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Abstract 

Existing molecular property prediction methods based on deep learning ignore the generalization ability of the 
nonlinear representation of molecular features and the reasonable assignment of weights of molecular features, 
making it difficult to further improve the accuracy of molecular property prediction. To solve the above problems, an 
end-to-end double-head transformer neural network (DHTNN) is proposed in this paper for high-precision molecular 
property prediction. For the data distribution characteristics of the molecular dataset, DHTNN specially designs a 
new activation function, beaf, which can greatly improve the generalization ability of the nonlinear representation of 
molecular features. A residual network is introduced in the molecular encoding part to solve the gradient explosion 
problem and ensure that the model can converge quickly. The transformer based on double-head attention is used to 
extract molecular intrinsic detail features, and the weights are reasonably assigned for predicting molecular properties 
with high accuracy. Our model, which was tested on the MoleculeNet [1] benchmark dataset, showed significant 
performance improvements over other state-of-the-art methods.
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Introduction
Molecular property prediction refers to the effective 
identification of molecular properties such as 
lipophilicity, binding affinity, biological activity, and 
toxicity [2]. For fields such as drug design [3], materials 
science [4], and genetic engineering [5], accurate and 
reliable prediction of molecular properties can accelerate 
the development process and reduce the development 
cost. Therefore, molecular property prediction has 
significant research meaning and application value, and is 
a popular research at present.

The quantitative structure-activity/property 
relationship (QSAR/QSPR) has always been a hot 
topic in materials chemistry [6]. This method uses 

mathematical and statistical methods to study the 
quantitative relationship between the chemical structure 
of a compound and its physicochemical properties in 
order to build predictive models [7, 8]. The chemical 
descriptors used in the QSAR/QSPR model must be able 
to quantitatively represent the structural parameters 
of the molecule [9]. Therefore, the prediction accuracy 
of the model is strongly influenced by the chemical 
descriptors. A large amount of research is needed to 
calculate the structural parameters of molecules based 
on physicochemical experiments [10], and there may be 
large errors.

With the rise of artificial intelligence, combining 
artificial intelligence with the field of molecular property 
prediction has become a major research trend for 
improving the accuracy of molecular property prediction 
[11–14]. Current research on the prediction of molecular 
property by artificial intelligence is mainly divided into 
two categories: machine learning methods and deep 
learning methods.
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Machine learning methods
Commonly used prediction models are ridge regression, 
random forest(RF), elastic network, support vector 
machine(SVM), gradient boosting and extreme gradient 
boosting (XGBoost). Ridge regression [15] is a regressor 
that has a kernel with a regularization term, and the 
model uses the sum of the weighted kernel functions of 
the molecules to be predicted and all the molecules in the 
training set for prediction. RF [16] incorporates random 
attribute selection in the training process and integrates 
the results of multiple decision tree models as predictions 
using the bagging integration method. The model is easy 
to implement, and the computational cost is small. When 
the chemical descriptor is Morgan fingerprints [17, 18], 
running Random Forest on Morgan fingerprints [17, 
18] can predict molecular property, such as the model 
RF on Morgan [19]. The elastic network [20] is a linear 
model that differs from ridge regression by penalizing the 
mixed regularization term (L1) and the regularization 
term (L2), with an additional hyperparameter controlling 
L1 and L2. SVM [21–23] is a class of generalized linear 
classifiers that perform binary classification of molecular 
data by supervised learning. The decision boundary is 
the maximum margin hyperplane for learning samples. 
It can transform the molecular property prediction 
problem into solving convex quadratic programming 
problem. The use of kernel function avoids the dimension 
disaster, but the selection of kernel function has a great 
impact on the performance of SVM. Gradient boosting 
[24, 25] trains the new-joined weak classifier based on 
the negative gradient information of the loss function 
from the current molecular property prediction model. 
In each iteration, a weak classifier will be obtained. 
These weak classifiers are accumulated to get the final 
model. However, this form has the disadvantages of 
bad parallelization, slow computational speed, and high 
computational complexity. Given the shortcomings of 
gradient boosting, XGBoost [26, 27] was proposed by 
improving the loss function and regularization. XGBoost 
[28, 29] is an integrated tree model containing multiple 
classification and regression trees (CART); it adds 
together the corresponding prediction values of each tree 
to obtain the final prediction value. XGBoost sorts the 
data before training and saves it as a block structure to 
achieve parallel computation. CART and linear classifiers 
can also be supported as base classifiers to speed up 
training. The method uses the idea of RF to support 
row down-sampling and column down-sampling. The 
first- and second-order derivatives are also used in the 
custom loss function calculations, and regular terms are 
added. These methods can reduce the error of the model 
to prevent the overfitting phenomenon and reduce the 
computational complexity, which can facilitate faster and 

more accurate gradient descent. In addition, XGBoost 
can multiply the weights of leaf nodes by the learning rate 
after one iteration to weaken the influence of each tree 
and expand the learning range.

Overall, machine learning methods require domain 
experts to extract features manually, but their 
handcrafted molecular descriptors are easily limited by 
the subjective experience and knowledge of the experts.

