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Abstract

Several genetic disorders have variable degree of central nervous system white matter
abnormalities. We retrieved and reviewed 422 genetic conditions with prominent and consistent
involvement of white matter from the literature. We herein describe the current definitions,
classification systems, clinical spectrum, neuroimaging findings, genomics and molecular
mechanisms of these conditions. Though diagnosis for most of these disorders relies mainly

on genomic tests, specifically exome sequencing, we collate several clinical and neuroimaging
findings still relevant in diagnosis of clinically recognizable disorders. We also review the current
understanding of pathophysiology and therapeutics of these disorders.
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Introduction

Genetic disorders with involvement of central nervous system (CNS) white matter are
heterogeneous entities. Over the years, classifications based on neuropathology, imaging,
genetic and molecular mechanisms have been devised.13 Essentially, these disorders have
been put under a single umbrella term in order to provide a diagnostic framework and the
term leukodystrophies (LD) has been used interchangeably to describe most genetic white
matter disorders.l: 247 However, the rapid increase in delineation of novel phenotypes and
underlying genetic mechanisms has made it challenging to accommodate these disorders
into the current definitions and classification systems. The diagnostic modalities for these
disorders have transformed from pathology to pattern recognition on the magnetic resonance
imaging (MRI) of the brain and more recently to direct genomic testing.* Several, but not
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all these disorders, share molecular pathways and patho-mechanisms necessary for devising
therapeutic modalities.

These disorders appear to represent a continuum ranging from isolated and primary myelin
defects to those with other structural white matter components involvement and finally

to those where extensive white matter involvement is secondary to metabolic defects

or neuronal pathology. Acknowledging the limitations of current insight into underlying
pathomechanisms, all disorders with significant and high penetrance of CNS white matter
abnormalities (CNS WMAS) evident on neuroimaging have been included in this review.
We attempt to devise a pragmatic approach for diagnosis of these disorders in the genomic
era. We describe the current clinical spectrum, classification and its limitations, diagnostic
modalities, role of genomic testing in rapid diagnosis, pathophysiology and therapeutic
modalities for these disorders.

Definitions and Classifications

Traditionally, all genetic disorders with CNS WMAs were referred to as leukodystrophies.
Recently, an attempt was made by the Global Leukodystrophy Initiative ! to define and
classify white matter disorders into three categories i.e leukoencephalopathies, genetic
leukoencephalopathies and leukodystrophies based on consensus of a panel of experts in the
field. Leukoencephalopathies was defined as all disorders with white matter abnormalities
of the central nervous system, both acquired and genetic. Leukoencephalopathies with

an underlying genetic defect were termed as genetic leukoencephalopathies (QLE). The
term leukodystrophies (LD) was used for a subclass of genetic leukoencephalopathies
characterized by primary glial cell and myelin sheath pathology of variable etiology

where secondary axonal pathology can emerge as the disease progresses. There were
several limitations to the classification. For example, L-2 hydroxyglutaric aciduria in which
there is neuropathology evidence for primary WM involvement, was classified as genetic
leukoencephalopathy and not as leukodystrophy. Cerebrotendinous xanthomatosis, classified
as a true primary disorder of WM, has involvement of grey matter structures as well on MRI
as well as systemic involvement.8 Several disorders for which a neuropathology evidence
was lacking were designated as leukodystrophy based on the brain imaging data.

Classification of leukodystrophies based on pathological changes and pathogenetic
mechanisms that takes into account the primary involvement of any white matter component
has also been proposed recently.2 Categories in this classification are the myelin disorders
due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating
leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-
axonopathies; microgliopathies; and leuko-vasculopathies.

