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Simple Summary: Dietary glutamine (Gln) supplementation can significantly alleviate the negative
effects on product performance and antioxidant capacity in chickens exposed to hot environments.
However, the antioxidant effect of Gln on the liver in heat-stressed broilers and its mechanism of
action are rarely reported. The aim of the present study was to investigate the effect of glutamine
on the growth performance, oxidative stress, and Nrf2/p38 MAPK single pathway in the livers of
broilers exposed to high temperature conditions. Results showed that high temperature conditions
decreased growth performance and induced oxidative stress in broiler livers. Dietary Gln improved
the growth performance, antioxidant enzyme, Nrf2, and p38 MAPK expression in the livers of heat-
stressed broilers. In conclusion, this study suggested that Gln can improve the liver’s response to
oxidative stress by increasing the Nrf2/p38 MAPK expression. Gln can be used as a feed additive for
broiler production in high-temperature environments such as during the summer season.

Abstract: The purpose of this work was to study the effects of glutamine (Gln) on the growth
performance, oxidative stress, Nrf2, and p38 MAPK pathway in the livers of heat-stressed broilers.
In total, 300 broilers were divided into five groups, including a normal temperature (NT, without
dietary Gln) group and four cyclic high temperature groups (HT, GHT1, GHT2, and GHT3) fed with
0%, 0.5%, 1.0%, and 1.5% Gln, respectively. High temperature conditions increased (p < 0.05) liver
malonaldehyde (MDA) concentration, but decreased (p < 0.05), body weight gain (BWG), feed intake
(FI), liver superoxide dismutase (SOD), total antioxidant capacity (T-AOC), glutathione peroxidase
(GSH-Px), glutathione S-transferase (GST), and glutathione (GSH) levels in broilers. Nrf2 and p38
MAPK protein and mRNA expression levels were lower (p < 0.05) in the NT group than that in the
HT group. However, dietary 1.5% Gln decreased (p < 0.05) liver MDA concentration, but increased
(p < 0.05) BWG, FI, liver SOD, T-AOC, GSH-Px, GST, and GSH levels in heat-stressed broilers. Nrf2
and p38 MAPK protein and mRNA expression levels were higher (p < 0.05) in the GHT3 group than
that in the HT group. In summary, Gln improved oxidative damage through the activation of Nrf2
and p38 MAPK expression in the livers of heat-stressed broilers.

Keywords: broiler; glutamine; heat stress; oxidative stress; Nrf2; p38 MAPK; liver

1. Introduction

Heat stress is the most important environmental stress factors in livestock and poultry
production worldwide [1]. Heat stress is caused by the imbalance between heat production
and heat dissipation, that is, when heat produced by the animal body is greater than the
heat released to the environment. Heat stress causes great loss to livestock and poultry
production. Heat stress leads to increased metabolism and decreased feed intake, and ultimately
results in the decreased growth, production, and reproductive performance of livestock and
poultry [2]. Heat stress can enhance the metabolism of livestock and poultry, cause excessive
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accumulation of reactive oxygen species, and cause an oxidation–antioxidant imbalance in the
body, resulting in oxidative stress [3,4]. Many studies have shown that long-term heat stress
reduces antioxidant capacity and causes tissue oxidative damage in livestock and poultry [3,4].
The damage of heat stress can be effectively reduced by feeding functional additives.

Glutamine (Gln) is a conditional essential amino acid with a wide range of biological
functions [5]. Gln is important in promoting production performance, maintaining intesti-
nal health, enhancing immunological responses, and preventing damage from oxidation
reactions in livestock [6–8]. Furthermore, Gln can significantly improve the abnormal
physiological functions resulting from cold temperature, heat, immunological, weaning,
transportation, and oxidative stresses [9]. Previous studies have shown that Gln not only
provides energy for the growth of intestinal mucosal cells, but also participates in the syn-
thesis of glutathione (GSH) and the process of redox and oxidative free radical scavenging
in the body [9,10]. Upon stressful conditions in an organism, the need for Gln increases,
resulting in a decrease in both Gln levels and antioxidant capacity [9].