Deep learning methods
Unlike machine learning methods, deep learning 
enables features to be extracted automatically, so deep 
learning methods are particularly suitable for molecular 
property prediction. The feed-forward neural network 
(FFN) is one of the simplest artificial neural network 
[30]. The neurons in the former layer are only 
connected with those in the latter layer. FFN reads 
chemical descriptors to extract molecular features so as 
to perform prediction of molecular properties, such as 
the models FFN on Morgan [19], FFN on Morgan 
Counts [19], and FFN on RDKit [19]. Later, a large 
number of neural networks emerged, for example, the 
directed acyclic graph model [31], deep tensor neural 
network [32] and message passing neural network 
(MPNN) [33], which can be used to predict molecular 
properties. Wu et  al. [1] integrated these neural 
networks in the open-source library DeepChem [34]. 
Experiments were conducted on different datasets in 
MoleculeNet [1], and the best model was named 
MolNet [19]. The MPNN was proposed by Gilmer et al. 
[33] and is a graph-supervised general model 
framework for molecular property prediction. Its 
shortcomings are that it is difficult to use when the 
molecular size is large, and the number of input 
messages in the established fully connected graph 
depends on the number of nodes. Withnall et  al. [35] 
introduced the attention block and the edge memory 
block into the MPNN framework and proposed the 
attention message passing neural network (AMPNN) 
model and the edge memory message neural network 
(EMNN) model. AMPNN and EMNN only need to use 
the underlying chemical map data, without additional 
chemical descriptors. The introduction of the attention 
mechanism in AMPNN makes the model interpretable. 
While the performance of EMNN is better than that of 
AMPNN, the computing cost is also higher. Maziarka 
et al. [36] applied the transformer encoder to molecules 
and proposed the molecule attention transformer 
(MAT) model. The attention mechanism in transformer 
is strengthened through the distance between atoms 
and the molecular graph structure. However, the lack of 
features obtained by the model limits the improvement 
of the model performance. Furthermore, Wang et  al. 
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[37] used graphs to represent molecular data, using 
vectors to represent atoms and representing each 
molecule as a matrix according to the connections 
between atoms. In addition, to preserve the spatial 
connectivity information on molecules, a convolutional 
spatial graph embedding layer (C-SGEL) is introduced 
on the graph convolutional neural network, and 
multiple C-SGELs are stacked to form a convolutional 
spatial graph embedding network. The network can 
learn feature representations in molecular graphs while 
introducing molecular fingerprints to improve the 
generalization ability of the network. Chen et  al. [38] 
proposed the algebraic graph-assisted bidirectional 
transformer (AGBT) model to focus on three-
dimensional (3D) information for molecules. Algebraic 
graphs generate low-dimensional molecular 
representations. Furthermore, the deep bidirectional 
transformer (DBT) learns the basic principles of 
molecular composition from datasets. The molecular 
property prediction task is completed through fine-
tuning. There is a large error in fusing these two 
molecular representations, which are from algebraic 
graphs and DBT. Moreover, Cho et al. [39] proposed a 
3D graph convolution network to extract 3D molecular 
structures from molecular graphs and combined it with 
a graph convolution network, which can accurately 
predict the global and local property of molecules. The 
method has high generalization ability and is 
particularly suitable for protein ligand binding affinity 
prediction. Sun et  al. [40] proposed InfoGraph, an 
unsupervised graph representation learning model, to 
maximize the mutual information between the 
representation of the whole graph and the 
representation of substructures at different scales. 
Subsequently, it was extended to semi-supervised 
learning tasks for graph-level representations, and the 
semi-supervised learning model InfoGraph* was 
further proposed. InfoGraph* maximizes the mutual 
information between unsupervised graph 
representations learned by InfoGraph and those 
learned by existing supervised methods. InfoGraph is 
used to train unlabeled data, and supervised learning 
can also be used to train labeled data. InfoGraph 
models and InfoGraph* models perform well in graph 
classification and molecular property prediction, and 
have enriched the research in the field of semi-
supervised learning graph structure data. Meng et  al. 
[41] proposed the extended graph convolution neural 
network for the construction of new molecular graphs 
by fusing ideas such as the graph attention network and 
gated graph neural network. A new molecular graph is 
constructed from the vertices of the atom groups, and 
an attention mechanism is added to focus on the atom 

groups that affect the prediction of molecular 
properties, making the model interpretable using gated 
jump connections. However, the model does not have 
the best performance on all tasks. Hu et  al. [42] 
proposed a pre-trained neural network strategy and a 
self-supervised approach based on pre-training a graph 
neural network with expressive power at the level of 
individual nodes and the whole graph using easily 
accessible node-level information. This method learns 
both local and global representations and generates 
graph-level representations. This strategy, used 
together with the graph isomorphism network(GIN), 
can avoid negative migration between downstream 
tasks and improve the generalization of downstream 
tasks, but its robustness still needs to be further 
improved. Liao et  al. [43] proposed LanczosNet, a 
multiscale graph convolution model, for efficient 
processing of graph structured data. The model is based 
on the tri-diagonal decomposition of the Lanczos 
algorithm, which is used to construct a low-rank 
approximation of the graph Laplacian operator. This 
method can efficiently calculate matrix powers and 
collect the multiscale information, and also builds a 
learnable spectral filter to expand the model capacity. 
Chen et al. [44] proposed a local relational pool model 
on the substructure counting to complete the molecular 
property prediction by considering the existence of 
substructures at the local level. This method is superior 
to most models and allows efficient counting of 
subgraphs and induced subgraphs on random synthetic 
graphs. In contrast to the GNN variant, it can learn 
substructure information from the data and does not 
depend on manual production. Inspired by multi-view 
learning, Ma et  al. [45] proposed a multi-view graph 
neural network (MV-GNN) considering the 
information of atoms and bonds. The method includes 
a shared self-attention readout component to make the 
model interpretable. In order to enable information 
communication between two views, the method 
proposes a cross-dependent information transfer 
scheme that produces a variant of MV-GNN, 
MV-GNNcross, which has better expressiveness. Both 
models have strong robustness. Bécigneul et  al. [46] 
proposed a model for computing graph embeddings 
using argument prototypes in order to address the 
problem of the loss of structural or semantic 
information owing to averaging or summing the 
embedded nodes into an aggregated graph 
representation. The method combines a parametric 
graph model and optimal transport to learn graph 
representation, which improves the representational 
power of the model. The model also produces a 
smoother graph embedding space compared to the 
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common GNN method. Tang et  al. [47] proposed a 
graph neural network framework, which is based on a 
self-attention message passing neural network, to 
identify the relationship between lipophilicity and 
water solubility with structure, and thus study the 
relationship between the molecular properties and 
structure. The use of self-attention mechanisms 
improves the interpretability of the model and enables 
visualization based on the contribution of each atom to 
the property. Yang et  al. [19] proposed the directed 
MPNN(DMPNN), which uses a mixed representation 
of key-centered convolution encoding molecules and 
descriptors to make the encoding flexible and strongly 
prioritized, improving the generalization ability. The 
model obtains excellent performance on both public 
and private datasets, but the molecular property 
prediction performance is poor when the model 
contains 3D information, the dataset is small, or the 
classes are particularly unbalanced.

