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Abstract 

Background  The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic 
traits may also be affected by, and formed due to, past and current admixture events. Adaptation to diverse environ-
ments, including acclimation to harsh climatic conditions, has also left selection footprints in breed genomes.

Results  Using the Chicken 50K_CobbCons SNP chip, we genotyped four divergently selected breeds: two aborigi-
nal, cold tolerant Ushanka and Orloff Mille Fleur, one egg-type Russian White subjected to artificial selection for cold 
tolerance, and one meat-type White Cornish. Signals of selective sweeps were determined in the studied breeds using 
three methods: (1) assessment of runs of homozygosity islands, (2) FST based population differential analysis, and 
(3) haplotype differentiation analysis. Genomic regions of true selection signatures were identified by two or more 
methods or in two or more breeds. In these regions, we detected 540 prioritized candidate genes supplemented 
them with those that occurred in one breed using one statistic and were suggested in other studies. Amongst them, 
SOX5, ME3, ZNF536, WWP1, RIPK2, OSGIN2, DECR1, TPO, PPARGC1A, BDNF, MSTN, and beta-keratin genes can be espe-
cially mentioned as candidates for cold adaptation. Epigenetic factors may be involved in regulating some of these 
important genes (e.g., TPO and BDNF).

Conclusion  Based on a genome-wide scan, our findings can help dissect the genetic architecture underlying vari-
ous phenotypic traits in chicken breeds. These include genes representing the sine qua non for adaptation to harsh 
environments. Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene 
expression mechanisms or more than one overlapping response known in cold-exposed individuals, and this war-
rants further investigation.
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Background
Poultry is a traditional, important, integral and the fast-
est growing component of livestock agriculture. An 
estimated 70  billion chickens per year are raised and 
slaughtered for meat alone worldwide [1]. To increase 
the production of both eggs and meat, producers rely 
on developments in the field of biotechnology, classical 
genetics, and genomic research in both chicken (Gal-
lus gallus; GGA) and other poultry species, thereby, 
improving and optimising breeding performance [2]. 
Diverse poultry breeds are adapted to local environments 
[3], formed in the course of past and recent admixture 
events [4] and divergently selected for a suite of phe-
notypic characters of interest. They can serve as valu-
able resources for peculiar genetic variants (e.g., [5, 6]; 
see also examples in Table S1), while further research of 
selective sweeps and underlying candidate genes in these 
breeds (e.g., [7–9]) is also possible and worthy of conse-
quent breeding applications.

Recently, we carried out preliminary single nucleo-
tide polymorphism (SNP)-based research in two 
breeds, the native egg-type Russian White (RUW) and 
meat-type White Cornish (WCR), using the Chicken 

50K_CobbCons chip [10]. RUW (Fig.  1A) is one of the 
distinctive native egg-type breeds developed by cross-
ing the White Leghorn and local Russian laying hens and 
bred for egg production in the former Soviet Union in 
1929–1953 [10–12]. This breed is remarkable for carry-
ing the classical genes [5, 13] for dominant white plum-
age and single comb (Table S1). WCR (Fig. 1B) is a typical 
meat-type breed broadly used as a male parent stock for 
broiler production [2, 14]. It is characterized by the classi-
cal genes for recessive white plumage and pea comb ([5]; 
Table S1). In the recent experiment [10], we genotyped 
54 birds from these two breeds, estimated their genetic 
diversity and inbreeding, and unveiled footprints of arti-
ficial selection and related candidate genes associated 
with performance traits. In particular, we found signifi-
cant SNPs and identified candidate genes for such traits 
as body temperature, egg performance and feed intake 
in RUW chickens, and body weight and feed efficiency 
in WCR chickens. Fedorova et al. [15] further attempted 
to identify key candidate genes in the RUW genome that 
could be associated with cold adaptation.

Among the native Russian breeds, of great interest is 
Ushanka (USH; Fig. 1C), one of the oldest native breeds, 

Fig. 1  Four chicken breeds used in this study. A Russian White (male, left; female, right); B White Cornish (male, left; female, right); C Ushanka 
(female, left; male, right); and D Orloff Mille Fleur (female, left; male, right)
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also known by names of the Russian Ushanka, South Rus-
sian Ushanka, and Ukrainian Muffed [16, 17]. The fol-
lowing description is available for USH ([13, 18]; see also 
the breed’s classical phenotype-relevant mutations in 
Table S1): this is an old native breed of unknown exact 
ancestry in the South of Russia, with its first description 
known since the 1880s. They are medium-sized, very 
hardy birds, not afraid of frost and well adapted to vari-
ous climatic conditions. They have a rose comb and well-
developed muffs and beard. Originally, they had black 
plumage in hens and black with a red hackle in roost-
ers. Day-old chick down colour is black, although there 
is currently a wide variety of plumage coloration due to 
no special selection for this phenotypic trait. They have 
a creamy eggshell, predominantly black shank (caused 
by a wild type allele of the dermal melanin inhibitor) and 
retain a broody behaviour. In a recent study, Larkina et al. 
[19] assigned USH to dual purpose breeds.

Orloff Mille Fleur (OMF; Fig.  1D) belongs to the old 
Russian breeds and is also cold resistant [16, 20]. The 
following information was reported on OMF ([13, 18]; 
see also Table S1): it was widespread in the 18th and 19th 
centuries and believed to be created in Central Rus-
sia on the estate of Count Alexei Orlov Chesmensky 
(1737–1808) by crossing Malay-type game individuals 
with local bearded chickens [20]. They are distinguished 
by high vitality and unpretentiousness and tolerate both 
heat and severe frosts well. Due to late feathering, chicks 
require special care at raising, since they do not toler-
ate dampness and cold. They are traditionally used as a 
dual purpose breed and also for cock fighting. They are 
superbly selected for appearance and ornamental traits, 
much appreciated by poultry fanciers. Features include 
muffs and beard, walnut comb, fancy mille fleur plum-
age pattern, light beige eggshell colour, and light yellow 
chick down at one day old, with longitudinal striping of 
varying degrees on the back. They also have a preserved 
broodiness instinct. There were few reports suggest-
ing that USH chickens were used as local bearded fowls 
at creating the Orloff breed [21]. Some other authors 
[20] also hypothesized that the breed stemmed from the 
Gilan breed (brought from the Gilan Province, Persia) or 
crested chickens were mated with Malay fowls to pro-
duce OMF.

It should be noted that the continental climate is 
dominant in a significant part of the territory of Rus-
sia and adjacent countries wherefrom USH, OMF and 
RUW originated. It is characterized by consistently 
cold winters, consistently hot summers and low rainfall. 
Investigation of genetic response and genes underlying 
acclimation into diverse climatic conditions is impor-
tant for poultry industry since it can improve our under-
standing of mechanisms of environmental adaptation 

process in chickens and serve as a molecular basis for 
efficient breeding toward temperature stress tolerance 
[15, 22–24]. A useful high throughput approach to tackle 
a jigsaw of potential and relevant genes associated with 
adaptation, performance and phenotypic traits of inter-
est is a genome-wide search for selection signatures. 
These can be discovered using different methodologies, 
e.g., by determining contiguous sequences of homozy-
gous identical-by-descent haplotypes, known as runs of 
homozygosity (ROHs), or inferring fixation index (FST) of 
genomic windows as a measure of genetic differentiation 
(e.g., [8–10, 14, 15, 24]).

Given that USH, OMF, and RUW are cold toler-
ant, the purpose of this study was to identify and com-
pare the respective footprints of selection in the two 
old breeds, USH and OMF, with the previous [10] and 
new, expanded, data collected for defining the genomic 
features of RUW. With this in mind, we evaluated the 
genomic architecture and traces of selection in USH, pre-
viously understudied in terms of its genetic and genomic 
features, in comparison with three other breeds including 
OMF, RUW and WCR. Accordingly, we searched for loci 
under selection pressure that can be associated with phe-
notypic traits of interest in USH and other breeds.

