (C) Viral 
S protein and human angiotensin converting enzyme 2 (ACE2) interaction. The SARS-CoV-2 S protein directly 
interacts with human ACE2 receptors in order to gain entry into host cells. The receptor binding domain (RBD) of the 
S protein tightly binds to ACE2. (D) S protein structure. The S protein protrudes out from the main SARS-CoV-2 bulk 
and is comprised of two subunits: S1 and S2. S1 contains the RBD, which directly interacts with the human ACE2 
receptor, while the S1/S2 interface contains a furin cleavage site that is cleaved to allow S2 to fuse with the host cell 
membrane. Both the RBD and the S1/S2 interface contain transmissibility increasing mutations that are harboured in 
variants of concern

and polyprotein 1ab (pp1ab), respectively.40 These 
polyproteins are cleaved into 16 non-structural 
proteins (nsp): nsp1-11, from pp1a; and nsp12-
16, from pp1ab. The proteolytic release of nsp1 
occurs rapidly, which enables it to interfere with 
translation processes of the host cell by inducing 
cellular mRNA degradation.41–43 Nsp2-16 contain 
the viruses’ replication and transcription complex 
and encode multiple enzymes with many functions, 
including proteases, helicase, polymerase, exonu-
clease and endonuclease, N7-methyltransferase 
and 2’O-methyltransferase, and de-ubiquitination 
enzymes.44 45

The final third of human coronavirus genomes 
contain genes that encode structural and accessory 
proteins. The four major structural proteins encoded 
here are the nucleocapsid (N), membrane (M), enve-
lope (E), and spike glycoprotein (S) proteins.46 47 The 
N protein is associated with the viral RNA genome, is 
involved in RNA synthesis regulation, and interacts 
with the M protein during viral budding.39 48 The M 
protein is important for viral assembly, it contains a 
short N-terminal domain that projects onto the external 
surface of the envelope and a long internal C-terminal.39 

The E protein function is largely unknown; however, 
along with the N and M proteins, it is required for viral 
assembly and release.47 Lastly, the S protein gives 
coronaviruses their characteristic spikes that compose 
their crownlike appearance. This protein projects 
through the viral envelope, is heavily glycosylated, 
and regulates host cell membrane receptor binding 
and fusion of the viral and cellular membrane.49 The 
functions of the 11 accessory proteins encoded within 
the one-third closest to the 3’ end of the SARS-CoV-2 
genome are not fully understood. These accessory 
proteins are encoded by the ORF3a, ORF3b, ORF3c, 
ORF3d, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORC9c, 
and ORF10 genes. Some of these proteins, including 
ORF3b, ORF6, ORF7a, and ORF8, are interferon antag-
onists that impair the host cell immune response,50–53 
whereas ORF3a might promote virus release54 and is 
involved in apoptosis of host cells through caspase-3 
activation.55 ORF9b and ORF9c are known to suppress 
the host antiviral response by interacting with host 
cell organelles,56–58 whereas a clear understanding of 
the functions of ORF3c, ORF7b, and ORF10 remains 
unclear.59 Figure 1 (A,B) depicts the genome and struc-
ture of SARS-CoV-2.
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Figure 2 | Viral entry and host response. (A) At the alveolar epithelial cell layer. Epithelial cells in the lungs express 
both angiotensin converting enzyme 2 (ACE2) receptors and transmembrane protease serine 2 (TMPRSS2), allowing 
for infection by SARS-CoV-2. Replication of the virus within these cells induces an intense immune response that 
attracts monocytes, T cells, and macrophages and, in some instances, can result in a cytokine storm. (B) Within nearby 
blood vessels. Cytokines produced by the epithelial cell layer are released into blood vessels supplying the infected 
tissue, which causes the recruitment of further immune cells to the area, driving the damaging inflammatory response 
further. Circulating cytokines also create a systemic inflammatory environment. (C) Adaptive immune response. 
Circulating lymphocytes carry viral antigens to lymph nodes and bone marrow to begin the adaptive immune system 
processes whereby B cells, and later antibodies, are activated. (D) SARS-CoV2 host replication. The SARS-CoV-2 virus 
uses the ACE2 receptor and TMPRSS2 to gain entry into human cells. Following release of the viral RNA within the host 
cell, the virus uses the host endoplasmic reticulum (ER) and Golgi apparatus to produce and manufacture new viral 
particles, which are released out of the cell to infect other cells and new hosts

The S glycoprotein is composed of two function-
ally distinct subunits (S1 and S2) and is essential for 
viral entry into host cells. The N-terminal S1 domain 
of the protein contains the receptor binding domain 
(RBD) that directly interacts with the ACE2 receptor 
on the host cell, which is the primary receptor that 
SARS-Cov-2 uses for cell entry.60 The C-terminal S2 
domain fuses the host and viral membranes to allow 
for entry of the viral genome into the host cell.61 The 
subunits of the trimeric S complex are either in a 
closed (pre-fusion stage) or open (post-fusion stage) 
conformation,62 with one subunit always in an open 
conformation to allow for ACE2 recognition and 
binding.63 The RBD itself consists of five anti-parallel 
β strands surrounded by several α helices.64 From 
closed to open conformation, the RBD undergoes 
structural rearrangement whereby the globular head 
region rotates clockwise, which alters is elecropoten-
tial surface.64 Once positioned, numerous residues 
within the RBD form either hydrogen bonds or salt 
bridges with residues of the ACE2 receptor, allowing 

for tight binding,65 while the concave structure of 
the RBD allows for three distinct binding regions.64 
Following binding between the S protein and the host 
cell receptor, host cell proteases cleave the S protein, 
causing the release of the S2 domain which allows 
for fusion and cell entry.66 Figure 1 (C,D) shows the 
structure and function of the S protein.

The ACE2 receptor is expressed in numerous cell 
types throughout the human body, including in 
the lungs, oral and nasal mucosas, heart, gastro-
intestinal tract, kidneys, liver, spleen, and brain,67 
highlighting the widespread infection that SARS-
CoV-2 can inflict. Meanwhile, TMPRSS2, a host cell 
protease, facilitates fusion of the viral and host cell 
membranes,68 and could have a role in the spread of 
the virus in the airways.68 Host cell cathepsin L might 
also aid in SARS-CoV-2 cell entry by cleaving the S 
protein.69 Indeed, a clinically approved protease 
inhibitor has been shown to block SARS-CoV-2 cell 
entry.70 Figure  2 depicts the mechanism by which 
SARS-CoV-2 gains entry into and replicates inside 
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Table 1 | SARS-CoV-2 variants and related spike protein mutations
WHO nomenclature or 
designation