In conclusion, we found that the current molecular 
property prediction based on deep learning techniques 
has the problem of low prediction accuracy. The main 
reason for this problem is poor generalization ability 
due to the use of traditional activation functions, such as 
ReLU, PReLU, and Tanh, in the nonlinear representation 
of molecular features. There may be problems with 
gradient disappearance or explosion in the network. The 
global information cannot be taken into account when 
molecular detail features are extracted. In this regard, 
this paper makes the following contributions. 

1.	 A new neural network framework, DHTNN, is 
proposed; it uses an activation function (Beaf ), 
residual network, and transformer based on Double-
head attention to process and extract molecular 
features for high-precision molecular property 
prediction.

2.	 A new activation function, Beaf, is defined, which 
can nonlinearize the molecular characteristics. 
Compared with other activation functions, the 
performance of our model DHTNN using the 
activation function beaf is improved.

3.	 The molecular residual network is introduced to 
solve the gradient problem of the neural network and 
ensure that the model can converge quickly.

4.	 The Transformer based on Double-head attention 
extracts the intrinsic detailed features of molecules 
and acquires global information in parallel, effectively 
improving the performance of the model in 
predicting molecular properties.

5.	 Our method was experimentally tested on six 
datasets from the MoleculeNet [1] benchmark 
dataset, and achieved better performance compared 
to current machine learning and deep learning 
methods.

Specific method
The neural network framework is divided into three 
parts, as shown in Fig.  1, which are the high-precision 
nonlinear generalization representation of molecular 

Fig. 1  Overall DHTNN architectural diagram. A High-precision nonlinear generalization representation of molecular features. B Molecular residual 
network encoding. C Molecular feature extraction of Transformer based on Double-head attention
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features, the molecular residual network encoding, and 
the molecular feature extraction of Transformer based 
on the Double-head block. The high-precision nonlin-
ear generalization representation of molecular features is 
used to improve the accuracy and generalization of the 
algorithm model using a new activation function, Beaf, 
after the molecular chemical formula is transformed 
into a molecular map. The molecular residual network 
encoding part contains the directed MPNN, the batch 
normalization layer, the molecular feed forward neural 
network(Mole FFN), and the residual network. Its func-
tion is to adjust the data distribution and pass the data 
forward after encoding the molecular map of the previ-
ous section into a matrix. A residual network is added 
to keep the neural network gradient from disappearing 
or exploding. The Molecular feature extraction of the 
Transformer based on the Double-head block quickly 
and accurately extracts intrinsic detailed features in mol-
ecules and obtains molecular global information in paral-
lel to further improve the model prediction performance.

High‑precision nonlinear generalization representation 
of molecular features
In this paper, a DHTNN is proposed for molecular 
property prediction. The molecular residual network 
encoding structure is proposed in this neural network 
framework structure, in which a graph convolution 

neural network is used for the message passing process. 
Hence, for any molecular dataset, the input molecular 
chemical formula needs to be first converted into 
the form of a molecular map. In order to facilitate 
data reading and memory saving by computers, the 
molecular chemical formula is usually represented 
by a matrix [19, 47, 48], which contains atom features 
and bond features. The input and output of a neural 
network need to be nonlinear so that the neural 
network can fit complex functions as the number of 
layers deepens. By introducing activation functions, 
neural networks can be equipped with nonlinear 
characteristics. The commonly used activation function 
has some shortcomings, such as easy saturation, 
inability to map the negative value part, or inaccurate 
mapping of the negative value part, which ultimately 
makes it difficult to improve the accuracy of molecular 
property prediction. For example, Tanh approaches 
saturation at x = 3 (as shown in Fig. 2a). The gradient 
disappears after saturation. From the ReLU function 
image (as shown in Fig. 2b), the derivative is one when 
x > 0 , and there is no gradient decay. However, the 
value of the function is constant zero when x < 0 and 
the function cannot complete the accurate mapping, 
which directly affects the accuracy of nonlinearized 
molecular features. ELU improves on ReLU for the part 
of the function that is less than zero. From its function 

Fig. 2  Images of Tanh (a), ReLU (b), ELU (c), GeLU (d) and Beaf (e)
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image (as shown in Fig.  2c), it also has the mapping 
capability in the negative part. However, the curves are 
flatter and there is little differentiation between values 
after mapping. The GeLU function image (as shown 
in Fig.  2d) is smooth, but the function value quickly 
tends to zero in the negative half-axis. Therefore, the 
nonlinearized mapping about GeLU is very limited for 
the part less than zero.