Currently, the myelin-focused concept has been abandoned and all genetic disorders with
involvement of any component within CNS white matter i.e myelin, oligodendrocytes,
astrocytes, microglia, axons, and blood vessels are referred to as LD.3: 8 All genetic
disorders irrespective of the structural white matter component involved, the molecular
process affected and the disease course, are referred to as LD. Hence, several disorders,
which were designated as gLE earlier, have now been reclassified as LD.* The
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exhaustive list of all disorders including metabolic, mitochondrial and those designated as
leukoencephalopathies have been brought under this term. Hence, the concept of only white
matter involvement, primary white matter involvement or true white matter involvement
stands blurred. The experts agree that the precise meaning of this term is lost and retains
the popular concept of selective, primary, predominant involvement of white matter with a
progressive disease course.

Though LD is used practically for all genetic white matter disorders, this definition, which
is largely based on neuropathology, does not contribute to categorizing the newly recognized
phenotypes diagnosed by neuroimaging and genomic testing. The list of these disorders

is bound to grow, and the diagnostic approach is likely to evolve into a combination of

deep phenotyping complemented by genomic testing. Classifications based on brain imaging
findings has been discussed in the respective section of the review.

Epidemiology

Etiology

There is limited information on cumulative incidence and prevalence of these disorders

with CNS WMAs owing to immense heterogeneity. The incidence in a pediatric cohort of
genetic white matter disorders with molecular diagnosis was noted to be 1.2 in 100,000 live
births® which was comparable to the incidence of acquired white matter disorders in this age
group. However, in a decade-long study of cohort of MRI diagnosed cases, the incidence

of white matter disorders was estimated to be 1 in 7,663 live births.1% An earlier study

based on either MRI and/or biochemically confirmed cases reported the incidence of 2 per
100,000 live births.11 More robust epidemiological data is available for common and well
characterized disorders. A recent study based on genetic diagnosis by targeted and exome
sequencing revealed relatively high frequency of Aicardi-Goutieres syndrome, 7UBB4A-
related leukodystrophy, peroxisomal biogenesis disorders, POLR3-related leukodystrophy,
vanishing white matter, and Pelizaeus-Merzbacher disease.12 The prevalence is noted to be
1 in 4,845 to 50,000 for adrenoleukodystrophy (to cite PMID 32003821) 13, 1 in 40,000

to 1,60,000 for metachromatic leukodystrophy 4 and 1 in 2,50,000 for Krabbe disease 1°
across different populations. The mortality rates of Krabbe disease, Pelizaeus-Merzbacher
disease, Canavan disease, Alexander disease and metachromatic leukodystrophy are reported
by Barczykowski et a/to be 0.089, 0.031, 0.012, 0.031 and 0.140 per 10,00,000 individuals
of all ages respectively. 1> The mortality rates in children below 5 years of age were noted to
be three to nine folds more than those above 5 years of age.

CNS WMA s are known to occur due to genetic as well as acquired causes such as
autoimmune, toxins, hypoxic ischemia, infections and several unknown factors.® This
review is focused mainly on disorders with an underlying genetic etiology. Literature
search followed by manual curation revealed 422 genetic conditions with predominant CNS
WMASs. The details of search methodology are provided in the supplemental data.
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Monogenic disorders

Most of the well described disorders with CNS WMA s are of monogenic etiology. A total
of 406 monogenic disorders caused by pathogenic variants in 410 genes were retrieved
(Table S1). One-hundred-nineteen conditions were designated as LD and one-hundred-nine
as gLE earlier.2: 4 5 Thirty-one conditions have been referred to as both LD and gLE in the
literature. We retrieved an additional 147 disorders with variable but consistent CNS WMAs
on neuroimaging.

Subclassification of monogenic disorders based on appropriate and common principles is
not achievable at present due to limited understanding of patho-mechanisms involved. Based
on the current knowledge, we categorize monogenic disorders affecting a known cellular

or molecular process. However, these categories are not exclusive and often a disorder can
be placed in more than one of these. There are very few disorders known to be caused

by defects in myelin specific proteins (3 disorders, 3 genes). The largest subgroup is that

of nuclear mitochondrial disorders (91 disorders, 102 genes). Other common categories

are organelle dysfunctions such as lysosomal (30 disorders, 28 genes) and peroxisomal