Methods
Experimental animals
Chickens of the USH and OMF breeds (Fig.  1C, D) 
developed ~ 150–200 years ago in the conditions of Rus-
sian local farms were used in the present study. In addi-
tion, the analysed dataset included the RUW and WCR 
breeds (Fig.  1A, B) divergently selected for contrasting 
traits of egg and meat performance, respectively. Birds 
of the USH, OMF and WCR breeds were purchased 
from the Federal Research Centre “All-Russian Poultry 
Research and Technological Institute” (FRCARPRTI) and 
placed in the bioresource Gene Pool Collection of Farm 
and Wild Animals and Birds at the L.K. Ernst Federal 
Research Centre for Animal Husbandry (LKEFRCAH). 
Samples of the RUW breed were provided by the Russian 
Research Institute of Farm Animal Genetics and Breed-
ing (RRIFAGB).

Sample collection and DNA extraction
The total sampling size was 156 animals including 40 
USH, 30 OMF, 64 RUW and 22 WCR individuals. DNA 
extraction from chicken feather samples was performed 
using a commercial nexttec™ 1-Step DNA Isolation kit 
equipped with nexttec™ cleanColumns (Nexttec Bio-
technologie GmbH, Leverkusen, Germany) and fol-
lowing the manufacturer’s protocols. Solutions of the 
isolated DNA were quality controlled by measuring 
the double-stranded DNA concentration using a Qubit 
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3.0 fluorometer (Thermo Fisher Scientific, Wilming-
ton, DE, USA) and determining the ratio of the DNA 
light absorbance values at 260/280 nm using a Nan-
oDrop-2000 spectrophotometer (Thermo Fisher Scien-
tific, Wilmington, DE, USA).

SNP genotyping and quality control
Sample genotyping was performed using the Chicken 
50K_CobbCons SNP chip (Illumina, San Diego, CA, 
USA), and there were 53,872 SNPs before all filters. 
Input files for analysis and subsequent visualization of 
the results were prepared using the R software envi-
ronment [25]. Genotyping quality was controlled using 
PLINK 1.9 software [26] and applying the following fil-
ters: at least 90% of loci (--geno 0.1) were successfully 
genotyped in at least 90% of samples (--mind 0.1), and 
the frequency of minor alleles was at least 5% (--maf 
0.05). Only SNPs located on 28 autosomes (GGA1 to 
GGA28) were considered for the further analysis. After 
filtering, the genotype dataset to search for and ana-
lyse signatures of selection included 44,339 autosomal 
SNPs. For certain types of analyses, i.e., genetic diver-
sity assessment, principal component analysis (PCA), 
Neighbor-Net plotting, and admixture estimation, an 
additional filter was applied by introducing > 50% link-
age disequilibrium threshold (using the PLINK --indep-
pairwise 50 5 0.5 command), after which 28,993 SNPs 
were obtained. Coordinates of SNP positions in the 
GGA reference genome assembly GRCg6a [27] were 
accepted in this study.

Genetic diversity and population structure
Using the R package diveRsity [28], the following indica-
tors were calculated to assess within-breed genetic diver-
sity: the observed heterozygosity (HO), unbiased expected 
heterozygosity (UHE) [29], rarefied allelic richness (AR) 
[30], and UHE-based inbreeding coefficient (UFIS).

Genetic differences between the studied breeds were 
ascertained in PLINK 1.9. PCA visualization was per-
formed in the R package ggplot2 [31]. Pairwise distances 
for identical-by-state regions were applied to construct 
a Neighbor-Net dendrogram using the SplitsTree 4.14.5 
program [32].

Model-based clustering was fulfilled for refining 
population structure using the ADMIXTURE v1.3 
software [33]. The optimal number of clusters (ances-
tral populations) K was determined using the lowest 
error in the cross-validation procedure as calculated 
for K values from 1 to 8. Visualization of the admix-
ture analysis results was performed using the R pack-
age pophelper [34].

Selective sweeps
To search for signals of selective sweeps in the stud-
ied breeds, the following three methods were used: 
(1) assessment of ROH islands overlapping in different 
breeds, (2) calculation of FST values in pairwise com-
parison of breeds, and (3) haplotype differentiation 
analysis.

ROH mining
To compute ROHs, a window-free method for consecu-
tive SNP-based detection [35] was employed as imple-
mented in an R package detectRUNS [36]. During this 
analysis, one SNP with a missing genotype and one het-
erozygous SNP were admitted avoiding an underestima-
tion of ROHs with a length of 8 megabases (Mb) or more 
[37]. The minimum allowable ROH length was 500 kilo-
bases (kb) to exclude too short and widespread regions 
from the analysis. The minimum number of SNPs (l) was 
calculated according to the method proposed by Lencz 
et al. [38] and modified by Purfield et al. [39]:

where ns is number of SNPs genotyped in an individual 
sample, ni is number of genotyped individuals, 𝛼 is pro-
portion of false-positive ROHs (set to 0.05 in this study), 
and het is mean heterozygosity for all SNPs. Using this 
formula, we found l = 24 in our case.

Based on information about the number and length of 
homozygous regions in the analysed breed genomes, the 
genomic inbreeding coefficient (FROH) was calculated, 
which was the ratio of the sum of lengths of all ROH 
per individual to the total length of the chicken refer-
ence genome covered with autosomal SNPs (~ 940 Mb). 
Homozygosity segments were distributed according to 
the length of the detected regions between the following 
length classes: 0.5–1, 1–2, 2–4, 4–8, 8–16 and > 16 Mb. 
To determine the proportion of the genome covered by 
ROH segments of various lengths, we figured out the sum 
of ROH in the following length classes: > 0.5, > 1, > 2, > 4, 
> 8, and > 16 Mb. Suggestive ROH islands were defined 
as homozygous regions overlapping by 0.3 Mb that were 
shared by more than 50% of the analysed individuals in 
each breed.

FST estimation
Pairwise values of genetic distances between all SNPs 
based on FST were calculated in PLINK 1.9. The top 0.1% 
FST values served to detect a selection signature as was 
propounded elsewhere [40].

l =
loge

α
ns×ni

loge(1− het)
,
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HapFLK procedure
The hapFLK 1.4 program [41] was used to analyse the 
haplotype differentiation in the studied breeds to define 
footprints of selection. The number of haplotype clus-
ters was revealed during the cross-validation procedure 
in fastPHASE program [42] and was 35. The results of 
the hapFLK test were visualized using the qqman pack-
age [43]. The hapFLK regions with at least one SNP at the 
P-value threshold of 0.01 (–log10(P) > 2) were chosen for 
detailed analyses.

Search for candidate genes and QTLs within selective 
sweep regions
In the genomic regions under putative selection as rec-
ognized by the three different statistics, i.e., FST, ROH, 
and hapFLK methods, candidate genes were mined. For 
this, lists of potential regions and genes under selection 
pressure were established if they were identified by two 
and more methods or in two and more breeds. For the 
ROH and hapFLK statistics, we searched for genes that 
fall entirely or partially within the given boundaries of 
the found intervals. For the FST statistic per single SNP, 
we looked at genes falling within the window of ± 200 
kb from the target SNP. In the case when more than one 
SNP was revealed, the boundaries of the interval for gene 
search were set as follows: − 200 kb from the position of 
first SNP and + 200 kb to the position of last SNP.

For structural annotations of the above selective 
sweep areas, chicken genes inside the chosen regions 
and their human orthologs were retrieved from the 
Ensembl Genes release 106 database using BioMart 
data mining tool [44] as described elsewhere [10]. The 
list of selected genes was manually curated and supple-
mented with other focused genes if those were reported 
previously (e.g., [10, 15, 22, 24]) for the selective sweep 
regions found in the present study.