To address the shortcomings of the existing activation 
functions, such as Tanh is easy to saturate, the negative 
part of ReLU cannot be mapped, and the negative part of 
ELU and GeLU are not mapped accurately. In this paper, 
we propose the activation function Beaf, which is more 
suitable for molecular feature nonlinearization mapping 
and has better generalization. The specific equation is as 
follows:

where x denotes the input, and f (x) denotes the output. 
From Equation (1), Beaf consists of a primary function 

(1)
f (x) = x · tanh(s(x))− c, where s(x) = SoftPlus(x) = In(1+ ex)

x, Tanh, SoftPlus and a constant c, which enables a non-
linearized mapping. The function introduces a constant 
c, c ∈ (0, 0.004] . It can adjust the function up and down 
translation, so as to control the speed of the function 
value tends to zero, so that the function is more flexible. 
Combined with our proposed model DHTNN, we take 
a value of 0.002 for the constant c here. This is because 
experiments were performed on Lipophilicity, PDBbind, 
PCBA, BACE, Tox21, and SIDER datasets, and better 
accuracy of molecular property prediction achieves on all 
these different datasets when c = 0.002. Thus, it is fur-
ther demonstrated that Beaf can better nonlinearize the 
molecular features when c is taken as 0.002. The Beaf 
function image is shown in Fig.  2e, and in contrast to 
Tanh (as shown in Fig.  2a), Beaf does not saturate and 
is derivable everywhere; The negative part can also be 
mapped compared to ReLU (as shown in Fig. 2b); Com-
pared with ELU (as shown in Fig. 2c), the nonlinear map-
ping in the negative part is more obvious, the distinction 
between values after mapping is greater, and the mapping 
is more accurate; Compared with GeLU (as in Fig. 2d), it 

Fig. 3  Diagram of the molecular residual network encoding framework. The framework contains a directed MPNN, a batch normalization layer, a 
molecular feed forward neural network, and a residual network
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does not converge to zero prematurely and is able to map 
more negative values.

Molecular residual network encoding
After the high-precision nonlinear generalization rep-
resentation of the molecular features in "High-precision 
nonlinear generalization representation of molecular fea-
tures" Section is used to obtain the molecular map matrix, 
the molecular map matrix is subsequently encoded with a 
molecular residual network (shown in Fig. 3). The specific 
steps are as follows:

Directed MPNN [19]
This acts on the molecular map for encoding. The 
directed MPNN can be divided into two phases: the 
directed message passing phase and the readout phase.

The directed MPNN needs to initialize the hidden state 
of the bond ( h0vw ) before the message passing phase, as 
shown in Equation (2).

where xv is the node feature, evw is the edge feature, Wi is 
the learnable matrix,cat(xv , evw) splices the atom feature 
and the bond feature, and τ is the activation function 
ReLU.

This is followed by a directed message passing phase, 
which contains the message function Mt and the bond 
update function Ut . Mt sends bond-related messages to 
obtain mt+1

vw  , as shown in Equation (3). Then, Ut updates 
the hidden state of each bond in the graph to obtain ht+1

vw  , 
as shown in Equation (4).

where N (v)\w is the neighbourhood edge of the bond 
vw in the graph, and each step of the directed message 
passing phase is done, for a total of T steps.

The atom hidden state ( hv ) of the molecule is obtained 
by summing up the bond hidden states, as shown in 
Equations (5) and (6).

We sum hv to obtain Hv , and use the readout function R 
to yield the characteristic y of the molecule, as shown in 
Equations (7) and (8).

(2)h0vw = τ (Wicat(xv , evw))

(3)mt+1
vw =

∑

k∈{N (v)\w}

Mt

(

xv , xk , h
t
vk

)

(4)
ht+1
vw =Ut

(

htvw ,m
t+1
vw

)

= τ

(

h0vw +Wmm
t+1
vw

)

, t ∈ {1, · · · ,T }

(5)mv =
∑

w∈N (v)

hTvw

(6)hv =τ (Wacat(xv ,mv))

Adjusting data distribution
When training a neural network, the parameters of 
the previous layer affect the input of the later layer, 
thus making the training complicated. This requires 
normalizing the encoded data, adjusting the distribution 
of the data, reducing the internal covariance bias, 
and improving the training speed. Therefore, batch 
normalization is required to optimize the mean position 
and variance size to make the new data distribution more 
closely match the real data distribution.

Normalization is done mainly by processing the mean 
( E[y] ) and variance ( Var[y] ) of a batch of data consisting 
of one layer. In order to calculate the numerical stability, 
the constant ǫ is added; the learnable parameters γ and β 
are introduced for optimization as a way to improve the 
nonlinear expression, as shown in Equation (9).

Aggregating to generate global features
The molecular feed forward neural network receives 
the data ( YD ) after the batch normalization process for 
aggregation. The molecular feed forward neural network 
consists of five layers of network structure: the fully 
connected layer, activation function, dropout layer, fully 
connected layer, and dropout layer. The molecular feed 
forward neural network can aggregate local features 
into global features, ( YF ), which reduces the influence of 
the feature location on test results, prevents overfitting, 
and improves the model generalization ability. The 
implementation process can be characterized as in 
Equation (10):

Preventing gradients disappearance
As the number of neural network layers deepens, there 
is a gradual decrease in the accuracy of the training and 
test sets owing to gradient disappearance and gradient 
explosion, so the neural network cannot converge. The 
residual network connection is used after the batch 
normalization process and the molecular feed forward 
neural network, and the y obtained from the directed 
MPNN and the YF obtained from the molecular feed 

(7)Hv =
∑

v∈G

hv

(8)y =R({Hv | v ∈ G})

(9)YD =
y− E[y]

√

Var[y] + ǫ
∗ γ + β

(10)YF = MoleFFN (YD)
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forward neural network are connected with residuals 
to obtain YR . The residual network learns the difference 
between the input and output, and these two layers do 
an all-equal mapping to ensure that the gradient problem 
does not affect the results of the neural network, as 
shown in Equation (11).