Broiler chickens have thick skin covered with feathers, more subcutaneous fat, fewer
developed sweat glands, slower heat dissipation on the body surface, and often have
difficulty tolerating higher temperatures [11,12]. The liver is an important metabolic organ
in broiler chickens, and its main functions are deoxidation, detoxification, regulation of fat
metabolism and electrolytes, and storage of glycogen [13]. Broiler liver cells synthesize
various antioxidant enzymes at a relatively constant rate at room temperature. These
antioxidant enzymes can breakdown peroxides into less toxic or harmless chemicals, which
act as a barrier for the body. The heat-stress environment significantly increases oxidative
damage to the bioactive macromolecules in broiler liver cells, reducing the biological
activity of antioxidant molecules [14,15]. As a result, liver cells will be in a state of oxidative
stress that would disrupt metabolic function and affect product performance. The organism
may present with liver diseases and is at a greater risk of mortality.

Dietary Gln supplementation can significantly alleviate the negative effects on product
performance and antioxidant capacity in chickens exposed to hot environments [16–18].
However, the antioxidant effect of Gln on the liver in heat-stressed broilers and its mecha-
nism of action are rarely reported. Therefore, this experiment aimed to study the effect of
Gln on oxidation performance, especially focusing on the mechanisms of nuclear factor ery-
throid 2–related 2/Kelch-like ECH-associated protein 1(Nrf2) and p38 mitogen-activated
protein kinase (p38 MAPK) expression in the livers of broilers subjected to cyclic high
temperature conditions.

2. Materials and Methods
2.1. Broilers and Sampling

The experiment was performed in accordance with the approval by the Animal Care
and Use Committee of Anhui Science and Technology University. In total, 300 22-day-old
Arbor Acres broilers (similar weight) from the Farm of Anhui Science and Technology
University were allocated to five treatments (six cages and 10 broilers per treatment). These
treatments included: NT group, normal temperature without dietary Gln; HT group, cyclic
high temperature without dietary Gln; GHT1 group, cyclic high temperature and dietary
0.5% Gln; GHT2 group, cyclic high temperature and dietary 1.0% Gln; GHT3 group, cyclic
high temperature and dietary 1.5% Gln. Birds in the NT group were housed in a normal
environment at 24 ◦C per day. Birds in the HT, GHT1, GHT2, and GHT3 groups were
housed in cyclic high-temperature environments at 34 ◦C for 8 h and 24 ◦C for 16 h. The
duration of this experiment was 21 days. The basal diet (corn-soybean meal) designed
according to NRC [19] is shown in Supplementary Table S1, as described by Hu et al. [20].
Eighteen birds from each group (3 birds per cage) were euthanized on day 42. Liver samples
were collected and stored at −70 ◦C.
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2.2. Detection of Growth Performance

The body weight gain (BWG) and feed in take were determined on days 28 and 42 of
age and the feed-to-gain ratio (FGR) wascalculated as FI/BWG.

2.3. Detection of Antioxidant Status

Malonaldehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and total antiox-
idant capacity (T-AOC) were detected using the following assay kits: MDA (TBA method),
SOD, and T-AOC assay kits (Jiancheng company, Nanjing, China).

2.4. Detection of GSH-Related Enzymes

GSH-related enzymes were detected using the following assay kits: Glutathione S-
transferase (GST), glutathione peroxidase (GSH-Px), and Glutathione (GSH) assay kits
(Jiancheng company, Nanjing, China).

2.5. Detection of Nrf2 and p38 MAPK Concentrations

Nrf2 and p38 MAPK were detected using the Nrf2 and p38 MAPK (Elisa method) assay
kits, respectively. These assay kits were produced at the Jiancheng company (Nanjing, China).

2.6. Expression of Nrf2 and p38 MAPK mRNA

Quantitative Real-Time PCR (qRT-PCR) was used to detect the expression of Nrf2 and
p38 MAPK mRNA. Total RNA was extracted from the liver by a total RNA kit (Tiangen
company, Beijing, China). cDNA was prepared using a cDNA synthesis kit (TaKaRa). The
β-actin was used as a housekeeping gene. The following primers were used: β-actin (F: 5′-
TGCTGTGTTCCCATCTATCG -3′; R: 5′- TTGGTGACAATACCGTGTTCA -3′), Nrf2 (F: 5′-
TCGCAGAGCACAGATAC -3′; R: 5′- AGAAATGAAGACTGGGTC -3′), and p38 MAPK
(F: 5′- AAGGTTGGCAAGCATGAGTT -3′; R: 5′- TTCTGGGCCTGCATATAACC -3′). The
reaction (20 µL system) and program of qRT-PCR were performed as previously described
by Hu et al. [20]. The mRNA expression level of Nrf2 and p38 MAPK mRNA was measured
by the 2−∆∆Ct method, which normalized to β-actin Ct.