Pango 
lineage Spike protein mutations of interest First detected samples*

Variants of concern
Alpha B.1.1.7 N501Y. D614G, P681H UK, September 2020
Beta B.1.351 N501Y. D614G, E484K, K417N, A701V South Africa, May 2020
Gamma P.1 N501Y, D614G, E484K, K417T, H655Y Brazil, November 2020
Delta B.1.617.2 L452R, D614G, P681R, T478K India, October 2020
Omicron B.1.1.529 N501Y, D614G, E484A, P681H, K417N, H655Y, A67V, Δ69-70, 

T95I, G142D, Δ143-145, N211I, Δ212, ins215EPE, G339D, 
S371L, S373P, S375F, N440K, G446S, S477N, T478K, Q493R, 
G496S, Q498R, Y505H, T547K, N679K, N764K, D796Y, 
N856K, Q954H, N969K, L981F

South Africa and Botswa-
na, November 2021

Variants of interest
Lambda C.37 L452Q, D614G, F490S Peru, December 2020
Mu B.1.621 N501Y, D614G, P681H, R346K, E484K Columbia, January 2021
Variants under monitoring
Not assigned B.1.1.318 D614G, P681H, E484K Multiple countries, Janu-

ary 2021
Not assigned C.1.2 N501Y, D614G, E484K, H655Y, N679K, Y449H South Africa, May 2021
Not assigned B.1.640 N501Y, D614G, P681H, F490R, N394S, R346S, Y449N, 

137-145del
Multiple countries, Sep-
tember 2021

Information correct as of 24 January 2022.
*First detection worldwide.

host cells, and summarises the host cell immune 
response.

Variants of SARS-CoV-2
Most viral mutations have a limited impact on the 
viruses’ ability to infect, replicate, escape host 
immunity, and transmit; however, certain muta-
tions can give a viral strain a competitive advantage 
and, through natural selection, give it the ability 
to become dominant. Many mutations observed in 
SARS-CoV-2 variants are found within the RBD or the 
N-terminal domain of the S protein, which alters the 
three dimensional structure of the S protein. Not only 
can these changes affect the transmission abilities of 
the virus, but it can also allow it to better escape the 
immune response, such as from neutralising anti-
bodies either elicited through vaccine administration 
or natural infection.

The SARS-CoV-2 virus has mutated numerous 
times, with estimates suggesting that circulating line-
ages acquire nucleotide mutations at rates of around 
one to two mutations per month.71 The current 
method of identifying variants relies on the use of 
genomic testing such as whole genome sequencing, 
partial S gene sequencing, or assays based on nucleic 
acid amplification.72 The aspects of different variants 
that most people experience, however, is the clinical 
symptoms they inflict. Certain variants (eg, alpha, 
delta) induce a greater risk of severe disease and 
death,73 while others (eg, omicron) are more likely 
to induce milder symptom.74 75 Moreover, individual 
symptoms can differ between variants. For example, 
the gamma variant is associated inflicting anosmia 
and dysgeusia,76 which is less commonly seen in 
omicron infections. Moving forward, the clinical 

themes and symptoms associated with emerging 
variants should be elucidated rapidly so that the 
public and healthcare professionals can rapidly 
identify possible cases of covid-19.

WHO has tracked and monitored SARS-CoV-2 
variants since the covid-19 pandemic began to 
identify variants of concern. As of 25 January 2022, 
WHO reported five variants of concern, two variants 
of interest, and three variants under monitoring 
(table  1).3 Here, we report studies that compare 
SARS-CoV-2 variants to the primary virus strain. 
The primary strain is the strain of the virus that first 
emerged in Wuhan, China at the end of 2019 and 
spread around the world in the first wave of infec-
tions, which is often also referred to as the Wuhan-
Hu-1, B.1, or wildtype strain.

Variants of concern
Alpha variant B.1.1.7
The alpha SARS-CoV-2 variant of the B.1.1.7 lineage 
was first documented in the UK in September 2020 
and classified as a variant of concern on 18 December 
2020.3 77 This variant contains S protein mutations 
that have potential biological effects. Firstly, the S 
protein residue 501, a key contact residue within the 
RBD, forms a portion of the binding loop in the contact 
region of the ACE2 receptor, forms a hydrogen bond 
with the Y41 residue of the ACE2 receptor, and stabi-
lises the ACE2 K353 residue.65 78 79 The alpha variant 
has an N501Y mutation, which increases the binding 
affinity of the RBD to the ACE2 receptor.80 Next, the 
P681H mutation contained within the alpha variant 
is located immediately adjacent to the 682-685 
furin cleavage site, at the interface of the S1 and S2 
domains.81 The S1/S2 furin cleavage site prompts 
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entry into respiratory epithelial cells and partly 
determines the transmissibility of the virus,82–84 
while the P681H mutation makes the furin cleavage 
site less acidic, meaning it is more effectively recog-
nised and cleaved.85 86 Alpha also contains a D614G 
mutation, located within the S1/S2 furin cleavage 
site, which increases SARS-CoV-2 binding affinity to 
the ACE2 receptor and increases infectivity.87 Other 
mutations within the alpha variant enhance the 
ability of the virus to escape antibody detection, such 
as the two amino acid deletion at sites 69-70 in the 
N-terminal domain of the S protein,88 89 while other 
mutations show limited or no effects.90 In February 
2021, viruses of the B.1.1.7 lineage with the added 
S protein mutation E484K were identified, which 
could have threatened vaccine effectiveness owing 
to the mutation conferring an increased resistance 
to neutralising vaccine elicited and monoclonal anti-
bodies.91 This mutation had limited effects, however, 
and variants containing it failed to dominate.

Epidemiological studies have explored the alpha 
variant, with a case-control study of 27 633 respira-
tory samples originating from 20 primary care 
centres in Madrid, Spain, finding that the probability 
of admission to an intensive care unit was twice as 
high in patients infected with the alpha variant 
compared with those infected with the primary 
strain.92 Furthermore, this variant became the 
dominant strain within four months, and led to an 
increase in disease burden as a result.92

Meanwhile in Cannes, France, infection with the 
alpha variant was associated with a 3.8-fold higher 
risk of transfer to intensive care or death compared 
with the primary strain, as determined through a 
retrospective cohort study of 158 patients with covid-
19.93 A large retrospective cohort study including a 
total of 476 973 participants found that, during the 
third covid-19 wave in Canada, where 91% of infec-
tions were caused by the alpha variant, the risk of 
both hospital admission (adjusted odds ratio 1.57) 
and death (1.52) was higher than primary strain 
infections.94 Overall, the alpha variant was about 
50-70% more transmissible and was associated with 
a 30-60% increased risk of hospital admission and 
death compared with the primary strain.95–100

The alpha variant was found to have a minimal 
impact on the effectiveness of current vaccines,101 102 
while the risk of reinfection remained similar for this 
variant as with previous ones.103 On 3 September 
2021, the European Centre for Disease Prevention 
and Control (ECDC) reclassified the alpha, and the 
alpha  +E484K mutation variants from a variant of 
concern to a de-escalated variant.104

Beta variant B.1.351
The beta SARS-CoV-2 variant, of the B.1.351 lineage, 
was first documented in South Africa in May 2020.3 
This variant contains five S protein mutations of 
interest: N501Y, E484K, D614G, K417N, and A701V. 

