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ABSTRACT: Solid polymer electrolytes (SPEs) have the potential
to improve lithium-ion batteries by enhancing safety and enabling
higher energy densities. However, SPEs suffer from significantly
lower ionic conductivity than liquid and solid ceramic electrolytes,
limiting their adoption in functional batteries. To facilitate more
rapid discovery of high ionic conductivity SPEs, we developed a
chemistry-informed machine learning model that accurately predicts
ionic conductivity of SPEs. The model was trained on SPE ionic
conductivity data from hundreds of experimental publications. Our
chemistry-informed model encodes the Arrhenius equation, which
describes temperature activated processes, into the readout layer of
a state-of-the-art message passing neural network and has significantly improved accuracy over models that do not encode
temperature dependence. Chemically informed readout layers are compatible with deep learning for other property prediction tasks
and are especially useful where limited training data are available. Using the trained model, ionic conductivity values were predicted
for several thousand candidate SPE formulations, allowing us to identify promising candidate SPEs. We also generated predictions
for several different anions in poly(ethylene oxide) and poly(trimethylene carbonate), demonstrating the utility of our model in
identifying descriptors for SPE ionic conductivity.

■ INTRODUCTION
Solid polymer electrolytes (SPEs) have been studied for
decades as potential replacements for liquid organic electro-
lytes commonly used in batteries.1−3 SPEs can be engineered
to offer several advantages over liquid electrolytes such as
improved electrochemical stability4 and decreased flamma-
bility,5 advantages that are becoming more important as the
demand for energy storage rapidly increases.6 However,
compared to conventional organic liquid electrolytes, SPEs
suffer from low ionic conductivity, limiting their use in
practical devices.7,8 For application in practical lithium-ion
batteries, electrolyte ionic conductivity must be at least 10−3 S/
cm at room temperature,9,10 whereas state-of-the-art polymer
electrolytes have only reached on the order of 10−4 S/cm at
room temperature.11−13 While experimental and computation
efforts have yielded improved ionic conductivity and better
understanding of SPE systems,14 the cost in time and materials
of experimental characterization along with the complex nature
of novel polymer development have limited progress toward
functional SPEs.9,15

In recent years, machine learning (ML) has been integrated
into materials design workflows as a complement to experi-
ments and simulations to accelerate discovery of a wide range
of materials,16−18 including lithium-ion batteries.19 ML models
can provide inexpensive and accurate materials property

predictions which can be used to guide experimental efforts
toward materials likely to meet desired design criteria.20 While
the complexity of polymer systems can pose challenges to ML
model development, recent work has leveraged ML to advance
materials discovery for polymer separation membranes,21

polymer solar cells,22 thermally conductive polymers,23,24 and
polymer dielectrics.25 Polymer electrolytes are no exception,
with several works applying ML to improve or analyze
molecular dynamics (MD) simulations on polymer electro-
lytes.26−31 For example, Xie et al. developed an ML model that
corrected properties calculated from unconverged 5 ns MD
simulations of SPEs to give accuracy similar to properties
calculated from converged simulations, demonstrating the
ability of ML to enhance and accelerate MD property
screening.28 In addition to application of ML to MD
simulation workflows, a few works have developed machine
learning models trained on experimental data,32,33 although
data availability often limits progress. In one work, an ML
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model was trained to predict ionic conductivity in a PEO-
LiPF6 electrolyte while varying salt, plasticizer, and filler
concentrations.32 The model predicted well for the specific
PEO-LiPF6 system but was not able to generalize to other
systems, due to a lack of diverse training data. In another work,
Hatakeyama-Sato et al. developed an ML model trained on
manually collected experimental data to predict ionic
conductivity in doped glassy lithium conducting polymers,
although the model’s ability to generalize to other types of
polymer electrolytes was not reported, again likely in part due
to the difficulty of gathering training data.33 While efforts to
automate extraction of experimental materials properties data
sets with ML are progressing,34−36 these efforts have not yet
been applied to SPEs.
Beyond issues of data scarcity, many previous works

attempting to predict materials properties of SPEs rely on
models that are trained on molecular fingerprints37−40 to
predict certain properties. Recently, models have been
developed that predict materials properties using molecular
structures directly as inputs.41−43 These models are differ-
entiable end to end, which allows them to learn optimal
weights to featurize molecules for specific prediction tasks
without relying on fingerprinting methods that may lose
relevant information. While traditional fingerprinting schemes
have proven useful for certain property prediction tasks,21,23−25