Molecular feature extraction of Transformer based 
on Double‑head attention
The molecular map matrix ( YR ) obtained from the molec-
ular residual network encoding is input to the molecular 
feature extraction of Transformer based on the Double-
head attention block for obtaining molecular features 
(shown in Fig. 4), which contains double-head attention, 
Multilayer Perceptron (MLP), layer normalization, Drop-
path, and residual connectivity. Its processing is divided 
into three main steps:

Molecular intrinsic detail feature extraction
The molecular graph matrix is input to the first part 
of the molecular feature extraction of Transformer 
based on the Double-head attention block, as shown in 
Fig. 4a. This part consists of layer normalization, double-
head attention, Droppath, and residual connection for 
extracting the intrinsic detail features in the molecular 
graph and assigning the weights reasonably. 

(11)YR = y⊕ YF

(1)	 Layer normalization: each data point ( YR ) obtained 
by Equation (11) is normalized to adjust the molec-
ular characteristic distribution. The normalization 
is processed by calculating the mean, E[YR]l , and 
the variance, Var[YR]l , of each data point. In order 
to calculate the stability of the values and prevent 
the denominator from being zero, the constant ǫ is 
added. The learnable parameters γ and β are intro-
duced as a way to improve the nonlinear expres-
sion. The process is shown in Equation (12): 

(2)	 Double-head attention: The weights are rationally 
assigned, increasing the weight of important 
information and decreasing the weight of 
unimportant information. This process allows the 
model to learn relevant information from both 
spaces. Wq , Wk , and Wv are three trainable shared 
matrices. The YL obtained by layer normalization is 
multiplied with Wq , Wk , and Wv to obtain q, k, and 
v, respectively. The calculation processes are given 
in Equations (13, 14, 15). 

(12)YL =
YR − E[YR]

l

√

Var[YR]
l + ǫ

∗ γ + β

(13)q =YLW
q

(14)k =YLW
k

Fig. 4  Molecular feature extraction of Transformer based on Double-head attention. a Molecular intrinsic detail feature extraction. b Layer structure 
for integrating intrinsic detail features. c Adjusting the data distribution before output
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 As the molecular graph matrix only has the 
information of the length and width, this paper 
proposes Double-head attention to extract 
the information of the length and width of the 
molecular graph matrix; that is head = 2 , so q, k 
and v are divided into two parts. q is split into q1 
and q2 . k is split into k1 and k2 . v is split into v1 and 
v2 . Then, q1 , k1 and v1 belong to head1 . q2 , k2 and v2 
belong to head2 . head1 and head2 are calculated as 
shown in Equations (16, 17), where dk1 and dk2 are 
the dimensions of k1 and k2 , respectively. 

 The output ( YDH ) of Double-head attention 
(DoubleHead) is obtained by concatenating head1 
and head2 together, and the calculation formula is 
given in Equation (18). Here, Wo is the parameter 
matrix for better fusion of the concatenated data 
and ensures that the vector lengths of the input and 
output of DoubleHead remain unchanged. 

3)	 Droppath: This contains two types of droppings. One 
is local dropping, and the other is global dropping. 
Local dropping means dropping layers randomly with 
a certain probability, but it is guaranteed that one 
branch must be through. Global dropping randomly 
selects a branch and discards the rest of the layers. 
The two types of droppings are alternated during 
the network training [49]. A Droppath operation is 
performed on YDH , which is obtained in the above 
double-head attention to obtain Ypa , as shown in 
Equation (19). 

4)	 Residual connection: Residual connection is done 
for the data ( Ypa ) obtained after Droppath, with 
YR obtained from the molecular residual network 
encoding, as shown in Equation (20). 

(15)v =YLW
v

(16)

head1 =Attention

(

q1, k1, v1
)

= softmax

(

q1k1
T

√

dk1

)

v1

(17)

head2 =Attention

(

q2, k2, v2
)

= softmax

(

q2k2
T

√

dk2

)

v2

(18)
YDH = DoubleHead (q, k , v)

= Concat (head1, head2)W
o

(19)Ypa = Droppath (YDH )

(20)YRpa = YR ⊕ Ypa

Layer structure for integrating intrinsic detail features
The extracted intrinsic detail features are integrated and 
used to output the final molecular property prediction 
results. The composition structure is similar to that 
in part a. The only difference is that the double-head 
attention in part a is replaced by the MLP, as shown in 
Fig. 4b. The calculation equations are given in Equations 
(21, 22, 23 and 24) as follows:

Adjusting the data distribution before output
After the Transformer based on the Double-head 
attention block, the distribution of data causes large 
changes, so before outputting the results, layer 
normalization is performed again, as shown in Fig. 4(c), 
to adjust the data distribution before output. The 
calculation formula is shown in Equation (25).

The results of the final molecular property prediction are 
obtained from the linear layer, as shown in Equation (26).