Like the alpha variant, the beta variant contains 
the mutations N501Y, E484K, and D614G, which 
increase ACE2 receptor binding affinity,80 87 increase 
virulence,105 and enhance resistance to neutralising 
antibodies.91 106 The K417 residue of the SARS-CoV-2 
S protein interacts with the D30 residue of the ACE2 
receptor, forming a salt bridge across the central 
contact region,65 78 although the K417N mutation 
appears to have a limited impact on ACE2 receptor 
binding.80 The A701V mutation is located close to 
the furin cleavage site but has a minimal impact on 
transmissibility or antibody resistance.101

In a genomic and epidemiological study, 
researchers concluded that the beta SARS-CoV-2 
variant had a selective advantage over previous vari-
ants from its increased transmissibility and immune 
escape abilities,107 108 whereas the E484K/N501K 
mutations enhanced the binding affinity of the beta 
variant and, hence, increased its transmissibility.109 
A retrospective cohort study of 22 068 participants 
found that infection with the beta variant was asso-
ciated with an increased risk of hospital admission 
compared with an infection with a non-variant of 
concern (hazard ratio 2.30).100 Overall, the beta 
variant is about 25-50% more transmissible, is asso-
ciated with a possible increase in risk of hospital 
mortality, and has enhanced resistance to anti-
body neutralisation compared with previous vari-
ants.107 108 110

Gamma variant P.1
The gamma variant is of the P.1 lineage and was first 
reported in November 2020 from travellers returning 
to Japan from Brazil, and was later discovered in 
Brazil.3 111 This variant contains the following S 
protein mutations of interest: K417T, E484K, N501Y, 
D614G, and H655Y.104 As mentioned, the N501Y 
and D614G mutations increase both ACE2 receptor 
binding affinity and infectivity of the virus.80 87 
The N501Y, K417N/T, and E484K mutation trinity, 
meanwhile, is shared by both gamma and beta vari-
ants, and is associated with enhanced infectivity 
and lethality compared with the N501Y mutation 
alone, possibly from tighter binding of the S protein 
to the ACE2 receptor due to increased electrostatic 
contribution.112 The gamma variant also includes 
the H655Y mutation, which was found to provide 
enhanced viral escape abilities from multiple human 
monoclonal antibodies in vitro.113

The gamma variant is associated with heightened 
transmissibility,109 110 114 with one study concluding 
that it possesses a 1.7-fold to 2.4-fold increased 
transmissibility compared with previous vari-
ants.115 Additionally, the wave of infections caused 
by the gamma variant in Brazil was associated with 
a 13% increase in death rate compared with the 
previous wave, suggesting the greater virulence 
held by the gamma variant than by previous viral 
strains.116
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A surveillance study from seven European coun-
tries concluded that the gamma variant was asso-
ciated with a higher risk of admission to hospital 
(adjusted odds ratio 2.6) and intensive care (2.2) 
when compared with cases of non-variants of 
concern.117 In Manaus, Brazil, the resurgence of 
covid-19, despite high seroprevalence, suggested 
that the gamma variant had a moderate resistance 
to neutralising antibodies,118 however, the variant 
has been shown to be significantly less resistant 
to neutralising antibodies than other variants, 
including the beta variant.119

Delta variant B.1.617.2
The delta variant, from the B.1.617.2 lineage, was 
first documented in India in October 2020 and was 
classified as a variant of concern on 11 May 2021.3 
The S protein mutations of interest P681R and 
D614G are also located in the delta variant104 and 
similarly affect its ACE2 receptor binding affinity and 
transmissibility.106 120 121 Unlike the E484K mutation 
seen in previous variants, the delta variant contains 
the E484Q mutation that, along with a L452R muta-
tion also located within the RBD, causes significantly 
higher affinity for the ACE2 receptor than the primary 
strain or the E484K mutation alone.122 The L452R 
mutation alone results in greater RBD-ACE2 receptor 
binding affinity and enhanced escape from neutral-
ising antibodies.123 124 Lastly, the delta variant 
contains the T478K mutation, located on the inter-
face between the S protein and the ACE2 receptor 
when bound, which increases the electrostatic poten-
tial of the S protein and enhances binding affinity.125

The delta variant quickly became the dominant 
variant in the UK,126 US,127 Europe, and around the 
world.128 The mutations present in the delta variant 
enhanced the transmissibility of the virus as a result 
of increased binding affinity to the ACE2 receptor.109 
The reproduction number of the delta variant is esti-
mated to be 97% greater than that of non-variants of 
concern or non-variants of interest, and about three 
times that of the alpha, beta, and gamma variants.110 
This increased reproductivity highlights the delta 
variant's competitive advantage over earlier ones and 
how it rapidly became the dominant strain globally. 
The fast replication rate of delta probably contributes 
to its increased transmissibility compared with the 
alpha, beta, and gamma variants. In a cohort study 
consisting of 167 infections, the delta variant could 
be detected by polymerase chain reaction within the 
first four days from exposure, whereas non-delta 
covid-19 infections could be detected after only six 
days.129 Furthermore, people infected with the delta 
variant were found to have significantly higher viral 
loads than people infected with other strains,129 
including the beta variant.130 The delta variant is 
also thought to better escape neutralisation, with 
the frequency of post-vaccination infections much 
higher for the delta variant than infections with the 

primary strain in India,131 and blood serum samples 
from individuals who had received one dose of a 
covid-19 vaccine showing minimal neutralisation of 
the delta variant.132

The delta variant is also associated with an 
increased disease severity. In Scotland, infection with 
the delta variant was associated with an increased 
risk of hospital admission (hazard ratio 1.85) 
compared with infection with the alpha variant.133 
Compared with infections involving non-variants 
of concern, North American retrospective cohort 
studies showed that infection with the delta variant 
was associated with a 108%134 or hazard ratio of 2.28 
(95% confidence interval 1.56-3.34) 100 increased 
risk of hospital admission, a 234% increased risk for 
admission to intensive care, and a 132% increased 
risk of death.134 Lastly, in a cross sectional study 
of 6238 individuals infected with the delta variant 
and 3262 infected with the primary strain in India, 
researchers found that the risk of death was around 
1.8 times higher for delta infections, while the delta 
variant also infected and induced symptoms in a 
greater proportion of younger people (age 0-19 
years) than did the primary strain.131