Yang et al. showed that, given sufficient training data, learned
representations outperformed traditional fingerprints across a
variety of prediction tasks.44 Another useful development has
been the incorporation of known physical or chemical
constraints into ML models, which has been shown to
improve accuracy and generalizability of model predic-
tions.45−47 For example, Karpatne et al. developed a physics-
informed ML model to model lake water temperature.45 They
showed that an ML model trained with the constraint that
water density must increase monotonically with depth
outperformed the same ML model with the constraint
removed.

In this work we build on recent advances in machine
learning to develop a chemistry-informed ML model that
predicts SPE ionic conductivity based on the electrolyte
molecular structure and composition alone. To train our
model, we gathered the largest known data set of SPE ionic
conductivity values from 217 experimental publications. Our
model leverages a fully differentiable message passing
architecture44 to learn optimal representations of the molecular
components of SPEs coupled to a chemically informed
Arrhenius regularization built into the model. We used our
model to screen over 20,000 potential SPEs composed of
various commonly used lithium salts with synthetically
accessible polymers48 which had not previously been evaluated
as SPEs, identifying promising polymers for future exper-
imental characterization. We also screened several different
lithium salts with two polymers for which ample training data
were available, ensuring accurate predictions from the model.
From these predictions, we analyzed the effect of different
anion descriptors on ionic conductivity and found that
changing the polymer structure leads to reversed correlations
between predicted ionic conductivity and anion descriptors
such as molecular weight or interaction strength.

■ METHODS
Experimental Data Set Extraction. A training set of

experimental measurements of SPE ionic conductivity was
extracted from three sources. The first source was a corpus of
135 publications curated from existing SPE literature from
which we extracted 7,133 ionic conductivity data points. Each
publication was screened for indications of rigorous exper-
imental practice according to criteria outlined in Supporting
Information (SI) Table S1. Ionic conductivity values were
extracted manually from selected publications, along with
associated electrolyte formulation information, which consisted
of polymer structure, polymer molecular weight, salt structure,
and salt concentration. Additional data, such as glass transition
temperature, dispersity, and type and concentration of ceramic

Figure 1. Diagram of ChemArr model architecture. The model uses the message passing neural network (MPNN) from Yang et al.44 to featurize
the polymer and salt structures, while numeric features are concatenated to the molecular feature vector resulting from the MPNN. The
penultimate layer of the model outputs the parameters of the Arrhenius equation, which are then passed through the Arrhenius equation with the
input temperature to generate an ionic conductivity prediction.
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or organic additives, were also extracted where available. In
addition to the data manually collected, we extracted data from
two previously published data sets,33,49 from which we
obtained 6,250 data points. We checked the publications
cited in each data set and extracted data from publications
meeting the criteria in Table S1.
Machine Learning Model Development. A machine

learning model, ChemArr, was developed using the message
passing neural network (MPNN) architecture of the
Chemprop model released by Yang et al.44 The entire
MPNN is differentiable, allowing message passing layers to
learn optimal weights to transform molecular graphs into
numerical vectors. The ChemArr model utilizes five input
features: (1) the polymer structure as a molecular graph, (2)
the salt structure as a molecular graph, (3) the logarithm of the
polymer molecular weight, (4) the salt concentration in units
of moles of salt per kilogram of polymer, and (5) temperature.
Each polymer was represented as an oligomer with at least 50
heavy atoms capped by methyl end groups. ChemArr uses
Chemprop’s original message passing architecture, which was
used to generate numeric feature vectors from the polymer and
salt molecular graphs in each SPE. The oligomer and salt
molecular graphs were input together as a disconnected graph,
allowing the MPNN to learn the representation of polymer and