Experiment and discussion
Sources of experiment molecular datasets and evaluation 
metrics
Dataset Source
In deep learning, datasets play a pivotal role in training 
the model and verifying the generalization of the 
proposed algorithm. The dataset used in this paper 
is from the MoleculeNet [1] benchmark dataset. Six 
datasets (i.e., Lipophilicity, PDBbind, PCBA, BACE, 
Tox21, and SIDER) were selected for the task type, 
including regression and classification, covering three 
domains (i.e., physiology, physical chemistry, and 
biophysics). The datasets were divided into a training 
set, validation set, and test set in the ratio of 8:1:1 with 

(21)YL2 =
YRpa − E

[

YRpa
]l

√

Var
[

YRpa
]l
+ ǫ

∗ γ + β

(22)Yml =MLP(YL2)

(23)YPml = Droppath (Yml)

(24)YRPm =YRpa ⊕ YPml

(25)YLN =
YRPm − E[YRPm]

l

√

Var[YRPm]
l + ǫ

∗ γ + β

(26)Y = Linear (YLN)
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random and scaffold splitting. The training set was used 
to train the model, the validation set was used to adjust 
hyperparameters and optimize the model, and the test 
set was used to evaluate the model performance. At the 
minimum, the dataset comprises 168 molecules, while 
the maximum was 437,928 molecules to ensure that the 
algorithm was applicable to datasets of various sizes. 

(1)	 Lipophilicity [50] Lipophilicity is derived 
from the ChEMBL database, containing 4,200 
compounds. The value of lipophilicity was obtained 
experimentally and calculated by the octanol/
water partition coefficient. Lipophilicity affects the 
membrane permeability and aqueous solubility; 
therefore, the prediction of lipophilicity is crucial in 
drug discovery.

(2)	 PDBbind [51–53] PDBbind is a protein-ligand 
complex binding affinity dataset that establishes 
a PDB-wide connection between structural and 
energetic information of protein-ligand complexes.

(3)	 PCBA [54] PubChem BioAssay (PCBA) is a dataset 
of biological activity; it is generated through high-
throughput screening, with 128 bioassays that 
measure 400,000 compounds.

(4)	 BACE [55] BACE is a dataset of inhibitors of 
human β-secretase 1 (BACE-1) containing quan-
titative (IC50) and qualitative (binary label) results 
combined with data for 1,513 compounds.

(5)	 Tox21 [56] Toxicology in the 21st Century created 
the toxicity data collection system, known as the 
Tox21 dataset, which is a toxicity dataset containing 
8,014 compounds.

(6)	 SIDER [57, 58] The Side Effect Resource (SIDER) is 
a database of listed drugs and adverse drug reactions 
(ADRs), containing data on 1,427 compounds. It 
is divided into 27 classes of compounds, with drug 
side effects according to the organ class.

Algorithm evaluation metrics
We tested our neural network framework on six data-
sets, including two regression datasets (Lipophilic-
ity, PDBbind) and four classification datasets (PCBA, 
BACE, Tox21, SIDER). The algorithm evaluation met-
ric for the regression dataset was the root mean square 
error (RMSE), which is the arithmetic square root of the 
expected value of the squared difference between the 
parameter estimate and the true value of the parameter. 
A smaller RMSE indicates a smaller error and better pre-
diction performance. The algorithm evaluation metrics 
for classification datasets were the area under the recall 

curve (PRC-AUC) and the area under the receiver oper-
ating characteristic curve (ROC-AUC) [59]. Larger AUC 
values indicate more stable models and better prediction 
performance.

Experiment results and analysis
Validation of activation function selection
In order to verify the algorithmic effectiveness of our 
proposed activation function Beaf on our model, we 
performed validation experiments on the activation 
function selection. On the six datasets (i.e., Lipophilicity, 
PDBbind, PCBA, BACE, Tox21 and SIDER), we applied 
the activation functions Beaf, ELU and GeLU to our 
algorithmic model and compared their performances, 
shown in Tables 1 and 2, respectively.

The Lipophilicity and PDBbind datasets, shown in 
Table 1, are regression datasets. RMSE was used to evalu-
ate our algorithm performance based on these two data-
sets. A lower RMSE value indicates better performance. 
As can be seen from Table  1, the RMSE value for our 
algorithmic model based on the Beaf on the Lipophilic-
ity dataset is 0.577± 0.049 , which is 0.146 lower than the 
0.723± 0.037 obtained by the ELU. It is also 0.058 lower 
compared to using the GeLU (GeLU: 0.635± 0.040 ). On 
the PDBbind dataset, the RMSE value for our algorithmic 
model based on the Beaf is 1.771± 0.300 , which is 0.283 
lower compared to using the ELU (ELU: 2.054 ± 0.265 ). 
It is also 0.248 lower than the 2.019± 0.278 obtained by 
the GeLU. Therefore, there are significant advantages to 
use Beaf on the Lipophilicity and PDBbind datasets.