Omicron variant B.1.1.529
The omicron variant is of the B.1.1.529 lineage and 
was first discovered in November 2021 in South Africa 
and Botswana before being detected in multiple 
countries and classified as a variant of concern on 
26 November 2021.3 This variant contains over 30 S 
protein mutations,104 23 of which have been previ-
ously identified, including K417N, T478K, E484A, 
D614G, H655Y, P681H, and N501Y.135 Fifteen 
omicron mutations are contained within the RBD,17 
providing the variant with a substantially enhanced 
binding affinity to the ACE2 receptor.135 136 In addi-
tion, various single mutations in the RBD of the 
omicron variant impair the effectiveness of neutral-
ising antibodies, including K417N, N440K, G446S, 
E484A, Q493K, G496S, G339D, S371L, and S375F.17

The emergence of omicron has been followed by a 
surge of infections worldwide. Early data from South 
Africa have indicated that the proportion of covid-19 
infections caused by the omicron variant rose from 
3% in early October 2021 to 98% by early December 
2021.137 In late December 2021, meanwhile, the 
doubling time for the number of omicron infections 
was between two and three in the UK, US, and much 
of Europe,138 139 highlighting the transmissibility of 
this variant. The mutations in the omicron variant 
that enhance its binding affinity135 136 and ability to 
escape neutralising antibodies17 probably drove its 
rapid spread, as did its fast replication rate, which 
is around 70 times faster than the delta and primary 
strains.140 The reinfection rate of the omicron variant 
has also been found to be more than ten times 
higher than that of previous variants in studies from 
Scotland141 and South Africa.142
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The omicron variant has extensive but incomplete 
escape abilities from naturally acquired and vaccine 
induced immunity.143 144 Compared with the delta 
variant, the omicron variant needs around a 10-fold 
increased antibody titre to be neutralised, after vacci-
nation with either the ChAdOx1 nCoV-19 (Oxford-
AstraZeneca) or BNT162b2 (Pfizer-BioNTech) 
vaccines.145 Indeed, blood serum from individuals 
who had received two doses of the BNT162b2 vaccine 
showed more than a 25-fold reduction in neutral-
ising antibody titres against the omicron variant 
compared with the primary strain.146 T cell responses 
to the omicron variant could remain intact, however. 
Data from one preprint study indicated that 70-80% 
of the T cell response targeting the S protein was 
maintained in those individuals vaccinated or with 
previous infection, while the magnitude of T cells 
cross reacting with the omicron variant was similar to 
that of both delta and beta variants.147 Furthermore, 
data from Pfizer-BioNtech revealed that 80% of the 
epitopes in the omicron variant S protein that are 
recognised by CD8 T cells were not affected by the 
variant’s mutations, after two doses of the vaccine.146 
T cell responses induced from vaccination or prior 
infection could, therefore, provide some protection 
from severe disease.

Recent real world evidence has implied that 
omicron infection is milder in severity than previous 
variants. In an early South African analysis, the risk 
of hospital admission (adjusted odds ratio 0.2) was 
lower for omicron infections than for non-omicron 
infections,137 while omicron infected individuals 
had a lower risk of severe disease than delta infected 
individuals (0.3).137 In December 2021 in England, 
omicron infections were found to induce a greatly 
reduced risk of hospital admission or presentation 
for emergency care than delta infections.74 75 The 
decreased disease severity inflicted by the omicron 
variant could be due to its reduced capacity for 
replication in lung tissue, which was found to be 
more than 10 times less in lung tissue than the delta 
variant.140 Concordantly, the S protein of the omicron 
variant is less efficient at cleaving the ACE2 receptor 
and entering cells of lung organoids,145 and is also 
less able to cause fusion between lung cells than 
the S protein of the delta variant,145 which is often 
observed in severe covid-19. The reduction in repli-
cation within the lungs, and the preservation of T cell 
responses probably contribute to the milder disease 
exerted by the omicron variant.

The original Omicron variant is referred to as 
BA.1, due to the detection of several sublineages of 
the variant in circulation. While the emergence of 
BA.1 coincided with a wave of covid-19 infections 
around the world due to its higher transmissibility 
and increased risk of reinfection than previous vari-
ants,148 sublineages BA.2 and BA.3 are also circu-
lating, with BA.2 now responsible for an increasing 
number of the reported cases.149 The current data 

remains limited, however, the UK Health Security 
Agency report that BA.2 has an increased growth 
rate compared to BA.1 although this report did not 
find any evidence of a difference in vaccine effective-
ness between the two sublineages of the Omicron 
variant.150 Indeed, the REACT-1 study of covid-19 
transmission concluded that BA.2 had a daily growth 
rate additive advantage of 0.4 compared to BA.1.151 
The risk of hospitalisation does not seem to be higher 
for BA.2 infection in comparison to BA.1, however.152 
Emerging sublineages of the Omicron variant will be 
required to be monitored and reported upon for the 
foreseeable the future.

Although the omicron variant seems to manifest 
in mild disease, high infection numbers could still 
result in high rates of hospital admission and death 
in those individuals vulnerable to the virus. Omicron 
case numbers could be beginning to peak, however. 
In South Africa, a 29.7% decrease in weekly covid-19 
infections were reported in the week ending 25 
December 2021, compared with the previous week, 
and the omicron wave is said to have passed.153 
Concerningly, global case numbers continue to 
rise rapidly154 and many countries will continue to 
feel the pressure exerted by the wave of omicron 
infections.

Variants of interest
Lambda variant C.37
The lambda variant, of the C.37 lineage, was first 
documented in Peru in December 2020 and was 
designated as a variant of interest on 14 June 2021.3 
This variant contains the S protein mutations D614G, 
L452Q, and F490S.104 The L452Q mutation, located 
within the RBD, enhances binding affinity to the 
ACE2 receptor and increases the infectivity of the 
lambda variant,155 while, together L452Q and 
F490S, increasing the variant's resistance to vaccine 
elicited antibody neutralisation.155 Furthermore, 
F490S was identified as being a high risk mutation 
for enhancing abilities to escape neutralisation.155

Infectivity of the lambda variant could be higher 
than that of the alpha, gamma, and other D614G 
containing variants,156 suggesting that lambda could 
spread more rapidly and effectively. Additionally, 
compared with the primary SARS-CoV-2 virus, anti-
body neutralisation was found to decrease by 3.05-
fold for the lambda variant, higher than that for the 
gamma (2.33-fold) and alpha (2.03-fold) variants.156 
However, findings from a preprint study suggest that 
the lambda variant can be neutralised by monoclonal 
antibodies, and that current vaccines are protective 
against this variant.155

Mu variant B.1.621
The mu variant, from the B.1.621 lineage, was first 
documented in Columbia in January 2021 before 
receiving designation as a variant of interest on 30 
August 2021.3 This variant contains the S protein 
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mutations E484K, N501Y, D614G, and P681H.104 
Mu also contains the S protein mutation R346K, 
located within the RBD,104 157 which can induce 
large, binding, free energy changes that disrupt the 
binding of antibodies to the S protein and enhance 
the ability of the variant to escape neutralisation.158 
As discussed, the E484K, N501Y, D614G, and P681H 
mutations have been shown to increase transmis-
sibility80 85 87 105 109 112 120 121 and neutralisation 
escape,91 106 suggesting that the mu variant is likely 
to be more infectious than the primary strain.