salt together. Following featurization by the MPNN, the salt
concentration and polymer molecular weight values were
concatenated to the numeric molecular feature vector which
was then passed through a feedforward neural network. The
final layers of the feedforward network were modified such that
the penultimate layer outputs the parameters ln (A) and Ea of
the Arrhenius equation for ionic conductivity, which in the
logarithmic linearized form is

= A
E

RT
ln( ) ln( ) a

(1)

where σ is ionic conductivity, A is the prefactor, Ea is activation
energy, R is the ideal gas constant, and T is temperature. (The
logarithmic linearization of the Arrhenius equation was used
since the values of A and σ span several orders of magnitude.)
The final layer of the model has fixed weights that replicate the
Arrhenius equation to calculate ln(σ) from model outputs
ln(A) and Ea, as well as the temperature T of the input. Figure
1 shows a diagram of the model. ChemArr was trained using a
mean squared error loss function.
To estimate the error for predictions of individual electrolyte

formulations, we implemented a modified version of a
distance-based error approach described by Liu et al.,50 in
which error is estimated as a function of the chemical distance

Figure 2. (a) Representation of the polymer space of the experimental data set. The x and y axes show the principal components of the polymer
structures, which were generated using UMAP,54 a dimensionality reduction technique, on 128-bit Morgan fingerprints of the polymer structures.
Several structures are labeled to illustrate the diversity of the training data. Points are colored according to experimental ionic conductivity at 80 °C.
(b) Distribution of ionic conductivity values for all data in the experimental data set. Data are separated into temperature ranges. (c) Distribution of
the 20 most prevalent salts in the experimental data set grouped by chemically similar anions.
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between a single predicted data point and the training data
(see the SI for details).
Machine Learning Model Benchmarks. ChemArr was

benchmarked against Yang et al.’s Chemprop model and
XGBoost,51 a gradient boosted decision tree algorithm, both of
which were trained to predict ionic conductivity without
incorporating the Arrhenius equation. The Chemprop model
used the same input structure as ChemArr, except that
temperature was concatenated to the MPNN feature vector
with the other numerical inputs rather than being used in the
final Arrhenius layer. In the XGBoost model, the polymer and
salt for each electrolyte were represented with 256-bit Morgan
fingerprints40 which were concatenated with polymer molec-
ular weight, salt concentration, and temperature.
During benchmarking, 10-fold cross-validation was per-

formed. In each fold, the data were split into separate train,
validation, and test splits, where each test and validation set
contained only polymers that did not appear in the training set.
To select the test and validation data for each fold, we selected
10% of the polymer structures for the test set and 20% of the
structures for the validation set. Since our data sets contain a
different number of data points for each polymer structure, we
selected combinations of structures such that the test and
validation sets contained as close to 10% and 20% of the total
data, respectively, as possible. In each cross-validation fold, five
independent models with different random initializations were
trained on data from the remaining 70% of the polymer
structures and error statistics were calculated using the average
of the five models. The process was repeated 10 times so that
each polymer appeared in a test set only once. The only
exception was that polyethylene-oxide (PEO) containing data
were excluded from all test sets to assess the ability of the
model to predict non-PEO SPEs, for which experimental data
are sparsely available.
Model performance was assessed with two metrics, mean

absolute error and the Spearman rank correlation coefficient,
or Spearman R. Mean absolute error averages the absolute
error of all test set predictions, giving a general picture of how
close model predictions are to the ground truth values.
Spearman R measures how well the model ranks different
values, regardless of how close the model predictions are to the
ground truth.52 Spearman R ranges from −1, indicating an
exact reverse rank order, to 1, indicating exactly matched rank
orders. Although interpretations vary, values at or above 0.6 are
considered to indicate a strong rank correlation.53