(23 disorders, 17 genes). Defects in several enzymes involved in metabolic pathways

of amino acids and organic acids (29 disorders, 32 genes), fatty acids (4 disorders, 4

genes), carbohydrate (4 disorders, 4 genes) and glycolipids (4 disorders, 4 genes) also
result in marked CNS WMAs. Disorders affecting the membrane transport due to disturbed
intravesicular transport (21 disorders, 20 genes) and iron and water homeostasis (39
disorders, 39 genes) are increasingly being recognized. Other prominent groups include
disorders of DNA replication, transcription and their regulation (17 disorders, 17 genes),
disorders of DNA repair mechanism (10 disorders, 9 genes), disorders of mRNA translation
(29 disorders, 33 genes), translation modification and editing (7 disorders, 7 genes),
disorders of cell-cell adhesion (4 disorders, 4 genes), cell cycle and differentiation (13
disorders, 11 genes) and apoptosis (4 disorders, 4 genes). Remaining disorders (74 disorders,
72 genes) have been listed in the miscellaneous category. All disorders of monogenic
etiology and their subclassifications have been listed in the supplementary table S1.

Twenty-two of all monogenic disorders listed above have neuropathological findings of
vascular defects and are known as genetic vasculopathies.? 4 Vascular defects involve small
vessels of the brain, small veins, capillaries, small arteries and arterioles.16 Regardless of
similar pathology, the underlying cellular and processes involved are variable, mainly DNA
replication and transcription regulation (6 disorders), cellular growth, differentiation and
apoptosis (6 disorders) and one disorder each in the categories of DNA repair mechanisms
and subcellular dysfunction (lysosomal).

Mitochondrial disorders

Four disorders due to variants in mitochondrial genome have CNS WMAs (Table S1).17 18
Three of these, mitochondrial encephalopathy with lactic acidosis and stroke-like episodes,
Leigh disease and mitochondrial respiratory chain complex deficiency are caused due to
defects in either protein coding (10 genes) or mitochondrial encoded transfer RNA (12
genes). The protein coding genes span subunits of all respiratory chain complexes, namely
complex I (5 genes), I (2 genes), IV (2 genes) and V (1 gene), except complex I1, which
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is entirely nuclear encoded. One disorder, Kearns-Sayre syndrome, is known to be caused by
rearrangements in the mitochondrial genome.

Chromosomal abnormalities and microdeletion/microduplication syndromes

CNS WMA s are known to occur in very few chromosomal abnormalities and microdeletion/
microduplications syndromes consistently. The chromosomal causes include tetrasomy
12p,19 20 ring chromosome 1821: 22 and 49, XXXXY syndrome.23: 24 Chromosome 18q
deletion syndrome (MIM#601808) is the most common and is consistently associated with
WMAS.25: 26 Other rare microdeletion/duplication syndromes with WMAs include 6p25
microdeletion,27-29 3p21.31 deletion,30-32 14q12-q13.1 triplication,33 5q14.3 deletion,3
11q14.3 deletion, 35 36 1124 deletion,3” 17p13.3 deletion,38-41 and 22¢11.2q13
duplication.#2 Supplementary Table S2 provides the clinical and radiological findings
associated with these disorders.

Diagnosis

The clinical heterogeneity and ever-increasing number of disorders with CNS WMAs pose
a significant challenge in clinical diagnosis. Though genomic testing is increasingly being
applied as a first line diagnostic test, a combination of inheritance pattern, age of onset,
characteristic neurological or non-neurological clinical findings and MRI brain pattern is
helpful in accomplishing a clinical diagnosis and more often a set of differential diagnosis
for these disorders.

Inheritance pattern

Most disorders with CNS WMAs follow an autosomal recessive inheritance pattern

(322 conditions). Sixty-four disorders are inherited exclusively in an autosomal dominant
pattern and 4 disorders can be inherited both as autosomal recessive and dominant.