Although the lambda and mu variants have been 
outcompeted by the delta and now omicron vari-
ants, the development and spread of these variants 
of interest will need to be closely monitored and 
studied to appreciate their pathogenicity, transmis-
sibility, and virulence.

Variants under monitoring
As of 25 January 2022, three variants under moni-
toring were listed by WHO3 (table 1).

Vaccines
The covid-19 pandemic prompted a rapid inter-
national search for safe and effective vaccines 
against the SARS-CoV-2 virus. In line with previous 
vaccine development, including for both SARS-CoV 
and MERS-CoV, the S protein was a key target for 
covid-19 vaccine development.159 As of 24 January 
2022, 33 approved vaccines are in use in 197 coun-
tries, with 10 vaccines approved for emergency use 
by WHO (online supplemental table).4 115 133 160–251 
As of 25 January 2022, 194 vaccines were in pre-
clinical development and 140 were in clinical devel-
opment.252 Numerous studies have explored the 
effectiveness of approved vaccines; however, large 
variations in vaccine effectiveness are reported. This 
variability is probably due to several factors in the 
studies, including the country, date, and population 
size of the study, as well as the SARS-CoV-2 variants 
circulating during the study period. These factors, 
along with how the effectiveness is reported, mean 
that it is difficult to compare vaccines and fully under-
stand how effective each vaccine is. Here, we review 
the covid-19 vaccines in use around the world.

BNT162b2 (Pfizer-BioNtech)
The BNT162b2 vaccine (Comirnaty) is a lipid nano-
particle formulated, nucleoside modified, mRNA 
vaccine encoding a modified SARS-CoV-2 S protein 
that was developed through a collaborative effort 
between Pfizer (New York, NY, USA) and BioNTech 
(Mainz, Germany).62 160 The vaccine was listed by 
WHO for emergency use on 31 December 2020253 
and, as of 24 January 2022, has been approved for 
use in 136 countries.4

Following BNT162b2 vaccination, a response 
based on T helper 1 (Th1) cells is observed along 
with elevated levels of tumour necrosis factor α, 

interferon gamma, and interleukin 2, compared with 
placebo.254 255 The highest neutralisation titres are 
found between seven and 14 days after the second 
dose,256 while those individuals previously infected 
with covid-19 showed a fourfold increase in anti-
body binding and an 18-fold increase in neutrali-
sation titres compared with previously uninfected 
individuals after two vaccine doses.257 The BNT162b 
vaccine is well tolerated, with limited reactogenicity. 
Redness and swelling at injection site have been 
reported, although mild or moderate pain at the 
injection site is the most commonly reported reaction 
to vaccination.256 Fatigue, muscle pain, headache, 
and chills are other commonly reported symptoms 
after BNT162b2 vaccination.258 The rate of systemic 
reactions after a second dose of BNT162b has been 
found to be 1.7 to two times higher than after a first 
dose, possibly suggesting an immunity boosting 
effect.259 Many safety reports of this vaccine describe 
no serious adverse events,256 259 260 but a large study 
of 884 828 pairs of individuals, split 1:1 based 
on vaccination status, found that BNT162b2 was 
associated with an increased risk of myocarditis, 
lymphadenopathy, appendicitis, and herpes zoster 
infection.261 Although rare, allergic reactions or 
anaphylaxis has also been reported after BNT162b2 
vaccination.258 The online supplemental table 
outlines clinical trial and real world data for vaccine 
effectiveness.115 133 160–251

ChAdOx1 nCoV-19 (Oxford-AstraZeneca)
The ChAdOx1 nCoV-19 vaccine (AZD1222, 
Vaxzevria) is a non-replicating vector of the chim-
panzee adenovirus ChAdOx1, modified to encode 
the SARS-CoV-2 S protein.262 Developed through 
collaboration between the University of Oxford and 
AstraZeneca (Cambridge, UK), this vaccine was listed 
by WHO for emergency use on 16 February 2021,253 
and has been approved for use in 137 countries, as of 
24 January 2022.4 WHO has granted emergency use 
listing to two versions of this vaccine (AZD1222 and 
Covishield) in order to use Covishield as part of their 
worldwide COVAX initiative, which is being produced 
by the Serum Institute of India and AstraZeneca-
SKBio (Republic of Korea).263

Following ChAdOx1 nCoV-19 vaccination, 
substantial antibody production (predominantly of 
IgG1 and IgG3 subclasses) is seen, as well as a Th1 
cell response with increased expression of interferon 
γ and tumour necrosis factor α.122 264 One dose of 
the ChAdOx1 nCoV-19 vaccine has been shown to 
produce a neutralising antibody response in 91% 
of participants, while a second dose has resulted 
in 100% of participants producing neutralising 
antibodies.265 Mild and moderate itchiness, pain, 
redness, swelling, tenderness, and warmth are 
common local reactions, while chills, fatigue, fever, 
headache, muscle ache, and nausea are commonly 
reported systemic reactions after vaccination.265 

https://dx.doi.org/10.1136/bmjmed-2021-000040
https://dx.doi.org/10.1136/bmjmed-2021-000040
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Rare symptoms, including severe chest pain, nasal 
bleeding, and allergic reactions have also been 
reported after vaccination.266 The online supple-
mental table outlines clinical trial and real world 
data for vaccine effectiveness.115 133 160–251

Ad26.COV.2.S (Johnson & Johnson)
The Ad26.COV.2.S vaccine is a non-replicating 
adenovirus vector, modified to contain the SARS-
CoV-2 S protein in a pre-fusion stabilised conforma-
tion and requires only one dose.161 This vector was 
developed from the recombinant human adenovirus 
type 26 by the Janssen pharmaceutical company 
Johnson & Johnson (New Brunswick, NJ, USA),161 
and was listed by WHO for emergency use on 12 
March 2021.253 As of 24 January 2022, Ad26.COV.2.S 
has been approved for use in 106 countries.4