Novel Electrolyte Screening. An exploration of potential
novel polymer electrolytes was conducted by first collecting a
screening set of 820 polymers from PolyInfo,48 a database
containing experimental data for over 13,000 synthetically
available polymers. Candidate polymer electrolyte formulations
were generated by combining polymers from the screening set
with 10 commonly used lithium salts at 3 different salt
concentrations, yielding over 20,000 unique formulations for
screening. Ionic conductivity predictions and error estimates
for the screening set were made with ChemArr trained on the
entire experimental data set. Screening was also done for 20
lithium salts with different anions in PEO and poly-
(trimethylene carbonate) (PTMC) to investigate how ionic
conductivity is affected by the anion in the electrolyte and how
anion effects differ in different polymers. In each polymer,
formulations were screened at 1.5 mol of salt per kg of polymer
at a temperature of 25 °C.

■ RESULTS AND DISCUSSION
Polymer Electrolyte Ionic Conductivity Data Set.

Figure 2a shows a projection of the polymer space covered
by our experimental data set. The projection provides a
qualitative visualization of our data set, allowing us to view
regions that are densely and sparsely populated, indicating
structural motifs that are more or less common in our
experimental data set. The large cluster of points in the right
area of Figure 2a captures the PEO-like polymers in the data
set. Much experimental research has focused on PEO-like
polymers, and the composition of our training data reflects
that. Outside of PEO-like polymers, the projection shows a
broad coverage of diverse polymers, albeit sparsely populated
in many areas. In areas with few or no training data, we expect
model predictions to be less accurate. Future experimental
work on diverse polymers that fills the gaps in our training data
would allow us to generalize model predictions to more exotic
chemistries and develop more generalizable guidelines for
polymer electrolyte development. Figure 2b shows the
distribution of ionic conductivity values in our experimental
data set at various temperature ranges. Few polymer
electrolytes in our data set meet the target ionic conductivity
of 10−3 S/cm�and only do so at elevated temperatures. Most
room-temperature data fall in the range of 10−9 to 10−4 S/cm.
Figure 2c shows the distribution of the 20 most common salts
i n t h e d a t a s e t . T h r e e s a l t s� l i t h i um b i s -
(trifluoromethanesulfonyl)imide (LiTFSI), lithium trifluoro-
methanesulfonate (LiTFO), and lithium perchlorate
(LiClO4)�cover over one-third of the data, reflecting their
popularity in the field. However, several other salts are present
in significant proportions, with 10 having over 100 data points.
Table 1 lists summary statistics for the training data. The data

set contains over 12,000 ionic conductivity data points for over
3,000 unique electrolyte formulations, where a unique
electrolyte is defined by the polymer, salt, salt concentration,
polymer molecular weight, and additives if present. In addition
to SPEs composed of uncharged polymers mixed with lithium
salts, our data set contains ionic conductivity measurements for
90 different single-ion conductors, species with anions
covalently tethered to a polymeric backbone that have shown
promise for solid state electrolyte applications.55−58

Machine Learning Model Performance and Bench-
marking. ChemArr was benchmarked against two other
models, XGBoost and Chemprop, as described in Methods.
The 10-fold cross-validation test mean absolute error (MAE)
and Spearman R for each of the models are shown in Table 2,
where XGBoost performs the worst, with Chemprop offering a
slight improvement and ChemArr performing best. ChemArr
also outperforms XGBoost and Chemprop when only high
conductivity (>10−4 S/cm) data points are considered (Table
S2 and Figure S3). For comparison of ChemArr models
trained with different molecular representation methods or
with the DFT calculated interaction energy between the