Furthermore, to broaden the candidate list with more 
previously discovered and significant genes, a more 
extensive gene excavating was completed that encom-
passed the regions identified by one technique. After-
wards, National Center for Biotechnology Information 
PubMed-available information from other published 
studies was analysed for functional annotation of all 
candidates and selection of prioritized candidate genes 
(PCGs) that were the most relevant for characterizing 
phenotypic and genomic features of the chicken breeds 
investigated. Distribution of PCGs among the four breeds 
studied was visualized by plotting Venn diagrams [45]. 
We also looked at a publicly available database, Chicken 
QTLdb [46], to see if there were any quantitative trait loci 
(QTLs) and associated genes that corresponded with the 
detected genomic regions.

Results
Between‑ and within‑breed genetic diversity
Using genotypes for a total of 28,993 validated genome-
wide SNPs, the four breeds demonstrated a distinct 
genetic differentiation as visualized with the respective 
Neighbor-Net tree (Fig.  2A), PCA plot (Fig.  2B), and 
ADMIXTURE bar plot (Fig.  2C). As resulted from the 
clearcut PCA-inferred breed distribution, there were 
compact localization and appropriate breed assignment 
of all the genotyped individuals (Fig. 2B). The four breeds 
occupied distinctive positions on the PCA plot, with 
USH and RUW being the most distant and OMF and 
WCR being closer to each other.

Although K = 8 represented the most optimal and 
probable number of clusters (ancestral populations) (Fig. 
S1), each breed already revealed its own genetic struc-
ture at K = 4, with a very few instances of admixture and 
introgression from other breeds or use of few archived 
USH samples from 2011 to 2012 (Fig.  2C), which was 
important for subsequent search for loci under selec-
tion pressure. The within-breed population structure and 
admixture patterns for K = 2, 3 and 8 are given in Fig. S2. 
Specifically, USH and RUW were characterized with a 
single ancestry at K = 2, while OMF and WCR had two 
ancestries. When K = 3, there were single ancestries in 
USH, OMF and RUW, with WCR showing three ances-
tries. At K = 8, we observed three ancestries in USH, two 
in OMF and RUW, and one in WCR.

When within-breed diversity parameters were 
assessed (Table  1), the highest genetic variability was 
observed in WCR and the lowest one in USH, with OMF 
and RUW having intermediate values of HO, UHE and AR 
(P < 0.001). Judging from UFIS values, USH (0.055) was 
characterized by an increased excess of homozygotes 
under Hardy–Weinberg equilibrium, with a deficiency 
of heterozygotes being also found in WCR (0.015) and 
their slight excess in RUW (–0.004), while OMF was 
almost close to the Hardy–Weinberg equilibrium state 
(0.001; Table 1).

Characterization of within-breed genome-wide homozy-
gosity degree in terms of ROH metrics (Table 2) revealed 
that USH had the highest mean overall ROH length and 
respective inbreeding coefficient (P < 0.001). In WCR, 
these parameters had the lowest values, while in OMF 
and RUW they were intermediate (P < 0.001). Mean ROH 
number values were the highest in USH and OMF as com-
pared to the lowest one in RUW (P < 0.05).

ROH distribution analysis (Fig.  3, Table S2) showed 
that USH had the greatest overall ROH lengths 
across various ROH length classes, with OMF, RUW 
and WCR having the second, third and fourth much 
shorter overall ROHs, respectively (Fig.  3A). Con-
cerning ROH numbers among length classes (Fig. 3B), 
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there was the greatest number of shortest ROHs in 
WCR that was essentially reduced in longer ROH 
classes. A somewhat opposite distribution pattern was 
inherent in USH that had fewer shorter ROHs (up to 
2 Mb) relative to other breeds, however this breed was 
superior to others for the longer ROH classes.

Signatures of selection
ROH islands
On 22 out 28 GGA autosomes, there were a total of 
256 ROH islands (Table 3 and S3), with their greatest 
number being identified in USH (165), an intermedi-
ate number in OMF (55), and the lowest ones in WCR 

Fig. 2  Chicken breed relationships based on genome-wide SNP genotypes. A Neighbor-Net tree constructed using the FST genetic distances 
within and between the studied populations; B PCA plot showing the distribution of breeds and individuals in the dimensions of two coordinates, 
i.e., the first (PC1; X-axis) and second (PC2; Y-axis) principal components, with respective percentage of the total variance, which can be explained 
by each of the two PCs; and C ADMIXTURE bar plot representing individual ancestry proportions in the studied populations at K = 4. Breeds: OMF, 
Orloff Mille Fleur; RUW, Russian White; USH, Ushanka; WCR, White Cornish

Table 1  Descriptive statistics for genetic diversity indices in the four breeds studied1

1  Breeds: OMF Orloff Mille Fleur, RUW​ Russian White, USH Ushanka, WCR​ White Cornish. n number of individuals, HO observed heterozygosity, M Mean value, 
SE Standard error, UHE unbiased expected heterozygosity, AR rarefied allelic richness, UFIS unbiased inbreeding coefficient [CI 95%, range variation of UFIS coefficient at a 
confidence interval of 95%]. All pairwise breed differences were significant at P < 0.001

Breed n HO (M ± SE) UHE (M ± SE) AR (M ± SE) UFIS [CI 95%]

OMF 30 0.305 ± 0.001 0.305 ± 0.001 1.847 ± 0.002 0.001 [–0.001; 0.003]

RUW​ 64 0.332 ± 0.001 0.330 ± 0.001 1.927 ± 0.001 –0.004 [–0.006; − 0.002]

USH 40 0.246 ± 0.001 0.263 ± 0.001 1.787 ± 0.002 0.055 [0.053; 0.057]

WCR​ 22 0.373 ± 0.001 0.379 ± 0.001 1.969 ± 0.001 0.015 [0.012; 0.018]
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(19) and RUW (17). The appropriate distribution of 
ROH islands by chromosomes (Table  3) showed the 
greatest genome coverage per chromosome in USH 
(P < 0.05) and the lowest one in OMF and RUW (at 
P < 0.001 relative to USH).

On 12 autosomes, there were 32 ROH regions over-
lapped in two or three breeds with the respective distri-
bution of ROH islands among chromosomes (Table  4, 
Fig. S3), including 28 such regions in USH, 22 in OMF, 8 
in WCR, and 7 in WUR.

FST statistic at pairwise comparison of breeds
Based on the top 0.1% SNPs and distribution of SNPs by 
FST values at pairwise comparison of the studied breeds 
(Table S4, Fig. S4), we identified 15 blocks on ten auto-
somes with FST value ranging between 0.967 and 1.000 
(Table 5). All these blocks were shared by USH, and five 
blocks by each of OMF, WCR and RUW.

HapFLK statistic
Using HapFLK analysis, eight regions of selection signa-
tures were discovered on six autosomes (Fig. 4; Table 6). 
Six of these HapFLK blocks were found in USH, five in 
OMF, three in WCR, and one in RUW, with six blocks 
being shared between two or three breeds.

Finally, we compiled genomic regions with the signals 
of selection sweeps identified in the genomes of the four 
studied chicken breeds by three different statistics (Table 
S5) and used this list for candidate gene/QTL search as 
outlined in the two subsections below.

Candidate genes affected by selection
Across 23 autosomes (GGA1–GGA15, GGA18–GGA21, 
GGA23, and GGA26–28), we revealed 77 genomic 
regions that demonstrated footprints of selection in two 
and more breeds or supported by two and more methods. 
We also included 38 regions found in one breed and iden-
tified by one method when these encompassed genes of 
interest known from our previous investigation [10] and 
other relevant studies (Table S6). Structural annotation 
of these 115 regions resulted in a total of 3925 chicken 
genes. Of those, 2373 genes were candidates annotated 
in chicken, with the rest being 1349 Ensembl novel genes 
(including 96 genes orthologous to known human genes), 
87 uncharacterized loci (including 21 genes homologous 
to annotated human genes), and 115 microRNAs (with 
16 homologous to human microRNAs). In all, there were 
2220 orthologous human genes, with 2177 being anno-
tated, 23 uncharacterized and 20 Ensembl novel genes. 
Descriptive characteristics of all candidate genes under 
putative selection pressure were provided in Table S6.