The Ad26.COV.2.S vaccine induces the produc-
tion of a variety of antibody subclasses, such as 
immunoglobulins G, M, and A, and promotes several 
non-neutralising antibody responses, including 
the activation of CD4 and CD8 Th1 cells and the 
production of interferon γ, interleukin 2, and tumour 
necrosis factor α.267 268 Although neutralising anti-
body responses induced by the vaccine are reduced 
against SARS-CoV-2 variants, non-neutralising 
antibody and T cell responses have been found to 
be preserved against variants of concern,267 and 
a prior covid-19 infection significantly increases 
levels of S protein binding antibodies, antibody 
dependent cellular cytotoxicity, and neutralising 
antibodies against variants of concern (including 
the beta and delta variants).269 Ad26.COV.2.S is safe 
and well tolerated. In a large clinical trial, where 19 
630 participants received Ad26.COV2.S and 19 691 
received placebo, headache, fatigue, and myalgia 
were the most common systemic reactions, while 
pain at the injection site was the most common local 
reaction after vaccination.161 Like other vaccines, 
Ad26.COV.2.S has been associated with serious 
adverse events, such as allergic reactions and cere-
bral venous sinus thrombosis; however, these 
events are rare.258 270 The online supplemental table 
outlines clinical trial and real world data for vaccine 
effectiveness.115 133 160–251

mRNA-1273 (Moderna)
The mRNA-1273 vaccine (Spikevax) developed by 
Moderna (MA, USA) is a lipid-nanoparticle encap-
sulated mRNA vaccine expressing the SARS-CoV-2 
S protein that has been pre-fusion stabilised.162 This 
vaccine gained WHO approval for emergency use 
listing on 30 April 2021,253 and as of 24 January 
2022, has been approved for use in 85 countries.4

The mRNA-1273 vaccine elicits a strong CD4 Th1 
cell response, with tumour necrosis factor α, inter-
feron γ, and interleukin 2 expression increased 
following vaccination,271–273 while neutralising 
antibody titres have been shown to increase up to 

until around 28 days after the second vaccine dose, 
and remain consistently high after that.274 Fatigue, 
muscle pain, headache, chills, joint pain, and pain/
reaction at the injection site are common adverse 
effects caused by the mRNA-1273 vaccine,162 258 
while serious adverse effects are often avoided.162 274 
Serious adverse events, including allergic reaction 
and anaphylaxis, are rare but not inconceivable 
after mRNA-1273 vaccination.258 The online supple-
mental table outlines clinical trial and real world 
data for vaccine effectiveness.115 133 160–251

Other covid-19 vaccines listed by WHO for 
emergency use
In addition to the covid-19 vaccines described above, 
five other vaccines have gained emergency use listing 
by WHO. Firstly, the Sinopharm BBIBP-CorV covid-19 
vaccine (Covilo) was developed by the Beijing Bio-
Institute of Biological Products, a subsidiary of China 
National Biotec Group, and was approved by WHO 
for emergency use on 7 May 2021.253 This vaccine is 
made from the SARS-CoV-2, 19nCoV-CDC-Tan-HB02 
strain, which is produced in Vero cells, inactivated 
by β propiolactone, and then purified and absorbed 
with aluminium hydroxide.275

Next, the CoronaVac vaccine, developed by Sinovac 
Biotech (Beijing, China), was listed for WHO emer-
gency use on 1 June 2021.253 Like the BBIBP-CorV 
vaccine, this vaccine is a Vero cell based, aluminium 
hydroxide adjuvanted, beta propiolactone inacti-
vated vaccine, but it is based on the SARS-CoV-2 
CZ02 strain.276 Covaxin (BBV152) is a whole virion 
inactivated, SARS-CoV-2 vaccine formula developed 
by Bharat Biotech International (India),277 which 
gained approval for emergency use listing from WHO 
on 3 November 2021.278

Lastly, Covovax and its originator, Nuvaxovid (NVX-
CoV2372), were both developed by Novavax (MD, 
USA) and the Coalition for Epidemic Preparedness 
Innovations (Oslo, Norway), and were listed by WHO 
for emergency use on 17 and 21 December 2021, 
respectively.279 280 Both vaccines are manufactured 
by the same technology, and consist of a recombi-
nant SARS-CoV-2 S protein nanoparticle combined 
with the adjuvant Matrix-M as a coformulation.281 
These vaccines produce similar immune responses 
to those already discussed. Studies assessing the 
efficacy of these vaccines are outlined in the online 
supplemental table.115 133 160–251

Other approved covid-19 vaccines
In addition to the vaccines that have received emer-
gency use listing from WHO, vaccines around the 
world have been developed, tested, and approved to 
prevent covid-19 infection. As of 24 January 2022, 
33 vaccines, including those described above, have 
been approved in at least one country.4 The remaining 
23 approved vaccines are outlined in table 2.

https://dx.doi.org/10.1136/bmjmed-2021-000040
https://dx.doi.org/10.1136/bmjmed-2021-000040
https://dx.doi.org/10.1136/bmjmed-2021-000040
https://dx.doi.org/10.1136/bmjmed-2021-000040
https://dx.doi.org/10.1136/bmjmed-2021-000040
https://dx.doi.org/10.1136/bmjmed-2021-000040
https://dx.doi.org/10.1136/bmjmed-2021-000040
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Table 2 | Summary of vaccine efficacy across vaccines approved by WHO for emergency use

Vaccine and vaccine type
Recommended dose and 
administration References

Median vaccine effectiveness (range)

Vaccine efficacy against One dose Two doses

Pfizer/BioNtech (BNT162b2) – mRNA. Two doses (30 µg, 0.3 mL 
each) intramuscu-
larly (deltoid) with a 
recommended interval 
of 21–28 days between 
doses.

160 163–207 Infection 51% (-72–91.7%) 91.15% (25.6%–
98.1%)

Infection – Adolescents 91.1% 99.55% (92%–100%)

Infection – Alpha 59% (47.5%–66%) 87.5% (67%–97.4%)

Infection – Beta 60% 77% (49%–97.4%)

Infection - Gamma 60% 77% (61%–84%)

Infection – Delta 56.5% (35.6%–65.5%) 80.5% (52.4%–88%)

Hospitalisation 74% (35%–97%) 94.8% (85%–99%)

Hospitalisation – Alpha 81.5% (80%–83%) 95%

Hospitalisation – Delta 86% (78%–94%) 96%

ICU admission/severe 
infection

69.65% (62%–77.3%) 97.3% (86%–99.2%)

Death 76% (43.95%–96.3%) 96.72% (91.3–98.6)

Oxford University/ AstraZeneca 
(AZD1222) - Non-replicating adenovirus 
viral vector (ChAdOx1).

Two doses (0.5 mL each) 
intramuscularly (deltoid) 
with a recommended 
interval window of 8 to 
12 weeks.