Sixteen disorders show X-linked inheritance patterns. Four disorders follow mitochondrial
inheritance. Hence, pedigrees with autosomal dominant or X-linked patterns provide a good
handle for clinical diagnosis. The sporadic cases must be carefully evaluated to rule out the
acquired conditions. The inheritance patterns of all disorders are provided in supplementary
table S1.

Age of onset

The age of onset of most disorders is in the pediatric age group. However, several disorders
have onset ranging from pediatric to adulthood (Table S3). Very few disorders with CNS
WMAs are known to be exclusively adult onset conditions and are listed in table 1.43 These
disorders would need dissection from the late onset forms of other disorders and acquired
conditions.

Clinical features

Several but not all disorders with CNS WMAs are progressive disorders.® Those with a
progressive course present with regression of milestones after a period of normalcy and the
others as delayed development. Often hypotonia is the presenting feature that progresses
to hypertonia and spasticity, ataxia, nystagmus, swallowing and speech difficulties later
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in the course.5 Those disorders which begin with motor manifestations alone usually
manifest cognitive and behavioral changes as the disease advances. The neurological
findings alone are seldom useful for establishing a clinical diagnosis owing to the immense
heterogeneity of these disorders. However, extra-neurological features involving endocrine,
ophthalmologic, auditory, musculoskeletal, skin, gastrointestinal and cardiovascular systems
in presence of significant white matter involvement often aids clinical diagnosis (Table 2).

Acquired disorders may present with acute or subacute onset following an episode of
infection, toxicity or hypoxia. They may have monophasic illness of acute onset followed
by partial or complete recovery as in acute disseminated encephalomyelitis?# or a chronic
illness with recurrent episodes of relapsing signs and symptoms as seen in multiple
sclerosis.#>: 46 Often, they may mimic disorders of genetic etiology in clinical presentation,
especially mitochondrial disorders precipitated by an intercurrent illness.®

Neuroimaging

MRI has a vital role in the diagnosis of disorders with CNS WMAs. The minimum
requirements for a standard MRI investigation are T1-weighted, T2-weighted and fluid-
attenuated inversion-recovery (FLAIR) images. The radiological diagnostic algorithm
devised by van der Knaap et al remains a useful aid for clinical diagnosis of common and
recognizable disorders.3 The pattern recognition on neuroimaging involves differentiation
into hypomyelination or other white matter pathologies, the confluency and predominant
area of localization of WMAs and certain specific MRI characteristics. Additionally, other
magnetic resonance sequences including contrast enhanced MRI, susceptibility weighted
imaging and diffusion-weighted sequences are useful diagnostic tools for disorders with
inflammatory component, calcifications and/or vascular lesions.> MR spectroscopy serves
as a sensitive method for diagnoses of metabolic and mitochondrial disorders among these
disorders (Table 3).

Deficient myelination, either permanent hypomyelination or delayed myelination (Fig.

1A), is seen as less marked T2-weighted hyperintensities and T1-weighted hypointensities,
isointensities or mild hyperintensities of white matter relative to grey matter.3 Seventy-six
disorders with deficient CNS myelination were retrieved from the literature (Supplementary
table 4). Of these, forty-six conditions are reported with hypomyelination and twenty-seven
with delayed myelination consistently. Hypomyelination and delayed myelination have
been used interchangeably in three conditions. The number of disorders with deficient
myelination, particularly permanent hypomyelination is limited. Hence, hypomyelination
on MRI in conjunction with other specific findings is a good clinical handle for

diagnosis of these disorders. Two major group of disorders with deficient myelination

are hypomyelinating leukodystrophies and early infantile onset epileptic encephalopathies
(EIEE). Nineteen disorders with permanent hypomyelination have been catalogued as
hypomyelinating leukodystrophies (HLDs, PS312080) in OMIM. WMAs, mainly delayed
myelination, has been observed in thirty-five of the eighty-four (EIEE) reported till date
(OMIM PS308350). This could be attributed to seizure activity arresting the normal process
of myelination which progresses and usually normalizes after seizure control.#” Clinically
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identifiable disorders with hypomyelination are listed in table 4 and other disorders with
deficient myelination are provided in table S4