Table 2  Descriptive statistics for runs of homozygosity (ROHs) in 
the four breeds studied1

1  Breeds: OMF Orloff Mille Fleur, RUW​ Russian White, USH Ushanka, WCR​ 
White Cornish. n number of individuals, M Mean value, SE Standard error, 
FROH inbreeding coefficient inferred from mean ROH lengths. Values with the 
same superscript have no significant difference

Breed n Mean length of 
ROHs, Mb (M ± SE)

Mean number of 
ROHs (M ± SE)

FROH (M ± SE)

OMF 30 265.30 ± 12.21 125.20 ± 4.49ab 0.283 ± 0.013

RUW​ 64 206.71 ± 4.41 112.80 ± 1.57c 0.220 ± 0.005

USH 40 411.31 ± 13.46 126.50 ± 2.50a 0.438 ± 0.014

WCR​ 22 160.46 ± 4.43 117.82 ± 2.75bc 0.171 ± 0.005

Fig. 3  Runs of homozygosity (ROH) patterns in the four breeds studied. Distribution of ROHs is shown by ROH length class (X-axis; 0.5–1, 1–2, 2–4, 
4–8, 8–16, and > 16 Mb) by their mean length (A) and number (B) (Y-axis). Breeds: OMF, Orloff Mille Fleur; RUW, Russian White; USH, Ushanka; WCR, 
White Cornish
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Functional annotation of candidate genes led to a suite 
of 540 PCGs previously reported elsewhere (e.g., [10, 15, 
22, 24]; as summarized in Table S6) that could be under 
selection and responsible for specific phenotypic traits 
in the four breeds investigated. These genes were distrib-
uted among 22 autosomes (as shown in Table S7) and 
were also divided into 12 functional categories based on 
phenotypic features they are related to as follows (with 
respective gene numbers given in parentheses): cold tol-
erance (84); domestication (6); egg traits (68); energy and 
feed intake (27); fat metabolism (83); growth, meat, car-
cass (131); immunity (140); reproduction (55); response 
to heat (35); skin, feather, other skin appendages (76); 
stress and adaptation (47); and thermosensation (5) 
(Table S8). Several genes previously suggested to influ-
ence more than one phenotypic trait were attributed to 
more than one functional category.

We also analysed distribution of the 540 PCGs among 
the four breeds and found out that USH had their great-
est number (480, or 89%), while OMF, WCR and RUW 
had lower numbers: 121 (22%), 85 (16%) and 68 (13%), 

respectively (Table S9). The sharing pattern of the PCGs 
is given in Fig.  5. According to it, USH had 296 unique 
genes (62% relative to the breed’s gene number), whereas 
we observed just 21 (17%), 18 (21%) and 16 (24%) unique 
genes in RUW, OMF and WCR, respectively. Pairwise 
comparison of shared PCGs between two breeds showed 
that their greatest number was between USH and OMF 
(98, or 20% as compared to the USH gene number), and 
USH also shared 66 genes (14%) with WCR and 45 genes 
(9%) with RUW. There were 18 genes shared between 
OMF and WCR (15% relative to the OMF gene number) 
and 11 genes between OMF and RUW (9%), with just one 
gene shared between WCR and RUW (1% as compared 
to the WCR gene number). No gene was shared by all the 
four breeds.

Venn diagrams for the 540 PCGs distributed by breed 
by phenotypic category are demonstrated in Fig. S5, and 
their summary is provided in Table  7. In all instances 
(except domestication), USH was represented with the 
greatest numbers of unique and shared genes in each 
category.

Table 3  Runs of homozygosity (ROH) islands identified in the genomes of the studied chicken breeds1

1  Breeds: OMF Orloff Mille Fleur, RUW​ Russian White, USH Ushanka, WCR​ White Cornish. M Mean value, SE Standard error. Mean values with the same superscript have 
no significant difference

GGA​ No. of ROH islands Coverage by ROH islands, Mb

OMF RUW​ USH WCR​ OMF RUW​ USH WCR​

1 12 5 33 4 11.927 5.594 67.422 6.584

2 9 2 22 7 9.986 2.415 50.988 8.074

3 8 4 16 1 6.731 3.222 17.116 0.463

4 4 3 20 2 2.491 3.739 34.117 1.513

5 3 1 12 – 2.334 0.903 17.723 3.240

6 – – 2 – – – 3.931 –

7 6 – 11 1 5.201 – 19.405 0.571

8 1 – 6 1 0.883 – 7.851 0.586

9 1 1 3 – 0.530 0.525 4.776 –

10 2 – 3 – 0.952 – 7.785 –

11 2 – 7 – 1.242 – 9.060 –

12 5 1 5 – 3.192 0.640 8.495 –

13 – – 3 – – – 2.618 –

14 1 – 3 – 0.700 – 4.070 –

15 – – 2 – – – 2.406 –

18 – – 1 1 – – 1.506 0.789

19 – – 3 – – – 2.623 –

20 – – 3 – – – 2.223 –

21 – – 1 – – – 0.769 –

26 1 – 2 – 0.828 – 0.919 –

27 – – 1 – – – 1.978 –

28 – – 4 1 – – 3.338 0.679

Total 55 17 165 19 46.998 17.038 272.987 22.500

Mean length (M ± SE) 1.821 ± 0.064ab 1.891 ± 0.143ac 2.638 ± 0.132 2.075 ± 0.183bc
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Overlapping with Chicken QTLdb loci
Using Chicken QTLdb [46], search for QTLs overlap-
ping with selection footprints was performed to validate 
the identified genomic regions harbouring these signals of 
selective sweeps and, accordingly, potential genes under-
lying phenotypic traits in the four chicken breeds. As a 
result, 2460 known QTLs were revealed that also function-
ally overlapped with the candidate genes we detected in 
the present study. Table S10 contains a list of 302 Chicken 
QTLdb loci assigned to traits potentially linked to adapt-
ability and acclimation as well as 81 associated genes 
(including 42 PCGs) also found within the selective sweeps 
in our investigation. For those, we counted 97 combinations 
of phenotypic traits, regions under suggestive selection 
pressure and 256 QTLs observed in USH, 31 in OMF, 19 in 
RUW, and 13 in WCR. Eight QTLs were potentially related 
to thermoregulation; all of them were found in USH, with 
one shared with WCR and OMF, too (Table S10).

Discussion
Between‑ and within‑breed genetic diversity
It is well known that the genomes of chicken breeds 
spread throughout the world have been shaped by past 
and recent admixture events [4]. From analysing the 

breed structure and admixture patterns (Fig. 2C and S2), 
we can see that the two original ancestral populations are 
likely to correspond to the two main roots of domesti-
cated chickens [47] (as shown in Fig. S2 with green and 
red colours, respectively): (1) Mediterranean, or egg-type 
(with RUW as a prime example), and (2) Asiatic, or meat-
type. At K = 3, we observe the addition of another evo-
lutionary branch of chicken breed formation, the game 
one (orange colour in Fig. S2). This origin branch is solely 
presented in OMF, while WCR is clearly subdivided into 
all the three branches: red Asiatic (due to the meat-type 
Cochin breed among WCR ancestors), green European 
(ancestral local chickens of England), and orange game 
(original game breeds used to create WCR).

At K = 4, all the breeds are well separated, with minor 
inclusions of other genotypes. Eventually, at optimal K = 8 
(Fig. S2) we can see a very minor admixture between 
breeds and a clear division of the three domestic breeds 
into ancestral subpopulations. On the RUW chart, note-
worthy is the contribution of two parent breeds, White 
Leghorn and local Russian laying hens, and two subpopu-
lations, FRCARPRTI and RRIFAGB, genotyped in this 
study and diverged into two independent branches. In 
OMF forming its own cluster at K = 3 and 4 (Fig. S2 and 

Table 4  Overlapped ROH islands in the genomes of the studied chicken breeds1

1  Breeds: OMF Orloff Mille Fleur, RUW​ Russian White, USH Ushanka, WCR​ White Cornish
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2C), there are also two initial components, Malay (game) 
type chickens and some local chickens, which is reflected 
in the OMF breed pattern at K = 8 (Fig. S2).