2.7. Statistical Analysis

Data which included NT, HT, GHT1, GHT2, and GHT3 groups were calculated using
one-way ANOVA in SPSS 18.0 software. The statistical difference was evaluated by Dun-
can’s test. The p < 0.05 was regard as statistically significant. The data was presented as
mean ± standard error of the mean (SEM)

3. Results
3.1. Effects of Gln Supplement on Growth Performance of Heat-Stressed Broilers

Figure 1 shows the effects of Gln supplement on growth performance of broilers
exposed to high temperature conditions. Cyclic high-temperature conditions decreased
(p < 0.05) BWG and FI in broilers. The GHT3 group had higher (p < 0.05) BWG and FI than
that in the HT group in broilers (Figure 1). However, there were no significant differences
in the BWG and FI among the NT, GHT2 and GHT3 groups.

3.2. Effects of Gln Supplement on MDA on the Livers of Heat-Stressed Broilers

Figure 2 shows the effects of Gln supplement on MDA on the livers of broilers exposed
to high temperature conditions. Cyclic high-temperature conditions increased (p < 0.05)
MDA concentration in broiler livers. The GHT2 and GHT3 groups had lower (p < 0.05)
MDA levels than that in the HT group in broiler livers. However, there were no significant
differences in the MDA between the NT and GHT3 groups.
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differences among the groups. NT group: Broilers were kept in a normal temperature environment 
and fed a basal diet. HT, GHT1, GHT2, and GHT3 groups: Broilers in these groups were kept in 
high temperature conditions and fed a basal diet supplemented with 0%, 0.5%, 1.0%, and 1.5% Gln. 
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Figure 2. Effect of Gln on MDA level on the livers of broilers exposed to high temperature condi-
tions. Different lowercase letters above each column indicate significant (p < 0.05) differences among 
the groups. NT group: Broilers were kept in a normal temperature environment and fed a basal diet. 
HT, GHT1, GHT2, and GHT3 groups: Broilers in these groups were kept in high temperature con-
ditions and fed a basal diet supplemented with 0%, 0.5%, 1.0%, and 1.5% Gln. 

3.3. Effects of Gln Supplement on SOD, CAT, and T-AOC on the Livers of Heat-Stressed 
Broilers 

Figure 3 shows the effects of Gln supplement on SOD, CAT, and T-AOC on the livers 
of broilers exposed to high temperature conditions. Cyclic high-temperature conditions 
decreased (p < 0.05) the SOD and T-AOC levels in broiler livers. The SOD levels were 
higher (p < 0.05) in the GHT3 group than that in the HT group; the T-AOC levels were 
higher (p < 0.05) in the GHT1, GHT2, and GHT3 groups than that in the HT group in 
broiler livers. However, there were no significant differences in the SOD and T-AOC be-
tween the NT and GHT3 groups. 

Figure 1. Effect of Gln on growth performance of broilers exposed to high temperature conditions.
(A) BWG; (B) FI; (C) FGR. Different lowercase letters above each column indicate significant (p < 0.05)
differences among the groups. NT group: Broilers were kept in a normal temperature environment
and fed a basal diet. HT, GHT1, GHT2, and GHT3 groups: Broilers in these groups were kept in high
temperature conditions and fed a basal diet supplemented with 0%, 0.5%, 1.0%, and 1.5% Gln.
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Figure 2. Effect of Gln on MDA level on the livers of broilers exposed to high temperature conditions.
Different lowercase letters above each column indicate significant (p < 0.05) differences among the
groups. NT group: Broilers were kept in a normal temperature environment and fed a basal diet. HT,
GHT1, GHT2, and GHT3 groups: Broilers in these groups were kept in high temperature conditions
and fed a basal diet supplemented with 0%, 0.5%, 1.0%, and 1.5% Gln.