Table 1. Summary Statistics of Experimental Data Set

Material Type No. of Data Points No. of Unique Species

Polymer 12,383 247
Salt 10,272 81
Single-ion conductor 2,111 90

Total 12,383 3,195
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polymer and Li+ ion, see Tables S3 and S4. Since MAE was
calculated using the log of conductivity, a value of 1 indicates
an average error of 1 order of magnitude. For comparison,
well-conducted experimental measurements of ionic conduc-
tivity in SPEs can have errors up to a half an order of
magnitude or 0.5 log(S/cm) on the log scale between replicate
measurements in the same study.59,60 ChemArr’s inclusion of
the Arrhenius equation yields a 7% reduction in MAE over the
unaltered Chemprop model. The 32% improvement in
Spearman R shows that ChemArr comparatively ranks ionic
conductivity of different SPE formulations more consistently
with experimental data than either Chemprop or XGBoost.
Improved ranking performance will be particularly valuable if
the model is used to select novel SPE candidates for
experimental characterization with limited time and resources.
Panels a−c of Figure 3 show the predicted vs experimental
ionic conductivity values for the three models tested. Notably,
ChemArr’s improvement over the other models is most
pronounced for low ionic conductivity values (below 10−8 S/
cm), where ChemArr’s predictions are orders of magnitude
closer to experimental values than those of the other models.
ChemArr’s improved predictions result from the encoded
Arrhenius temperature dependence. By leveraging explicit
temperature dependence, patterns learned from high-temper-
ature data, which are more common in the experimental
literature, can be extended to low-temperature predictions,
where most known SPEs exhibit too low conductivities. This
ability to generalize is a valuable trait for screening SPEs to be
used at room temperature, while still leveraging high-
temperature training data.
Panels a−f of Figure 4 show predicted and experimental

ionic conductivities for 6 example SPEs drawn from cross-
validation test sets, with the MAE and polymer and salt
structures inlaid on each plot. Panels a−c of Figure 4 show
Arrhenius plots of three different polymer electrolyte
formulations for which predictions were well within the
range of experimental error. Across the cross-validation test
sets, model predictions were within a half-order of magnitude

of the experimental values (or MAE < 0.5 log(S/cm)) for 49%
of all polymer species, demonstrating that ChemArr predicts
near experimental accuracy for just below half of the SPE data
that we have collected. Figure 4d shows the predicted and
experimental values for a polymer without oxygen, one of only
8 oxygen-free polymers in our data. In this case the model
predicted ionic conductivity with an MAE of 1.01 log(S/cm)
or about 1 order of magnitude error. Since over 95% of the
polymers in our training data coordinate lithium ions with
oxygen, the increased error for the prediction shown in Figure
4d relative to Figure 4a−c can be attributed to a lack of
training data for polymers that coordinate lithium with
elements other than oxygen. Across all of the test data, 81%
of SPEs were predicted within 1 order of magnitude of the
experimental data.
Panels e and f of Figures 4 show examples where predictions

did not match experimental values. Figure 4e shows a polymer
that exhibits non-Arrhenius behavior. ChemArr gives accurate
predictions at the high-temperature range but fails to account
for the non-Arrhenius curve in the data, yielding high error at
low temperatures. To address this, we attempted to develop a
model based on the Vogel−Fulcher−Tammann (VFT)
equation, which describes SPEs that do not follow Arrhenius
behavior. However, the VFT-based model failed to accurately
learn non-Arrhenius behavior, defaulting to linear Arrhenius
behavior for all predictions. (See Figure S4 for details.) Figure
S5 shows another instance where ChemArr is unable to
capture experimental trends. In this case, a PEO electrolyte
exhibits two different activation energies above and below the
melting point resulting in two distinct slopes. Figure 4f shows
an SPE that follows Arrhenius behavior reasonably well, yet the
prediction is still quite different than the experimental values.
However, the polymer shown in Figure 4f61 is known to
decompose in the presence of lithium salts,62,63 making
experimental measurements of ionic conductivity highly
unreliable for this polymer. In this case, the high prediction
error signaled problematic experimental data.
Figure 4g shows the MAE for predictions made on polymers

containing various functional groups. The MAE of predictions
for each functional group is less than 1, indicating that the
model gives accurate predictions across a range of polymer
chemistries. The MAE of about 0.8 log(S/cm) for esters, aryls,
and amides is especially notable, given that there are relatively
few polymers that contain those functional groups in our
training data. The low error for these functional groups gives