Table 1  Comparisons of performance for the activation 
functions Beaf, ELU, and GeLU on Lipophilicity and PDBbind 
datasets (lower values are better)

GeLU ELU Beaf

Lipophilicity 0.635± 0.040 0.723± 0.037 0.577± 0.049

PDBbind 2.019± 0.278 2.054± 0.265 1.771± 0.300

Table 2  Comparisons of performance for the activation 
functions Beaf, ELU, and GeLU on PCBA, BACE,Tox21 and SIDER 
datasets (higher values are better)

GeLU ELU Beaf

PCBA 0.806± 0.002 0.663± 0.006 0.821± 0.005

BACE 0.928± 0.019 0.909± 0.022 0.923± 0.035

Tox21 0.843± 0.025 0.840± 0.049 0.847± 0.015

SIDER 0.652± 0.027 0.628± 0.012 0.679± 0.015
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In Table  2, the PCBA, BACE, Tox21 and SIDER 
datasets are classification datasets. AUC was used to 
evaluate our algorithm performance based on these 
four datasets. A higher AUC value indicates better 
performance. As can be seen from Table  2, the AUC 
value for our algorithm model based on the Beaf is 
0.821± 0.005 on the PCBA dataset. This represents 
an improvement in the AUC value of 0.158 over the 
model with ELU (ELU: 0.663± 0.006 ) and of 0.015 over 
the model with GeLU (GeLU: 0.806± 0.002 ). On the 
BACE dataset, the AUC value for our algorithmic model 
based on the Beaf is 0.923± 0.035 . This represents 
an improvement in the AUC value of 0.014 over the 
0.909± 0.022 obtained by the ELU. This is slightly 
lower, by 0.005, than the model with the GeLU (GeLU: 
0.928± 0.019 ). On the Tox21 dataset, the AUC value for 
our algorithmic model is 0.847± 0.015 based on the Beaf. 
This represents an increase in the AUC value of 0.007 
over the 0.840± 0.049 gained by the ELU. It represents 
an increase in the AUC value of 0.004 compared to using 
the GeLU (GeLU:0.843± 0.025 ). On the SIDER dataset, 
the AUC value for our algorithmic model based on the 
Beaf is 0.679± 0.015 . This represents an improvement 
in the AUC value of 0.051 over the 0.628± 0.012 
obtained by the ELU. It represents an increase the 
AUC value of 0.027 compared to the model with GeLU 
(GeLU: 0.652± 0.027 ). Therefore, there are significant 
advantages of using Beaf on PCBA, BACE, Tox21, and 
SIDER datasets.

In conclusion, for ELU, all experimental results based 
on the Beaf are better than those based on the ELU on 
the datasets Lipophilicity and PDBbind. For GeLU, on 
the four datasets (i.e., PCBA, BACE, Tox21, and SIDER), 
only on the BACE dataset, the experimental results based 
on the GeLU are slightly better than those based on the 
Beaf. The experimental results of the algorithmic model 
based on the Beaf are better than those of the algorithmic 
model based on the GeLU on three of the four datasets. 
Therefore, we chose Beaf as the activation function for 
the double-head transformer neural network (DHTNN) 
for molecular property prediction.

Comparison of model performance
Our experiments were run on a Windows 10 operating 
system with a 1.70 GHz Intel Xeon Bronze 3104 CPU, 
64 GB of RAM, and an NVIDIA RTX2080 GPU, using 
python 3.8 as the development language and PyTorch 
1.5.1 as the neural network framework for deep learning 
training.

The results of our algorithm were compared with the 
following state-of-the-art methods: MolNet [1], RF on 
Morgan [19], FFN on Morgan [19], FFN on Morgan 
counts [19], FFN on RDKit [19], and DMPNN [19]. The 

chemical descriptors used by RF on Morgan and FFN 
on Morgan are Morgan fingerprints [17, 18]. FFN on 
Morgan counts uses count-based Morgan fingerprints. 
FFN on RDKit uses the chemical descriptors generated 
by RDKit [60]. The chemical descriptors of MolNet, 
DMPNN, and our model (DHTNN) are SMILES [61, 62].

The methods used for performance comparison 
included machine learning methods and deep learn-
ing methods, and RF on Morgan is currently the most 
advanced method for machine learning. MolNet, FFN 
on Morgan, FFN on Morgan Counts, FFN on RDKit 
and DMPNN are current advanced methods for deep 
learning.

For the regression dataset, we calculated the RMSE to 
evaluate the performance of the algorithm. The lower 
the RMSE, the better the model performance. As shown 
in Figs.  5a, b and 6a, b, our model’s RMSE is lower 
compared to the other models, whether by random 
splitting or by scaffolding splitting. On the Lipophilicity 
dataset, our model’s performance (Ours: 0.577± 0.049 ) 
is 0.5% lower compared to DMPNN (DMPNN: 
0.582± 0.024 ) by random splitting (Table 3). Our model 
performance (Ours: 0.590± 0.038 ) is by 5.8% lower 
compared to DMPNN (DMPNN: 0.648± 0.057 ) by 
scaffold splitting (Table  4). This is because we use our 
proposed activation function Beaf in the high-precision 
nonlinear generalization representation of molecular 
features. DMPNN uses the activation function ReLU, 
and the negative part of ReLU is mapped to zero, while 
Beaf is still able to map the negative part, especially 
the values between −4 and 0. The negative values in 
the Lipophilicity are concentrated between −2 and 
0, and after the nonlinear transformation by the Beaf 
activation function, the neurons in the negative part do 
not die. Therefore, our model outperforms DMPNN on 
the regression dataset.