3.3. Effects of Gln Supplement on SOD, CAT, and T-AOC on the Livers of Heat-Stressed Broilers

Figure 3 shows the effects of Gln supplement on SOD, CAT, and T-AOC on the livers
of broilers exposed to high temperature conditions. Cyclic high-temperature conditions
decreased (p < 0.05) the SOD and T-AOC levels in broiler livers. The SOD levels were
higher (p < 0.05) in the GHT3 group than that in the HT group; the T-AOC levels were
higher (p < 0.05) in the GHT1, GHT2, and GHT3 groups than that in the HT group in broiler
livers. However, there were no significant differences in the SOD and T-AOC between the
NT and GHT3 groups.
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Figure 3. Effect of Gln on SOD (A), CAT (B), and T-AOC (C) levels on the livers of broilers exposed
to high temperature conditions. Different lowercase letters above each column indicate significant
(p < 0.05) differences among the groups. NT group: Broilers were kept in the normal temperature
environment and fed a basal diet. HT, GHT1, GHT2, and GHT3 groups: Broilers in these groups
were kept in high temperature conditions and fed a basal diet supplemented with 0%, 0.5%, 1.0%,
and 1.5% Gln.

3.4. Effects of Gln Supplement on GSH-Related Enzymes on the Livers of Heat-Stressed Broilers

Figure 4 shows the effects of Gln supplement on GSH-related enzymes on the livers
of broilers exposed to high temperature conditions. Cyclic high-temperature conditions
decreased (p < 0.05) the GSH-Px, GST, and GSH concentrations in broiler livers. The GSH-
Px and GST levels were higher (p < 0.05) in the GHT2 group than that in the HT group; the
GSH-Px, GST, and GSH levels were higher (p < 0.05) in the GHT3 group than that in the
HT group in broiler livers. However, there were no significant differences in the GSH-Px,
GST, and GSH concentrations between the NT and GHT3 groups.
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Figure 4. Effect of Gln on GSH-Px (A), GST (B), and GSH (C) levels on the livers of broilers exposed
to high temperature conditions. Different lowercase letters above each column indicate significant
(p < 0.05) differences among the groups. NT group: Broilers were kept in a normal temperature
environment and fed a basal diet. HT, GHT1, GHT2, and GHT3 groups: Broilers in these groups
were kept in high temperature conditions and fed a basal diet supplemented with 0%, 0.5%, 1.0%,
and 1.5% Gln.

3.5. Effects of Gln Supplement on Nrf2 Protein and mRNA Expression on the Livers of
Heat-Stressed Broilers

Figure 5 shows the effects of Gln supplement on the Nrf2 protein and mRNA ex-
pression on the livers of broilers exposed to high temperature conditions. Cyclic high-
temperature conditions decreased (p < 0.05) the protein and mRNA levels of Nrf2 in the
broilers livers. The protein and mRNA levels of Nrf2 were higher (p < 0.05) in the GHT3
group than that in the HT group (Figure 5). However, there were no significant differences
in the Nrf2 protein and mRNA expression levels between the NT and GHT3 groups.
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Figure 5. Effect of Gln on Nrf2 protein (A) and gene (B) expression in the liver of broiler exposed
to high temperature conditions. Different lowercase letters above each column indicate significant
(p < 0.05) differences among the groups. NT group: Broilers were kept in the normal temperature
environment and fed a basal diet. HT, GHT1, GHT2, and GHT3 groups: Broilers in these groups
were kept in high temperature conditions and fed a basal diet supplemented with 0%, 0.5%, 1.0%,
and 1.5% Gln.

3.6. Effects of Gln Supplement on p38 MAPK Protein and mRNA Expression on the Livers of
Heat-Stressed Broilers

Figure 6 shows the effects of Gln supplement on p38 MAPK protein and mRNA
expression on the livers of broilers exposed to high temperature conditions. Cyclic high-
temperature conditions decreased (p < 0.05) the protein and mRNA levels of p38 MAPK in
the broilers livers. The protein and mRNA levels of p38 MAPK were higher (p < 0.05) in
the GHT3 group than that in HT group. However, there were no significant differences in
the p38 MAPK mRNA expression levels between the NT and GHT3 groups.