Table 2. Performance Metrics for Each of the Models
Tested

Mean Absolute Error (log(S/cm)) Spearman R

XGBoost 1.09 + - 0.027 0.38 + - 0.026
Chemprop 1.08 + - 0.012 0.45+-0.006
ChemArr 1.00 + - 0.030 0.59 + - 0.022

Figure 3. Predicted vs experimental ionic conductivity on cross-validation (see Methods) for (a) XGBoost, (b) Chemprop, and (c) ChemArr.
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confidence that the model can be applied beyond traditional
ether-based SPEs.
Model Predictions on New Electrolyte Systems.

ChemArr was also validated on experimental measurements
for e lectro lytes based on two novel polymers ,
P_CODC4CF3SA and P_C10PA_MC, which were synthesized
and characterized in-house as described by Feng.64 Panels a
and b of Figure 5 show the predicted and experimental ionic
conductivity values for both polymers mixed with LiTFSI.
Figure 5a shows quite good agreement between the predicted
and experimental values for P_CODC4CF3SA. The MAE of
0.29 log(S/cm) for the predictions is well within the general
error of experiments. Figure 5b shows slightly poorer
agreement between the predicted and experimental values
than Figure 5a. However, with an MAE of 0.59 log(S/cm) for

the data in Figure 5b, the model predictions are still in the
same order of error as experiments. The model correctly
predicts the activation energy (or slope) of the two lower
concentration formulations but underestimates the prefactor
(or intercept) of those formulations. The reason for the
inaccurate activation energy for the 1:4 formulation is unclear,
but it likely results from the novelty of the polymer to the
machine learning model. The training data for this prediction
model contained no examples of a phosphorus−oxygen double
bond, which for the polymer shown in Figure 5b is likely the
primary coordinating group. Given that the model has never
seen this chemical moiety, it is perhaps unsurprising that the
model is unable to fully capture how ionic conductivity
changes as salt concentration increases. The model does,
however, correctly predict the relative order of ionic

Figure 4. (a−f) Arrhenius plots of predicted and experimental ionic conductivity for six SPEs from the test set. The mean absolute error (MAE)
(units of log(S/cm)), polymer, and salt for each formulation are inlaid on the plot. The estimated error for each prediction is shown in light red.
The plots show predicted and experimental data for (a−c) high-accuracy predictions for various polymer types; (d) a formulation for which the
MAE was 1, illustrating the upper error bound for 80% of predictions; (e) a formulation with strong non-Arrhenius behavior; and (f) a formulation
with high prediction error for which the experimental data were later determined to be unreliable. (g) Mean absolute error for predictions made on
all SPEs with polymers containing the listed functional group. The number of polymers containing each functional group is shown in white on each
bar.

Figure 5. Model predictions and experimental values for two novel polymer electrolyte materials, consisting of LiTFSI mixed with (a)
P_CODC4CF3SA and (b) P_C10PA_MC, two polymers which were developed and characterized in house with the chemical structure shown on
the plots. The concentration in terms of lithium to monomer ratio for experimental and predicted values is shown in the legend. The mean absolute
error (MAE) (units of log(S/cm)) of the predicted vs experimental values is inlaid in each plot.
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conductivity for the three different salt concentrations, with the
lowest concentration having the highest ionic conductivity and
ionic conductivity decreasing with increasing salt concen-

tration. The generally good agreement between ChemArr’s
predictions and the experimental data gives confidence in the
model’s ability to predict ionic conductivity for SPEs

Figure 6. Representation of screened polymer space. Each point represents a different polymer with LiTFSI at 1.5 mol of salt per kg of polymer at
25 °C. Points colored according to predicted ionic conductivity. Several regions with high average predicted ionic conductivity are indicated, with a
representative polymer structure labeling the region.