For the classification dataset, we calculated the PRC-
AUC and ROC-AUC. The higher the AUC, the better 
the model performance. As shown in Figs.  5c, d, e, f 

Table 3  Comparisons of performance with state-of-the-
art methods on regression datasets, splitting the datasets by 
random splitting in a ratio of 8:1:1 (lower values are better)

Methods Lipophilicity PDBbind

MolNet [1] 0.655± 0.036 1.920± 0.070

RF on Morgan [19] 0.823± 0.035 2.083± 0.324

FFN on Morgan [19] 0.928± 0.044 2.778± 0.599

FFN on Morgan counts [19] 0.874± 0.043 2.901± 0.812

FFN on RDKit [19] 0.735± 0.039 2.020± 0.376

DMPNN [19] 0.582± 0.024 1.945± 0.298

Ours 0.577± 0.049 1.771± 0.300
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and 6c, d, e, f all of our models outperform the other 
models by random splitting. Our model also outper-
forms the other models on three of the four datasets 
by scaffold splitting. Only on the Tox21 dataset, the 
experimental results are slightly worse than those of 
other models. Compared with the random splitting 
approach, the scaffold splitting approach provides a 
more realistic estimation of the model performance. 
On the PCBA dataset, our model (Ours: 0.821± 0.005 ) 
improves 61.4% compared to FFN on RDkit (FFN on 
RDkit: 0.207± 0.005 ) by random splitting (Table  5). 
Also, our model (Ours: 0.715± 0.004 ) improves by 
55.4% compared to FFN on RDkit (FFN on RDkit: 

0.161± 0.005 ) by scaffold splitting (Table  6). The per-
formance improvement is most significant on the 
PCBA dataset among all classified datasets. The molec-
ular feature extraction of Transformer based on the 
Double-head block added to our model is used to learn 
individual molecular features and atom-to-atom inter-
relationships. The greater the number of data samples, 
the richer the intrinsic features learned and the better 
the molecular property prediction. The PCBA contains 
430,000 data samples and is the largest dataset in the 
four classification datasets used in our experiments. 
Therefore, the performance improvement of our algo-
rithm is the greatest.

Whether on regression or classification datasets, 
our model did not exhibit gradient disappearance or 
explosion. The molecular residual network encoding in 
the model played an important role in ensuring that the 
model converged.

Conclusion
In this paper, a new algorithmic framework, DHTNN, 
was proposed for molecular property prediction. Beaf, 
a new activation function, is included in the molecu-
lar nonlinear representation part, and the negative part 
is also able to be mapped, making the mapping more 

Table 4  Comparisons of performance with state-of-the-art methods on classification datasets, splitting the datasets by random 
splitting in a ratio of 8:1:1 (higher values are better)

Methods PCBA BACE Tox21 SIDER

MolNet [1] 0.136± 0.004 / 0.829± 0.006 0.648± 0.009

RF on Morgan [19] / 0.825± 0.039 0.619± 0.015 0.572± 0.007

FFN on Morgan [19] 0.263± 0.008 0.873± 0.040 0.788± 0.017 0.652± 0.010

FFN on Morgan Counts [19] 0.268± 0.006 0.882± 0.030 0.790± 0.020 0.638± 0.020

FFN on RDKit [19] 0.207± 0.005 0.858± 0.034 0.832± 0.016 0.654± 0.019

DMPNN [19] 0.769± 0.010 0.892± 0.031 0.839± 0.022 0.657± 0.016

Ours 0.821± 0.005 0.923± 0.035 0.847± 0.015 0.679± 0.015

Table 5  Comparisons of performance with state-of-the-art 
methods on regression datasets, splitting the datasets by scaffold 
splitting in a ratio of 8:1:1 (lower values are better)

Methods Lipophilicity PDBbind

MolNet [1] 0.655± 0.036 1.920± 0.070

RF on Morgan [19] 0.908± 0.052 2.011± 0.240

FFN on Morgan [19] 1.045± 0.042 2.737± 0.518

FFN on Morgan Counts [19] 1.003± 0.068 3.015± 0.636

FFN on RDKit [19] 0.792± 0.032 1.842± 0.252

DMPNN [19] 0.648± 0.057 1.858± 0.300

Ours 0.590± 0.038 1.599± 0.199

Table 6  Comparisons of performance with state-of-the-art methods on classification datasets, splitting the datasets by scaffold 
splitting in a ratio of 8:1:1 (higher values are better)

Methods PCBA BACE Tox21 SIDER

MolNet [1] 0.136± 0.004 / 0.829± 0.006 0.648± 0.009

RF on Morgan [19] / 0.804± 0.035 0.582± 0.031 0.540± 0.013

FFN on Morgan [19] 0.189± 0.005 0.843± 0.052 0.722± 0.041 0.608± 0.035

FFN on Morgan Counts [19] 0.195± 0.003 0.849± 0.047 0.725± 0.052 0.595± 0.033

FFN on RDKit [19] 0.161± 0.005 0.833± 0.046 0.788± 0.046 0.618± 0.031

DMPNN [19] 0.707± 0.002 0.759± 0.0291 0.779± 0.037 0.602± 0.024

Ours 0.715± 0.004 0.774± 0.014 0.772± 0.023 0.661± 0.046
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accurate and improving the model nonlinear representa-
tion accuracy and its generalization ability. In the molec-
ular encoding part, the addition of the residual network 
prevents the gradient from disappearing or exploding 

and ensures that the model can converge. In the extrac-
tion of molecular features, the involvement of the Trans-
former based on Double-head attention can focus on the 
features of the region of interest for the prediction results 

Fig. 5  Performance of the model on Lipophilicity (a), PDBbind (b), PCBA (c), BACE (d), Tox21 (e) and SIDER (f) datasets. RMSE was calculated on 
Lipophilicity (a), PDBbind (b), the lower the RMSE, the better the model performance. PCBA (c), BACE (d), Tox21 (e), and SIDER (f) on which AUC was 
calculated; the higher the AUC, the better the model performance. Datasets were split by random



Page 14 of 16Song et al. Journal of Cheminformatics           (2023) 15:27 

and assign the weights reasonably. Running our model on 
six datasets, our method outperformed current state-of-
the-art methods in all metrics. The experimental results 
demonstrate the effectiveness of our proposed algorith-
mic framework.
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