133 165 168 170 171 181 192 202 

203 208–219
Infection 50% (15%–64%) 62.9% (-74.2–91.1%)

Infection – Alpha 63% (48.7%–64%) 73% (70.4%–79%)

Infection – Delta 46% (30%–67%) 67% (60%–71%)

Hospitalisation 79.5% (43%–97%) 90% (69.6%–100%)

ICU admission/severe 
infection

54% (53%–62%) 93% (69.2%–100%)

Death 86.5% (49.3%–99.2%) 93% (72.1%–99.8%)

Johnson & Johnson (Ad26.COV2.S) - 
Recombinant, replication-incompetent 
adenovirus serotype 26 (Ad26) vector.

One dose (0.5 mL) intra-
muscularly (deltoid).

161 179 205 220–224 Infection 74.2% (27.4%–91%) NA

Hospitalisation 83.1% (33.5%–95.7%) NA

ICU admission/severe 
infection

81.05% (56%–92.5%) NA

Death 69.7% (48.9%–90.5%) NA

Moderna (mRNA-1273) - mRNA Two doses (100 µg, 
0.5 mL each) intramus-
cularly (deltoid) with a 
recommended interval of 
28 days between doses.

162 168 169 173 175 178 179 181 

182 195 196 201 205 225–231
Infection 81.7% (45.8%–95%) 86.9% (52.5%–98.6%)

Infection – Alpha 82.3% (0%–94%) 95% (74.7%–99.2%)

Infection – Beta 47.9% (0%–77%) 95.3% (94.2%–96.4%)

Infection – Delta 76% (72%–79.7%) 83% (50.6%–86.7%)

Hospitalisation 89% (79%–96%) 96.2% (91.6%–97.3%)

ICU admission/severe 
infection

44.5% (0%–92.1%) 98.2% (78.6%–100%)

Death 44.5% (0%–92.1%) 100% (97.9%–100%)

Sinopharm BBIBP-CorV - Aluminium-
hydroxide-adjuvanted, inactivated whole 
virus vaccine

Two doses (0.5 mL) 
intramuscularly (deltoid) 
with a recommended 
interval of 3 weeks 
between doses.

232–237 Infection 14.1% (13.8%–15.3%) 56.85% (45%–78.1%)

Hospitalisation −20% 72% (44.5%–79.8%)

ICU admission/severe 
infection

8.4% (3.7%–100%) 92.2% (69.5%–100%)

Death 27.9% (25.5%–45.2%) 92.25% (63%–97.1%)

Sinovac-CoronaVac - Aluminium-
hydroxide-adjuvanted, inactivated whole 
virus vaccine

Two doses (0.5 mL) 
intramuscularly (deltoid) 
with a recommended 
interval window of 2 to 
4 weeks.

115 218 219 232 238–244 Infection 46.4 (-0.8–94%) 49.9% (24.7%–83.5%)

Hospitalisation 21.75% (6.5%–40.3%) 72.6% (39.1%–100%)

ICU admission/severe 
infection

45.3% (28.1%–67.74%) 85.39% (58.1%–
100%)

Death 66.15% (13.1%–99.3%) 61.2% (48.9%–86.7%)

Bharat Biotech – Covaxin – whole 
virion inactivated virus vaccine

Two doses (0.5 mL) intra-
muscularly (deltoid) with 
a recommended interval 
window of 28 days.

216 217 245–247 Infection 27.5% (-1–53%) 68.3% (27%–93%)

Hospitalisation 59.5% (43%–76%) 85.5% (83 – 88)

ICU admission/severe 
infection

62% 93.2% (93%–93.4%)

Novavax – NVX-CoV2373 (Nuvaxovid)
orSerum Institute of India – COVOVAX 
(Novavax formulation - recombinant 
SARS-CoV-2 S protein nanoparticle 
as a coformulation with the adjuvant 
Matrix-M

Two doses (0.5 mL) intra-
muscularly (deltoid) with 
a recommended interval 
of 3–4 weeks.

248–251 Infection NA 89.3% (49.4%–96.4%)

This table reports the median (and range) of vaccine effectiveness values from the studies that are outlined in greater detail in the online supplementary table. Values were included for averaging 
regardless of size of study population, study population age, or time since vaccine, however, these details can be found in the online supplemental table 2.

Waning immunity and boosters
Throughout the covid-19 pandemic, emerging 
variants have threatened the effectiveness of 
vaccines (online supplemental table).115 133 160–251 
Simultaneously, waning immunity after vaccina-
tion questions how long vaccines remain effective 
and highlights the importance of booster doses. 
Indeed, protection against SARS-CoV-2 after vacci-
nation decreases over time, both in terms of antibody 

titres282–284 and vaccine effectiveness.163 285–287 
However, cellular responses, such as T cell immunity, 
could persist for longer periods.288 289 With a gradual 
loss of protection from SARS-CoV-2 after covid-19 
vaccination, many countries are now rolling out 
booster programmes with the aim of raising levels of 
immunity.

Since booster programmes began, evidence that a 
booster vaccine dose enhances antibody and cellular 

https://dx.doi.org/10.1136/bmjmed-2021-000040
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responses has accumulated. After a third dose of 
vaccine, neutralising antibody titres increase consid-
erably290–293 and, in some cases, to higher levels 
than after the primary two doses.290 Additionally, 
boosters have also been found to increase neutral-
ising antibody titres against the beta, gamma, delta, 
and omicron variants.291 294 295 T cell response is 
also enhanced after a third dose.292 296 297 Together, 
enhancing neutralising antibody and cellular 
responses with a booster vaccine dose is likely to 
provide a greater level of protection than relying on 
immunity built through a primary regimen.

The antibody and cellular responses observed 
after booster vaccinations have been found to corre-
late with increased levels of protection against 
SAR-CoV-2 infection and severe illness. On 30 July 
2021, Israel was the first country to offer a third 
dose of BNT162b2 to certain groups. Subsequently, 
several observational studies have shown that those 
individuals who received a third vaccine dose were 
significantly less likely to be infected or have severe 
disease with SARS-CoV-2 than those who received 
two doses.298–301 In those individuals aged 60 or 
older, an observational study showed that the rate 
of severe covid-19 and death was lower in the group 
that received a booster by a factor of 17.9 and 14.7, 
respectively, than in the group that did not receive a 
booster.302 Booster doses of covid-19 vaccine have 
been shown to be effective against infection with 
the delta303 304 and, to a lesser degree, omicron vari-
ants75 145 146 304–306 despite the numerous mutations 
harboured by these variants. Overall, increasing 
evidence is pointing towards the benefits of booster 
doses of covid-19 vaccines; therefore, it is expected 
that booster programmes will continue to roll out 
across the globe. Based on current evidence, the 
US Centers for Disease Control and Prevention 
recommend that the time interval for receiving a 
booster after the primary regimen is five months 
for the BNT162b2 primary regimen, six months for 
the mRNA-1273 primary regimen, and two months 
for the Ad26.COV2.S primary regimen.307 As the 
pandemic progresses and new variants emerge, 
variant specific vaccines could require develop-
ment, with pre-clinical studies demonstrating their 
efficacy308 and pharmaceutical companies, such as 
Pfizer, advancing in variant specific vaccine devel-
opment.146 Policy makers should also consider when 
vaccine boosters will be given in the future and who 
will receive booster doses in the long term.