Figure 7. Predicted ionic conductivity for PEO (a−c) or PTMC (e, f) with various lithium salts at 1.5 mol of salt per kg of polymer and 25 °C. (a,
d) Predicted ionic conductivity vs anion molecular weight. (b, e) Predicted ionic conductivity vs lithium−anion interaction energy calculated with
DFT. (c, f) Predicted ionic conductivity vs anion donor number. Experimental values for anion donor number were extracted from Schmeisser et
al.,70 Linert et al.,71,72 or other sources73,74 with points being colored accordingly. The different donor number values and slopes with respect to
predicted ionic conductivity reflect different methods of measuring anion donor number in different sources. See Figure S24 for chemical structures
of the anions shown above.
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composed of novel polymers, even in the case, as in Figure 5b,
where the primary lithium coordinating moiety is absent from
the training data.
Screening Novel Polymers for Ionic Conductivity.

Following validation of ChemArr, the model was trained on all
experimental data. We then generated ionic conductivity
predictions for over 20,000 hypothetical SPE formulations
derived from 820 synthetically available polymers as described
in Methods. Figure 6 shows a two-dimensional projection of
the space of predicted polymers, generated with UMAP,54

where similar polymer structures will be located close together.
Visualizing the predicted ionic conductivities in this way allows
us to identify groupings of highly predicted polymers, which
can serve as a guide for experimental testing. Polymer 1 shows
a highly predicted siloxane polymer structure. The high
predictions for Polymer 1 and other similar structures are
consistent with reports that siloxane polymers with low glass
transition temperatures can have high ionic conductivity.65,66

Polymer 2 shows another interesting direction for exploration
of new polymer electrolytes. Polymer 2 is structurally similar to
poly(bis((methoxyethoxy)ethoxy)phosphazene) (MEEP),
which has been characterized previously in SPEs and shows
good ionic conductivity due in part to a low glass transition
temperature enabled by the flexible nitrogen phosphorus
backbone.67 However, Polymer 2 is modified by the inclusion
of crown ether groups, which have been shown to enhance
ionic conductivity in other SPEs.68,69 Exploration polymers like
Polymer 1 and 2, or others predicted to have high ionic
conductivity, may yield promising new SPEs.
Screening Anions to Investigate Role in Ionic

Conductivity. ChemArr was also used to explore the role of
the anion in ionic conductivity. Figure 7 shows the predicted
ionic conductivity of PEO or poly(trimethylene carbonate)
(PTMC) with various lithium salts. As the model has been
trained on many examples of PEO and PTMC SPEs, we expect
the model predictions to be highly accurate for these polymers
(see Figure S6). This allows us to make predictions while fixing
certain parameters so we can examine trends that otherwise
might be obscured. In this case, the polymer molecular weight,
salt concentration, and temperature are kept constant while
varying only the anion chemistry. The salt concentration was
fixed at 1.5 mol of salt per kg of polymer because this is well
within the range of concentrations reported for these salts in
the literature (Table S7) and near the peak ionic conductivity
reported for many systems in our database. We expect that the
salts for which we do not have data will still be soluble in these
two polymers at the selected concentration.
Figures 7a shows predicted ionic conductivity vs anion

molecular weight for PEO. A volcano trend emerges, with
anions of near 300 g/mol showing the highest predicted ionic
conductivities. Several reports have demonstrated that large
anions with distributed charge dissociate more freely from the
lithium cation, thereby enhancing ionic conductivity,75−77 but
the enhancement appears to disappear as the anion grows
larger than 300 g/mol, likely due in part to decreased
contributions to ionic conductivity from large, less diffusive
anions. Large anions may also have adverse effects on cation
solvation structure78 or polymer dynamics, an effect which has
not been well studied for SPEs. Figure 7b shows ionic
conductivity predictions plotted against the lithium−anion
interaction energy calculated with DFT. Here, a relatively
strong negative trend emerges. Figure 7c shows ionic
conductivity predictions vs anion donor number, an exper-