Of even greater interest is the oldest USH breed 
divided into two clusters (at K = 6; data not shown) and 
even into three clusters (at K = 8; Fig. S2). As we under-
stand it, this intra-breed pattern, on the one hand, is due 
to the use of samples collected 10 years ago and use of 
the current ones. On the other hand, this may also reflect 
the contribution of unknown ancestral populations to the 
formation of USH. This aspect of the creation and main-
tenance of the USH gene pool with a small population 
size requires further detailed study.

The resulting intra-breed structure patterns are also 
confirmed by the PCA-based topology of the four breeds, 
with a very compact arrangement of WCR individuals 
and a sparser arrangement in three other breeds, espe-
cially USH (Fig.  2B). The close position of OMF and 
WCR on the PCA plot, in principle, is well explained, 
since game chickens participated in the development of 
these breeds. A separate position was observed in the 
egg-type RUW breed (two subpopulations). As for USH, 
it also shows very unique genotypes and is located almost 
equidistant from all other breeds, confirming that it is a 
very distinctive breed. Overall, the obtained patterns of 
intra- and inter-breed genetic differences (Fig.  2A–C) 
are in very good agreement with breed history and 
demographics.

Table 5  FST values and blocks of SNPs joined by two or more 
top 0.1% neighboured SNPs at pairwise comparison of the four 
breeds studied1

1  Breeds: OMF Orloff Mille Fleur, RUW​ Russian White, USH Ushanka, WCR​ White 
Cornish

GGA​ Breed No. of SNPs Position FST value

Start End

2 USH/WCR​ 2 39,154,873 39,623,877 0.967

USH/RUW​ 3 107,995,442 108,912,691 0.981–1.000

USH/OMF 2 133,841,003 133,862,313 1.000

3 USH/RUW​ 2 10,305,039 10,908,971 0.981–0.990

USH/RUW​ 4 23,769,071 24,130,581 0.980

5 USH/WCR​ 16 31,277,206 32,352,944 0.967–1.000

USH/OMF 2 41,458,372 41,510,780 1.000

7 USH/WCR​ 2 20,333,216 20,504,792 0.967–0.983

8 USH/WCR​ 5 7,210,566 7,320,642 0.967–1.000

USH/RUW​ 2 15,567,946 15,611,024 0.990

9 USH/RUW​ 2 6,080,490 6,252,976 0.980–0.981

12 USH/OMF 2 17,199,402 17,729,551 1.000

26 USH/OMF 2 390,677 503,333 1.000

27 USH/OMF 2 3,802,896 3,859,021 0.986–1.000

28 USH/WCR​ 4 4,330,208 4,522,560 0.967–1.000

Fig. 4  Search for signatures of selection in the four breed genomes as revealed by the hapFLK analysis. Values for the X-axis are chicken autosomes, 
and those for the Y-axis are values of statistical significance (–log10P-values). The blue line indicates threshold of significance at P < 0.01 (i.e., –
log10(P) > 2), with the red line conforming to P < 0.001 (i.e., –log10(P) > 3)
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Signatures of selection
In terms of genomic regions under selection pressure, the 
largest number of ROH islands (165 out of 256; Table S5) 
was found in USH, which indicates a very pronounced 
originality of this breed.

Considering RUW recently examined by us [10], we 
extended its sample size to 71 individuals and included 
this breed in the present analysis in order to confirm 
previously identified pressure loci in a larger sampling 
and directly compare these data with USH and two 
other breeds. Since the WCR sampling did not change, 
we did not expect changes in loci under selective 
pressure in this breed.

Using a larger sample size in RUW, we confirmed ROH 
in the region of 123.0.124.3  Mb on GGA2, which was 

previously identified by us [10] and seems to be asso-
ciated with body temperature regulation [10, 12]. The 
same region somewhat overlapped in the region of three 
genes (CALB1, DECR1 and NBN) with the neighbouring 
ROH (124.3.125.2 Mb; Table S6) that is under selection 
pressure in USH, which can be considered as evidence 
of a shared, to some extent, nature of cold tolerance in 
these breeds. This finding seems to us very important 
and is also supported by the study of Fedorova et al. [15], 
where six candidate genes for cold tolerance in RUW are 
proposed in the 123.0.125.1  Mb region. In a genome-
wide association study, Kudinov et al. [12] defined in the 
same region one more gene, MMP16, as a candidate for 
chick down colour in the RUW subpopulation at RRIF-
AGB, specially selected for cold tolerance. In OMF, this 
region of potential selection for cold tolerance was not 
identified by us.

Thus, a common region has been outlined on GGA2 
for association with thermoregulation in RUW and 
USH. Note that OMF, in principle, should also demon-
strate cold tolerance, possibly related to other genomic 
region(s) and candidate genes, which requires further 
research.

Candidate genes affected by selection
We performed a detailed structural and functional 
annotation of regions and genes under selection pres-
sure by developing an effective strategy. This strategy 
included establishing lists of genes in regions identified 
in each breed by at least two methods (true selective 
sweep regions), and genes localized in areas of overlap-
ping regions identified by one method (e.g., ROH) in 
two or more breeds. In addition, we also added lists of 
genes localized by one method separately for each breed 
if these genes were identified as important candidates in 
other investigations.

Table 6  HapFLK blocks revealed in the genomes of the studied chicken breeds1

1  Breeds: OMF Orloff Mille Fleur, RUW​ Russian White, USH Ushanka, WCR​ White Cornish

GGA​ Breed Position Length, Mb No. of SNPs Most significant SNP P-value

Start End

1 USH, OMF 82,083,018 82,184,177 0.101 6 82,184,177 7.29E-03

USH 117,913,388 118,392,895 0.480 14 118,357,776 6.83E-03

2 OMF, WCR​ 25,717,703 27,076,503 1.359 46 26,292,612 6.35E-03

USH, WCR​ 69,676,338 73,482,942 3.807 117 72,332,610 1.06E-03

5 OMF 30,484,744 30,832,693 0.348 13 30,660,125 7.14E-03

7 USH, OMF 100,840 1,540,849 1.440 64 1,327,148 2.66E-03

9 USH, RUW​ 23,051,176 24,121,334 1.070 56 23,581,143 3.85E-03

18 USH, OMF, WCR​ 36,059 824,291 0.788 42 493,446 9.58E-04

Fig. 5  Venn diagram representing distribution of 540 prioritized 
candidate genes between the four breeds studied. OMF, Orloff Mille 
Fleur; RUW, Russian White; USH, Ushanka; WCR, White Cornish



Page 12 of 21Romanov et al. Journal of Animal Science and Biotechnology           (2023) 14:35 

PCGs
Many regions and PCGs (Table S6) were not identified 
in our previous study using SNP genotypes of only two 
breeds, RUW (with a smaller sample size) and WCR [10]. 
For example, USH and OMF had four genes (TMEM168, 
IFRD1, DOCK4 and IMMP2L) previously not found [10], 
involved in immune response and also playing a role in 
response to heat stress and in muscle growth and differ-
entiation. On GGA1 there was a peculiar cluster of genes 
associated with reproductive traits and eggshell qual-
ity (including shell colour): PIK3C2G, PLCZ1, CAPZA3, 
SLCO1C1, SLCO1B3, SLCO1A2, IAPP, and TSPO. Below 
we will highlight main genes, first of all, those that can 
directly affect thermoregulation, cold tolerance and gen-
eral adaptability in chickens.