Animals 2023, 13, x FOR PEER REVIEW 6 of 10 
 

 
Figure 5. Effect of Gln on Nrf2 protein (A) and gene (B) expression in the liver of broiler exposed to 
high temperature conditions. Different lowercase letters above each column indicate significant 
(p < 0.05) differences among the groups. NT group: Broilers were kept in the normal temperature 
environment and fed a basal diet. HT, GHT1, GHT2, and GHT3 groups: Broilers in these groups 
were kept in high temperature conditions and fed a basal diet supplemented with 0%, 0.5%, 1.0%, 
and 1.5% Gln. 

3.6. Effects of Gln Supplement on p38 MAPK Protein and mRNA Expression on the Livers of 
Heat-Stressed Broilers 

Figure 6 shows the effects of Gln supplement on p38 MAPK protein and mRNA ex-
pression on the livers of broilers exposed to high temperature conditions. Cyclic high-
temperature conditions decreased (p < 0.05) the protein and mRNA levels of p38 MAPK 
in the broilers livers. The protein and mRNA levels of p38 MAPK were higher (p < 0.05) 
in the GHT3 group than that in HT group. However, there were no significant differences 
in the p38 MAPK mRNA expression levels between the NT and GHT3 groups. 

 
Figure 6. Effect of Gln on p38 MAPK protein (A) and gene (B) expression in the liver of broilers 
exposed to high temperature conditions. Different lowercase letters above each column indicate sig-
nificant (p < 0.05) differences among the groups. NT group: Broilers were kept in the normal tem-
perature environment and fed a basal diet. HT, GHT1, GHT2, and GHT3 groups: Broilers in these 
groups were kept in high temperature conditions and fed a basal diet supplemented with 0%, 0.5%, 
1.0%, and 1.5% Gln. 

4. Discussion 
When the broilers suffered from heat stress, the feed intake was reduced, which de-

creased the body weight gain, and then increased the catabolism of proteins, fats, and 
carbohydrates [21,22]. This biochemical response is intended to increase energy produc-
tion to resist stress. The present study showed that growth performance was negatively 
affected by high temperature. Hu et al. also suggested that heat stress markedly decreased 
body weight gain, feed intake, and feed efficiency of broilers exposed to hot environments 
[22]. Gln, an important amino acid, is found abundantly in animals, including broiler 
chickens. It has unique functions in various organs. Gln not only provides energy for 

Figure 6. Effect of Gln on p38 MAPK protein (A) and gene (B) expression in the liver of broilers
exposed to high temperature conditions. Different lowercase letters above each column indicate
significant (p < 0.05) differences among the groups. NT group: Broilers were kept in the normal
temperature environment and fed a basal diet. HT, GHT1, GHT2, and GHT3 groups: Broilers in these
groups were kept in high temperature conditions and fed a basal diet supplemented with 0%, 0.5%,
1.0%, and 1.5% Gln.

4. Discussion

When the broilers suffered from heat stress, the feed intake was reduced, which
decreased the body weight gain, and then increased the catabolism of proteins, fats, and
carbohydrates [21,22]. This biochemical response is intended to increase energy production
to resist stress. The present study showed that growth performance was negatively affected
by high temperature. Hu et al. also suggested that heat stress markedly decreased body
weight gain, feed intake, and feed efficiency of broilers exposed to hot environments [22].
Gln, an important amino acid, is found abundantly in animals, including broiler chickens.
It has unique functions in various organs. Gln not only provides energy for certain cells
and tissues, but also provides precursors for various amino acid synthesis and maintains
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the balance of cell oxidation systems [20]. As a neutral and multifunctional essential amino
acid, Gln is particularly prominent in the anti-stress response [23]. With the loss of nutrients,
the Gln content in broiler tissues decreases significantly to the extent of being unable to
fulfill the body’s needs during heat stress [20]. Upon exogenous Gln supplementation, the
growth performance in broilers is significantly improved [24]. Similarity, the performance
of heat-stressed broilers was reversed by dietary Gln in this study.