imental measure representative of interaction strength between
the anion and a positive charge.70 Although different sources
report different donor numbers, the negative correlation
between predicted ionic conductivity and anion donor number
is consistent across multiple sources, confirming the trend seen
in our DFT calculations. This trend has been reported
previously.71,79,80 Taken together, panels a−c of Figure 7
suggest that an ideal anion to enhance ionic conductivity in
PEO would have a low interaction strength and a molecular
weight between 200 and 300 g/mol. The fact that TFSI already
meets these criteria suggests that TFSI may already be close to
optimal for PEO SPEs. However, anions containing nitrile or
boron groups, such as lithium tricyanomethanide (LiTCM)
and lithium bis(oxalato)borate (LiBOB), show promising ionic
conductivity and have not been studied as extensively as
LiTFSI-like salts. Further study with or modification to these
anions may result in anions yielding equal or higher ionic
conductivity in PEO as for LiTFSI.
Panels d−f of Figure 7 show the results of predicting ionic

conductivity for PTMC with the same anions as in Figure 7a−
c. Interestingly, the trends seen in the case of PEO are reversed
when the same anions are paired with PTMC, although the
trend in Figure 7e is not as strong as that of Figure 7b. For
PTMC, the ChemArr model predicts higher ionic conductiv-
ities for smaller anion molecular weights and higher lithium−
anion interaction strengths. The different trends in ionic
conductivity vs anion molecular weight and interaction
strength in the PTMC-based electrolyte likely result from
differing coordination strength or solvation structure81,82 of
PTMC compared with PEO. It may be that smaller, more
strongly interacting anions interact favorably with the carbonyl
oxygens in PTMC, which individually bind more tightly to the
lithium ion than the ether oxygens in PEO, or that the stronger
coordinating ability of carbonyl carbons is synergistic with the
formation of weak contact ion pairs.81 As the data shown in
Figure 7 were generated with machine learning predictions,
there will be errors associated with the ionic conductivity
predictions. Further experimental and simulation work would
be valuable to confirm the trends shown and to identify the
underlying mechanistic causes of the different trends in PEO
and PTMC.

■ CONCLUSIONS
In this work, a chemistry-informed neural network was
developed to accurately predict ionic conductivity in solid
polymer electrolytes. Our model, ChemArr, incorporates the
Arrhenius equation to give significantly improved prediction
accuracy over models without embedded chemistry. ChemArr
was trained on a data set of polymer electrolyte ionic
conductivity gathered from over 200 experimental publications
and gives predictions at or near experimental accuracy for most
of the SPEs in our data set. We screened over 20,000 potential
SPEs and identified polymer chemistries of interest for further
characterization, allowing us to guide experimental efforts to
promising systems, which could result in more effective use of
experimental resources. We also investigated the effect of
varying the anion in PEO and PTMC electrolytes. We found
for both polymers that the anion mass and interaction strength
were correlated with the predicted ionic conductivity of an
SPE. Interestingly, we found that while anions with moderately
high mass and low interaction strength were favored in PEO, in
the case of PTMC, anions with lower mass and higher
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interaction strength were favorable to enhanced ionic
conductivity, a finding which warrants further study.
Overall, this work demonstrates the value of chemistry-

informed ML to improve prediction accuracy and general-
izability for materials property predictions in SPEs. We
anticipate that ChemArr can also be extended to model any
process that follows Arrhenius-type temperature dependencies.
This approach of incorporating known physical equations or
parameters into machine learning models promises to
generalize to prediction tasks in a variety of domains, especially
in fields where limited data sets can be supplemented with
governing equations or constraints derived from previous
scientific knowledge.
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