Candidates for thermoregulation and cold tolerance: breed 
comparison
A number of PCGs we found (Table S6) can be linked 
to the adaptive abilities of chickens in terms of ther-
moregulation and cold tolerance. One of them is the 
SOX5 gene, which affects the comb shape. Being a skin 
appendage, comb is a character of sexual dimorphism 
in chickens (i.e., associated with reproduction [48]) 
and, along with other integumentary tissues of wattles, 
can simultaneously perform an important thermoregu-
latory function, redirecting blood flow to the skin and 
allowing for heat exchange during high temperatures 
[49]. In particular, SOX5 is responsible for the forma-
tion of a reduced pea comb [50]. In classical chicken 
genetics, this character is controlled by the dominant 
allele at the respective locus denoted by the symbol P 
[5, 6]. When interacting with another dominant allele, 

R, at the rose comb locus [48], an even more reduced 
walnut comb is formed [5]. Pea comb is sometimes 
found in USH and WCR, and walnut comb is a breed 
character of the Orloff chickens [5, 20]. In 1985, USH 
was examined at the FRCARPRTI collection farm by 
the Moscow Institute of General Genetics researchers: 
there were birds with single (R*N gene), rose (R*R gene) 
and pea (P*P gene) combs ([51], p. 365). With regard to 
the walnut comb in the Orloff breed and its association 
with cold tolerance, it was reported that adult roosters 
and hens tolerate frost well, do not freeze combs, and 
can be kept in unheated poultry houses [20]. The previ-
ously undescribed region on GGA1 (64.0.68.5 Mb) cor-
responds to overlapping ROHs in USH and OMF, and 
their overlay occurs precisely in the SOX5 gene (Table 
S6); this seems to be a fairly weighty argument in favour 
of suggesting a possible relationship between SOX5 and 
cold tolerance.

Recently, Xu et  al. [24] reported candidate positively 
selected genes (PSGs) for cold tolerance found in a 
local Canadian Chantecler breed by three methods in 
one GGA1 region (190.1.190.3  Mb), e.g., PRSS23, ME3, 
FAM181B, PRCP and DDIAS. In our case, this region 
was observed in USH as a ROH, and also by the FST 
method in USH and OMF (both cold tolerant). Further-
more, when seeking functional candidates for cold tol-
erance, additional genes were found in the respective 
ROH regions in USH, which were also potential PSGs 
for cold tolerance in Chantecler chickens [24] (Table S6). 
Three more relevant genes were found within the ROH 
regions in USH, including two potential genes of arctic 
adaptation in sled dogs [52], APOO and TRPV2, as well 
as FGF5, a putative gene of local adaptive evolution in 

Table 7  Numbers of unique and shared prioritized candidate genes by phenotypic category across the studied chicken breeds1

1  Breeds: OMF Orloff Mille Fleur, RUW​ Russian White, USH Ushanka, WCR​ White Cornish. 2 Phenotypic categories were attributed to PCGs based on relevant PubMed 
publications (see Materials and Methods). 3 Total number of genes per category

Phenotypic category2 n3 Unique genes Shared genes

USH OMF RUW​ WCR​ USH OMF RUW​ WCR​

Cold tolerance 84 60 0 5 0 13 9 3 1

Domestication 6 0 1 2 0 3 2 1 2

Egg traits 68 44 1 2 1 21 8 3 12

Energy and feed intake 27 22 1 0 1 8 5 3 2

Fat metabolism 83 38 5 2 2 21 19 4 2

Growth, meat, carcass 131 74 3 6 5 41 24 10 17

Immunity 140 69 3 5 5 57 34 18 14

Reproduction 55 28 0 2 2 23 14 6 7

Response to heat 35 19 1 0 1 13 10 3 5

Skin, feather, skin other appendages 76 37 2 5 5 26 15 8 6

Stress and adaptation 47 27 4 1 1 17 7 8 2

Thermosensation 5 3 0 0 0 2 2 0 1
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goats (as reviewed in [24]). One of these genes, APOO 
(apolipoprotein O), is also remarkable for being involved 
in lipid metabolism [53], downregulated in pectoralis 
major, and associated with lower intramuscular fat depo-
sition in fast-growing chickens at hatch [54]. Moreover, 
APOO was localized within a region with confirmed 
selection signal in Korean native chickens [9] and is a 
candidate gene associated with egg production perfor-
mance from 37 to 50 weeks [55]. In another GGA1 region 
(188.7.195.7  Mb), one more gene, WNT11 (Wnt family 
member 11), can also be noted because it regulates traits 
that could potentially contribute to the development of 
protective mechanisms of cold tolerance. For instance, 
WNT11 is a promising candidate gene for feathered-leg 
trait in chickens [56], being also expressed according to 
the moulting cycle [57] and required for dense dermis 
and subsequent cutaneous appendage formation [58]. In 
a GGA4 region (37.3.46.0 Mb), there is the ACSL1 (acyl-
CoA synthetase long-chain family member 1) gene that 
contributes to the antiviral response against avian leuko-
sis virus subgroup J [59] and may be associated with feed 
efficiency, fat metabolism and heat stress [60]. Among 
the above genes, Xu et  al. [24] especially distinguished 
ME3 and ZNF536 in two vital candidate regions related 
to cold tolerance in Chantecler chickens, which we also 
identified in the respective ROH regions in USH.

Within the OMF-specific ROH regions, the genes 
EVC2 and UNC79 were found, which were also candidate 
PSGs for cold tolerance in Chantecler chickens [24]. In 
total, out of 36 PSGs found for Chantecler by three meth-
ods [24], we have 23 genes in our study including 21 in 
USH and 2 in OMF.

Additionally, among the cold tolerance-related PSGs 
detected for Chantecler by two methods [24], six genes 
were revealed in USH: PLCZ1, TYR​ (known as a key gene 
for skin lightening in humans associated with cold adap-
tation in humans as reviewed in [24]), HTR5A, EML5, 
LRP2, and KIF1B.

Therefore, we have observed a significant overlay in the 
lists of candidate genes under selection pressure in Chan-
tecler, USH, and, to some extent, OMF. At the same time, 
when comparing datasets for Chantecler and two North 
Chinese breeds, Xu et al. [24] did not find any match for 
major candidate genes. These ambiguous comparative 
data leave room for discussion and further in-depth study 
of the genetic control of cold resistance trait in such 
native Russian breeds as USH and in other similar breeds 
of the world gene pool.

It is also interesting to collate the data for signals of 
selective sweep obtained in a recent study [15] for RUW 
and in ours in terms of overlapping sets of identified can-
didate genes for cold tolerance. In comparison with the 
data by Fedorova et al. [15], we discovered the following 

overlaps of PCGs in regions under selection pressure in 
RUW: HNF4G (GGA2, 118.7.119.8 Mb); WWP1, RIPK2, 
OSGIN2 and DECR1 (GGA2, 123.0.124.3  Mb), the lat-
ter region being also identified in RUW in our previous 
investigation [10]. At the border with this region, we 
also observed the CALB1 (calbindin 1) gene, the respec-
tive protein participating in eggshell calcification process 
[61]. Its activity in intestinal segments and eggshell gland 
was shown as negatively affected by high ambient tem-
perature causing deterioration of eggshell quality char-
acteristics under heat stress conditions [62]. The CALB1 
gene expression had a negative correlation with activity 
of immunoglobulin IgG2 [63] and was downregulated in 
cecum of Salmonella challenged chicks that also corre-
lated with lower calcium content in blood [64].