Heat stress reduces the intake of feed and the absorption of nutrients in broilers [25,26].
As a result, the body’s metabolic levels were affected, producing excessive free radicals, leading
to disorders in antioxidant function [27]. When an animal is subjected to heat stress, the body
temperature rises, affecting the metabolic enzyme activity and increasing the metabolic rate [26].
The high metabolic rate dramatically increases oxygen free radical production. Several studies
have shown that the liver is susceptible to oxidative stress [28,29]. In the present study, heat
stress increased the MDA content and significantly decreased antioxidant enzyme activities,
suggesting that heat stress leads to liver oxidative damage in broilers. MDA, a final product
of lipid oxidation, can aggravate the damage to the cell membrane, and affect the activities of
mitochondrial respiratory chain complexes and key mitochondrial enzymes [30]. Similarly,
Tang et al. showed that heat stress could increase MDA levels and cause oxidative stress in the
broiler livers [30].

Redox reactions are among the most important physiological activities of the body.
Generally, cells have a dynamic balance between the oxidation and antioxidant systems.
This balance can remove superoxide anions to protect tissues and cells from damage.
However, an imbalance in this system leads to abnormal functions in all aspects of the
body [31]. Gln is a precursor for the synthesis of reduced glutathione [32]. The decrease
in Gln due to the stress response is the rate-limiting factor for the synthesizing reduced
glutathione [24]. Therefore, Gln can affect the antioxidant activities in vivo via GSH. GSH-
Px activity reflects the degree of oxidative damage. CAT is the main enzyme involved in
cellular H2O2 removal. SOD can prevent cellular oxidative damage caused by oxygen free
radicals, effectively repairing damaged cells. This study found that Gln supplementation
in the diet of heat-stressed broilers promoted antioxidant enzyme activities, but decreased
the concentration of MDA in the liver, indicating that Gln could alleviate oxidative damage
caused by heat stress.

Heat stress can lead to increased free radicals and oxidative damage in the liver [28,33].
Antioxidative responsive elements (ARE) can prevent peroxidation of lipid and reduce
oxidative damage. Nrf2 is an important activator of ARE in the cellular oxidative stress
response [34]. Long-term stress leads to the rapid exhaustion of Nrf2 stored in the body and
decreases its expression levels. Zhang et al. suggested that high temperature conditions
significantly decreased Nrf2 expression levels and antioxidant enzyme activities in broiler
muscles [33]. Similar results were obtained in this study, whereby cyclic high-temperature
environment markedly decreased the gene expression and concentration of Nrf2 in broiler
liver cells. These experiments suggested that a high temperature environment inhibited the
Nrf2 expression in broiler livers.

Nrf2 is expressed in many tissues and plays a key function in anti-oxidative stress [35,36].
Nrf2-Keap1 disassociates to release Nrf2 under stressful conditions, increasing Nrf2 expression
levels, and enhancing the cell’s antioxidant ability. Gln can increase the synthesis of GSH in
the mitochondria of hepatocytes and maintain the concentration of GSH in the liver tissue
and plasma, thereby improving its antioxidant ability [37]. The present work indicated that
Gln reduced oxidative stress through the Nrf2 signal pathway in broiler livers under high
temperature conditions. Hu et al. showed that Gln increases Nrf2 levels in the leg muscles of
broilers under heat stress, thereby improving oxidative damage [38].

As a member of the MAPK family, p38 MAPK can be activated under the stimulation of
the external environment, thus regulating the expression of a series genes, and participating
in the regulation process of heat stress [39]. The main function of p38 APK is to transfer
cytoplasmic signals into the nucleus through phosphorylation of p38 protein to activate
downstream gene transcription and trigger cell biological reactions. In this study, long-term
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thermal stress significantly reduced the expression level of p38 MAPK. Similar results
were found in the study by Hu et al. [40]. However, dietary Gln can activate the p38
MAPK signaling pathway. Many studies revealed that Nrf2 is positively correlated with
MAPK [41]. Therefore, the results of this study suggest that Gln improved the oxidative
damage of the liver in broilers under heat stress, which may be related to the activation of
Nrf2 and p38 MAPK.

5. Conclusions

For broilers, high-temperature conditions induced performance and oxidative damage
in their livers. High-temperature conditions markedly decreased Nrf2 and p38 MAPK
expression in the livers of broilers. However, this study shows that dietary 1.5% Gln
can improve the liver’s response to oxidative stress by activating Nrf2 and p38 MAPK
expression in the heat-stressed broiler. Gln can be used as a feed additive for broiler
production in high-temperature environments such as during the summer season.
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