Emerging treatments
As the virus becomes better understood, the ther-
apeutic strategy against covid-19 develops. Over 
2000 ongoing trials are currently assessing certain 
treatment strategies for covid-19.309 Recently, anti-
viraldrugs including molnupiravir (Lagevrio) and 
nirmatrelvir/ritonavir (Paxlovid) have been approved 
in the UK,310 311 US,312 313 and Europe314 315 for 

treating covid-19 in certain risk groups. Similarly, 
sotrovimab (Xevudy), a monoclonal antibody treat-
ment, has recently been approved for use in treating 
certain patients with covid-19 in the UK,316 US,317 
and Europe.318 These drugs have been shown to 
be effective at preventing poor clinical outcomes, 
including death, in those individuals vulnerable to 
severe covid-19 infection. Other drug treatments, 
such as janus kinase inhibitors, corticosteroids, and 
anti-inflammatory drugs, have contrasting evidence 
to support their use; therefore, the use of specific 
drugs is either recommended for or against by certain 
treatment and management guidelines, which are 
discussed below.

Guidelines
The treatment and management of covid-19 is a 
continually evolving topic; however, health author-
ities have published and continue to update guide-
lines and recommendations for treating covid-19. 
The WHO living guideline on covid-19 and treat-
ment is regularly updated, with the latest version 
(published on 14 January 2022) containing 14 
recommendations on covid-19 treatment.319 The UK 
National Institute for Health and Care Excellence320 
and Medicines and Healthcare products Regulatory 
Agency321 provide updated guidelines on covid-19 
treatment, and in Europe, the ECDC regularly 
publishes several guidelines providing recommen-
dations on a range of covid-19 related topics.322 The 
US National Institutes of Health323 and Centers for 
Disease Control and Prevention324 provide guidance 
on covid-19 treatment and management, with the 
Centers for Disease Control and Prevention supplying 
guidelines for specific groups such as employers, 
schools, health departments, and governments.

Considerations for the future
Novel infectious diseases and pandemics are an 
unpredictable but inevitable aspect of nature; there-
fore, we should learn from past pandemics to prepare 
for future ones. Firstly, the covid-19 pandemic has 
highlighted and amplified the existing inequalities 
within society,325 with Black ethnicity, social disad-
vantage, and unemployment being risk factors for 
covid-19 infection326 and those groups most econom-
ically deprived found to be particularly vulnerable.327 
These inequalities need resolving in order for us to be 
better prepared for similar situations in the future.

Next, to progress through a pandemic we should 
be racing against the pathogen, and not against each 
other. This statement becomes apparent when consid-
ering the problems faced by countries seeking out 
personal protective equipment,328 and the vaccine 
inequity seen worldwide,329 with developed coun-
tries often better placed to be able to purchase these 
items. Initiatives such as WHO’s COVAX programme 
are vital to protect the most vulnerable groups and 
reduce the global spread of disease. In October 
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Questions for future research
⇒⇒ How will the SARS-CoV-2 virus mutate in the future, and which mutations will give a competitive advantage 

that will allow the virus to inflict disease to many people?
⇒⇒ How do we keep up with the rapidly changing SARS-CoV-2 environment and ensure that vaccines remain 

effective?
⇒⇒ How do we manage the booster programme and when will future booster vaccinations be required in order 

to maintain high levels of immunity?
⇒⇒ How can we learn from the current and past pandemics so that we are better prepared for the next one?

Patient involvement
The BMJ did not request patient input on this article when it was commissioned.

2021, the UK government released a publication 
outlining where the policies implemented to reduce 
the impact of the covid-19 pandemic failed, and the 
lessons learnt from these failures.330 The publication 
then presents conclusions and recommendations 
on how to enhance pandemic preparedness, lock-
down and social distancing measures, testing and 
contact tracing, social care, and vaccines. In coun-
tries such as the UK, US, and much of Europe, where 
the covid-19 death rate has been high, steps need to 
be taken and lessons need to be learnt in order to be 
better prepared for the next pandemic. The respon-
sibility of improving pandemic response lies with 
policy makers, the medical/scientific community, 
and the public, and will ultimately require a collabo-
rative approach.

However, certain aspects of the response to the 
covid-19 pandemic have been a triumph. One major 
victory was the rapid development and rollout of 
vaccines,331 which continue to be effective. The 
rollout of rapid testing and quarantine for infected 
individuals was also important to at least disrupt 
the spread of the virus, especially given that asymp-
tomatic individuals can contribute to the spread. 
Furthermore, the swift identification and sharing of 
knowledge of SARS-CoV-2 variants between coun-
tries should be applauded. Lessons can be learnt from 
countries where covid-19 was controlled. In Taiwan, 
authorities managing the pandemic as directed by 
pre-covid-19 pandemic plans prompted an imme-
diate response. Screening of all airline passengers 
arriving from Wuhan and high risk areas, restricting 
entry for non-Taiwanese citizens, 14 day quaran-
tine periods for contacts of people with confirmed 
covid-19 or returning travellers, a ban on large gath-
erings, and widespread mask wearing were some of 
the quickly implemented management strategies.332 
New Zealand implemented similarly effective restric-
tions, with the addition of a national lockdown.332 
Many of the pandemic control components that kept 
infection and death numbers low in Taiwan and 
New Zealand could be adopted by other countries in 
the future and could lead to improved outcomes in 
terms of protecting the health of individuals and the 

health and wellbeing of the country. Overall, much 
can be learnt from the covid-19 pandemic and, as 
we emerge from it, the inspection of which policies 
failed and which succeeded is imperative.

Conclusion
Covid-19 remains prevalent and life threatening. 
Although the rollout of vaccines has been successful, 
attaining a high global vaccination coverage and 
ensuring that all healthcare systems have the capacity 
to cope with seasonal waves are essential. With the 
omicron variant highly prevalent, we must continue 
to learn, develop therapeutics, and remain vigilant 
to new variants of concern. Here, we have provided 
an overview of the virology of SARS-CoV-2, including 
the mutations harboured by variants of the virus and 
how these mutations effect its transmissibility and 
virulence. We have also discussed the vaccines that 
have been developed and used around the world 
and have provided evidence supporting the rollout 
of booster doses. Future priorities should focus on 
continuing vaccination programmes and developing 
variant specific vaccines as new mutations emerge. 
This strategy, along with the expansion of our knowl-
edge of SARS-CoV-2 and which treatments are most 
successful to treat covid-19 infections will ultimately 
lead to favourable outcomes.
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