In addition, we observed the following candidate 
genes for cold tolerance in USH that coincided with 
those in the study by Fedorova et  al. [15]: NECAB1, 
RUNX1T1, PRMT3, NELL1, ANO5, SLC17A6, GAS2, 
SLC5A12, FIBIN, LGR4, BDNF, NBEAL1, IDH1, PIK-
FYVE, PPP1R1C, SOCS3, AFMID, TK1, TMC6, GCGR​
, NPB, SIRT7, PYCR1, SPAG9, WFIKKN2, CACNA1G, 
ACSF2, CD300LG, FADS6, KCTD2, and MIF4GD. We 
also detected three such genes (GGPS1, COA6 and 
DISC1) in OMF, and one (NDUFA4), in both OMF and 
WCR (Tables S5 and S6). An important role of some of 
these genes in chickens has also been identified in other 
studies. For example, the neuropeptide BDNF (brain 
derived neurotrophic factor) gene is critically involved 
in thermal-experience-dependent development and 
plasticity; it was expressed in chicks in response to heat 
and cold exposure [65]. Yossifoff et  al. [66] discovered 
that BDNF expression is regulated during thermotol-
erance acquisition via DNA methylation of the gene 
promoter. Kisliouk and Meiri [67] further investigated 
the BDNF gene function in thermal-control establish-
ment. They revealed that activation or silencing of gene 
transcription in chick hypothalamus was regulated by 
histone modifications suggesting specific epigenetic role 
of chromatin modifications in thermal-control establish-
ment. Goel et al. [68] supported an idea that an early stress 
response-related gene expression in the hypothalamus 
help cells is important in adaptation to an adverse envi-
ronment. A homeostatic mechanism that connects hypo-
thalamic energy management and body composition may 
exist as a result of interactions between BDNF, triiodo-
thyronine (T3), and/or corticosterone [69]. There is also 
a potential role of one BDNF splicing variant in Marek’s 
disease (MD) tumour resistance and susceptibility [70]. 
NELL1 is a domestication-related gene within a positive 
selective signature region [71] that is associated with selec-
tion on skeletal integrity that was probably co-selected 
with growth rate and meat yield in chickens [7, 72].
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Collectively, we determined nine overlapping regions in 
two studies, Fedorova et al. [15], and the present one, that 
included 40 genes. Herewith, Fedorova et  al. [15], simi-
lar to our study, found a selective sweep signal in RUW 
in the GGA2 region, 123.0.124.3 Mb, which presumably 
contains the candidate gene(s) for cold tolerance. Overall, 
there is a good agreement between the results of the two 
studies.

Thermoregulation and cold tolerance candidates related 
to thyroid hormones
We have found other examples of genes that may be 
involved in the genetic mechanisms of adaptation to 
low temperatures in chickens. For instance, Xie et  al. 
[22] analysed the thyroid transcriptome in chickens in 
relation to adaptive responses to cold environmental 
conditions and drew attention to the TPO (thyroid per-
oxidase) gene localized on GGA3 and having 15 exons. 
In that study, thyroid transcriptomes were studied in 
response to low and normal temperatures in the cold 
tolerant Northern Chinese Bashang Long-tail breed 
and in Rhode Island Reds. It is known that the synthesis 
of thyroid hormones elevates in a cold environment in 
birds and mammals. In particular, at low temperatures 
the level of T3 grows, and the size and activity of the 
thyroid gland increase, too (as reviewed in [22]). The 
TPO enzyme (as an important element in the synthe-
sis of thyroid hormones) had upregulated expression 
in these two studied breeds kept at low temperatures, 
while alternative splicing was observed among the TPO 
gene transcripts. The latter led to skipping exons 4 and 
5 in the cold environment and the corresponding syn-
thesis of a TPO short isoform with multiple open read-
ing frames generated in Bashang Long-tail and Rhode 
Island Red chickens. This suggested a tentative molecu-
lar mechanism underlying cold adaptation and/or accli-
mation in chickens. How this affects the cold tolerance 
of chickens, according to the authors [22], requires fur-
ther investigation. In any event, TPO exemplifies, along 
with BDNF, a crucial role of epigenetic control (via 
methylation, histone modification, and splicing) in reg-
ulating genes involved in cold tolerance manifestation. 
Besides, polymorphisms in the TPO gene associated 
with chicken growth and carcass traits (body weight, 
breast bone length, pectoral angle, claw weight, and leg 
muscle weight) were discovered [73].

In the current study, we observed a ROH in USH on 
GGA3 just at the site where TPO is located as well as an 
FST-derived selection footprint for USH and RUW (Table 
S5). We can suggest TPO as a good candidate, however, 
in this case, we might have a nonidentical genetic mech-
anism of cold resistance associated with this gene and 
different from that described by Xie et  al. [22]. In their 

study, differential expression of the GPD1L (glycerol-
3-phosphate dehydrogenase 1-like) gene was also noted, 
being increased under normal conditions and decreased 
at low temperatures. The mechanism of this response is 
unknown, and what functions this gene has in the thyroid 
gland remains unclear. In the present investigation, we 
identified this candidate gene in a ROH region on GGA2 
in USH.

In general, our research resulted in a number of other 
PCGs (e.g., PTHLH, THRSP, PTH2R, TRH, TRHR, 
LOC416924 (THADA), HSP90B1) associated with bio-
chemical networks and pathways in which thyroid hor-
mones are involved as mediators of cold resistance. Thus, 
they should also be considered in future studies on chick-
ens in connection with cold adaptation and acclimation.

PCGs for thermoregulation and cold tolerance: other genes
Amongst the numerous genes related to phenotypic traits 
for which the studied breeds could be selected, we were 
able to find, for example, the following PCGs:

1.	 CRLF1 (cytokine receptor like factor 1), known for 
its mutation (deletion) in humans that causes a spe-
cific syndrome of body response to cold tempera-
tures, i.e., cold-induced sweating [74]. In our study, 
this gene is detected in a ROH region in USH and can 
also be considered as a potential candidate associated 
with response to low temperatures in chickens.

2.	 TRP (transient receptor potential) gene family. 
These genes are involved in the operation of cell 
ion channels. In mammals, these genes were also 
found to be responsible for cold sensation as well as 
responses to both cold and hot conditions [74]. We 
detected some of these genes in ROH regions in USH 
and OMF including PKD2, TRPM1, TRPC7, and 
TRPV2.

3.	 PPARGC1A (PPARG coactivator 1 alpha) and neigh‑
bouring genes. PPARGC1A regulates expression 
of genes related to adaptive thermogenesis, muscle 
fibre type differentiation, energy metabolism, and 
fuel homeostasis [75]. This gene is known to be over-
expressed in the skeletal muscles of cold-exposed 
chickens [76]. In the present investigation, this gene 
was also revealed in a ROH on GGA4 in USH. Cold 
exposure in rats resulted in elevated PPARGC1A 
expression in type I (slow-twitch) and type II (fast-
twitch) fibres of gastrocnemius muscle and higher 
glucose uptake [75]. In birds, skeletal muscle shiv-
ering and non-shivering thermogenesis regulate 
body temperature in a cold environment. It was 
demonstrated that cold tolerance occurs in chicks 
after their skeletal muscles mature; in 7-day-old 
and younger chicks, leg muscle fibres transform to 
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the slow-twitch type (type I) and show an increased 
PPARGC1A expression due to 24-h cold exposure 
causing cold tolerance. This change in response to 
acute cold might be involved in the increased trans-
formation of fibre type at the initial stage of adapta-
tion in cold-exposed chicks [77].

	 Ueda et  al. [76] also pointed out that there is a dif-
ference in the pectoralis muscle fibres in cold-accli-
mated chickens (fast-twitch-oxidative (type IIA) 
fibres) and control chickens (fast-twitch-glycolytic 
(type IIB) fibres), suggesting a role of muscle fibre 
specialization in adaptive thermogenesis. There 
is also a report that no difference was observed in 
PPARGC1A expression in skeletal muscles between 
cold-sensitive (1-day-old) and cold-tolerant (4-day-
old) neonatal chicks [78]. We would suggest that a 
similar study of fibre types is worthy in the future, 
e.g., in USH, OMF and RUW chickens, in order to 
clarify the nature of chicken muscle fibre transfor-
mation and role of the PPARGC1A gene in adap-
tive thermogenesis and cold tolerance. In addition, 
PPARGC1A is a candidate gene associated with 
growth, body weight and muscle mass [79, 80]. It is 
also involved in abdominal fat deposition [81] and 
has an important regulatory function to intramuscu-
lar fat metabolism deposition [82].

	 Two more genes in the above ROH region are 
TBC1D1 and CCKAR. TBC1D1 is relevant to con-
trolling energy homeostasis in vertebrates and may 
play an evolutionary conserved role in this process 
[83]. Higher TBC1D1 mRNA levels were reported 
in cocks compared to hens in the thigh muscle and 
abdominal fat [84], the gene being also a functional 
candidate gene for growth performance and fat 
deposition [85]. CCKAR is a key receptor mediating 
satiety within a GGA4 region harbouring functional 
variants affecting the growth, reproductive traits, and 
feed intake [86, 87]. Decreased expression of this sati-
ety signal receptor was linked to increased growth 
and body weight during the domestication of chick-
ens [88]. It is also expressed in immune organs and 
cells, being regulated by inflammatory stimuli associ-
ated with bacterial and viral infection [89].

	 The same region encompasses other important genes 
including SLIT2, NCAPG, LCORL and LDB2. SLIT2 
is involved in small yellow follicle development (a key 
determinant of chicken reproductive performance) 
[90] and may regulate body weight, growth, carcass 
traits and feed conversion [79]. SNPs identified for 
the NCAPG gene are associated with economically 
important traits (egg and meat productivity, repro-
duction) [19, 91], with genotypic variability being 
established between various breeds [19]. LCORL 

is a possible candidate responsible for growth, body 
weight, slaughter traits and egg performance, with 
different genotypes being identified in diverse breeds 
[12, 19, 91, 92]. LDB2 is a candidate gene for rapid growth 
in broilers, body weight and carcass traits [57, 92].

4.	 The MSTN (GDF8) gene encoding myostatin 
(GGA7, 0.1.4.6 Mb; in OMF and USH) is also associ-
ated with cold tolerance in chickens. Ijiri et  al. [77] 
observed its depressed expression in the leg muscles 
of 7-day-old and younger chicks within 24 h of cold 
exposure, which is required for chicks to acquire cold 
tolerance and results in the increase of skeletal mus-
cle in cold-exposed chicks. The gene expression and 
polymorphism are also associated with body weight, 
skeletal muscle and adipose growth, and carcass 
traits in chicken [93, 94]. Within the same region, we 
identified the FN1 gene that might be a key candidate 
gene for egg production [95] and is associated with 
immune response [96].

Last but not least, the adaptive features of birds are 
associated with the formation of a feather covering built 
from beta-keratins that form a multigene family in the 
chicken [97–99]. A number of feather keratin clades were 
identified on GGA27 that form monophyletic groups 
[97]. In our study, we detected a selective sweep region 
on GGA27 that contain beta-keratin gene clusters, sug-
gesting their significance for cold adaptation.

Lately, Buggiotti et al. [100] reported a rare instance of 
amino acid residue alteration shared by at least 16 species 
of hibernating/cold-adapted mammals, i.e., a Yakut cow 
breed-specific missense mutation in a highly conserved 
NRAP gene. An occurrence of convergent evolution 
along the mammalian evolutionary tree was suggested, 
with rapid fixation in a single isolated population of cat-
tle exposed to a severe Siberian environment. In our 
investigation, we did not reveal any signal of selective 
sweep overlapping with the chicken NRAP gene located 
on GGA6. Near this gene, however, we detected an FST-
based selection signature in USH and OMF as well as a 
ROH in USH. This might leave a room for speculating 
about a possible role of NRAP or its regulatory elements 
in convergent adaptation to low temperature in chickens. 
To test this suggestion, a sequencing of the NRAP-con-
taining region would be required in cold tolerant breeds 
like USH in the future research.

Breeding chickens in the continental climate might be 
associated with the selective development of appropriate 
adaptive features in local chicken breeds. In this regard, 
the effect of stabilizing selection on these breeds may be 
suggested in favour of transitional forms that can endure 
under the most typical but opposite environmental con-
ditions, for example, cold vs. heat [74].
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Other genes of interest
These genes identified in the regions of selection include 
those involved in lipid metabolism and development 
of immunity, i.e., related to the mechanisms of adapta-
tion to adverse environmental factors, and determin-
ing other economically important traits in chickens. For 
instance, the GH (growth hormone) gene located within 
a USH-specific ROH on GGA27 is a locus of earlier clas-
sical genetic map [6] and may also be associated with MD 
resistance [101]. This gene was downregulated in broiler 
liver under chronic thermal stress [102]. There are known 
polymorphisms in the 3rd intron of the gene that may 
be potential markers decreasing the abdominal fat traits 
and increasing growth traits of chickens [103]. GH is also 
associated with egg production, egg weight and growth/
meat traits [104]. Another locus of classical genetic map 
[6], ACTB (beta-actin), was included in a USH-specific 
ROH on GGA14. It is differentially expressed between 
breeds, being a candidate gene involved with skeletal 
muscle growth and disease susceptibility in broilers 
[105], and is also a useful endogenous reference gene for 
chicken expression studies [64].

The OVAL (ovalbumin) gene, a locus of classical genetic 
map [6], was used for decades as a biochemical polymor-
phic marker in chickens, though with a rather low degree 
of polymorphism [106]. To date, the OVAL SNPs were 
identified that are associated with egg quality traits in 
layers [107]. We found out that this gene overlapped with 
a USH-specific ROH on GGA2.

For the POMC gene we detected in a USH-specific 
ROH, an overlay with a signal of selective sweep was also 
reported suggesting its association with traits of eco-
nomic interest [8]. The POMC RNA level in the hypothal-
amus is responsive to fat-related measures and represents 
long-term energy status in chickens [108]. SNPs in the 
gene had potential effects on reproduction traits in chick-
ens [109] and were linked to pelvis breadth, body weight 
and chest depth [110].

Within a ROH found in USH, there is the LEPR (lep-
tin receptor) gene known as a candidate gene suggestive 
of production-oriented selection [111]. It overlaps with 
a signal of selective sweep in laying hens [112] and plays 
an important role in the regulation of reproduction and 
energy status in Japanese quail [113]. The LEPR expres-
sion decreased with age in adipose tissue from growing 
broilers [114], the gene being associated with growth, 
body weight, and feed efficiency in meat-type chickens 
[115]. It is also related to effects of stress on immune 
function in the spleen in a chicken stress model [116].

Among many other PCGs of interest, we identified 
RARRES1 that is located in a ROH region on GGA9 
(21.4.24.1  Mb) shared between USH and OMF. It is also 
known as ovocalyxin-32, an eggshell matrix protein 

associated with eggshell quality and egg production traits 
(as reviewed in [117]). It is one of the highest expressed 
genes in the uterus of laying hens [118]. The gene expres-
sion in the cecum of layers was also downregulated follow-
ing phytobiotic administration and upregulated in response 
to Salmonella Enteritidis challenge [64], being negatively 
correlated with urea and urea nitrogen content in blood of 
layers and positively correlated with alpha amylase activity 
[63].

Many detected selective footprints and PCGs over-
lapped with Chicken QTLdb [46] loci, validating and 
supporting further significance of our findings in the 
genomes of the four investigated chicken breeds.

Conclusion
Based on the SNP genotype data obtained for the four 
different breeds, we annotated here the entire array of 
genes (~ 4000 genes) found in the regions under selective 
pressure and chose 540 PCGs from this number. Priority 
was given to candidate genes associated with adaptation 
to cold or temperature impacts in general, phenotypic 
traits that contribute to adaptation to environmental fac-
tors (plumage, comb, immunity, etc.), as well as traits of 
egg and meat performance. These PCGs were addition-
ally assigned to a specific breed, considering the methods 
used to determine selective sweep signals. As a result, 
a clear insight was obtained about which genes and in 
which breeds (out of the four studied) were subjected to 
putative selection for certain traits.

Cold tolerance in acclimated chicken breeds might be 
generated through one of a few unique gene expression 
networks or multiple overlapping responses that have 
been observed in cold-exposed animals. Role of epige-
netic factors can also be important in regulating cold 
tolerance-related genes. This information will serve 
as the basis for a more complete understanding of the 
mechanisms of adaptation and acclimation in chick-
ens and for further, more detailed study of the genes 
underlying phenotypic traits of interest. Analyses of the 
relationship between cold adaptation phenotype and 
genotypes using a segregating population from more 
than two breeds, QTL mapping/GWAS approaches can 
be planned for future research to find the direct evi-
dence of candidate genes for cold adaptation.
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