De/dysmyelination presents with T2-weighted hyperintensities and T1-weighted
hypointensities of affected white matter relative to the grey matter.2 Confluent, bilateral
and symmetric signal abnormalities are predominantly observed in genetic disorders while
focal asymmetric involvement of white matter may be indicative of a non-genetic cause.
However, there are several exceptions to this phenomenon. Specific pattern recognition

of WMAs including predominant areas of white matter dysmyelination in MRI remains
vital for diagnosis of several common disorders like Krabbe disease, metachromatic
leukoencephalopathy, megalencephalic leukoencephalopathy (Fig 1B), Leigh disease etc
(Fig 1B). Seldom, it also aids in diagnosis of rare disorders with very characteristic

and unique combination of brain imaging findings such as multiple mitochondrial
dysfunction syndrome 5 (MIM# 617613) (Fig 1B) with extensive diffuse cerebral WMAs,
ventriculomegaly, pachygyria and cerebellar atrophy.#8-50 Characteristic neuroimaging
findings for common disorders is provided in table 3 and Figure 1. Of the 147

disorders not categorized as LD/gLE earlier, twenty-four (21 with dysmyelination, 2 with
hypomyelination along with dysmyelination and 1 with hypomyelination) present with
confluent and recognizable pattern of WMASs (Table S5).

Acquired white matter disorders are more likely to have multifocal asymmetric white
matter abnormalities.3 However, this imaging appearance may also be noted in several
genetic disorders such as neuroaxonal leukodystrophy with spheroids, CADASIL, vascular
leukoencephalopathies (Table 3) and some disorders of mitochondrial etiology (Figure 1B).
Conversely, some acquired causes such as hypoxic ischemia, periventricular leukomalacia,
HIV encephalopathy and toxic leukoencephalopathies lead to symmetrical and confluent
white matter abnormalities thus mimicking genetic disorders. Large and ill-defined

lesions which involve grey matter structures as well suggest the possibility of acquired
demyelinating disorders.3 MRI may reveal a single or multiple lesions in both white
matter (periventricular and subcortical) and grey matter (basal ganglia, thalamus, cortex)

in individuals affected with acute disseminated encephalomyelitis.#4 51 Multiple sclerosis
is diagnosed by neuroimaging evidence of two or more brain and/or spinal cord lesions
disseminated by space and time (McDonald criteria, 2005).45 46 Neuroimaging findings of
common acquired white matter disorders is provided in Figure S1.

Genetic testing

Exome sequencing (ES) has emerged as a highly efficient diagnostic modality for genetic
disorders with CNS WMASs as most of these disorders are monogenic and predominantly
recessive. The earlier diagnostic rate of 50% has now increased to more than 70-80% with
the use of ES.% 7 The widespread availability of ES relative to several other specialized
tests has also led to a decrease in the discrepancy in patients receiving a definitive diagnosis
worldwide. In the past decade, approximately 72 novel gene-disease associations for these
disorders have been identified with the application of ES.
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However, ES has limitations in terms of diagnosis of genomic variants beyond exonic
single nucleotide variants and small indels owing to technical difficulties.>? Variants in
regions with repetitive sequence, CNVs, intronic and variants in regulatory regions cannot
be identified by exome sequencing. The most common genomic variants for disorders
like Pelizaeus-Merzbacher disease and Krabbe disease are large deletions/duplications of
PLPIand GALC respectively, which may not be detected in ES, thus emphasizing the
role of clinical diagnosis in the era of genomics. A good clinical diagnosis or a set of
narrow differential diagnoses is more likely to facilitate definitive molecular diagnosis
and overcome the uncertainties of broad-spectrum genomic tests like exome and genome
sequencing.

Literature on the utility of gene panels for diagnosis of these disorders is very limited.

Yield of a custom panel was noted to be 13.3% in a cohort of individuals with adult

onset leukodystrophies.>3 In an Argentinian cohort of individuals with genetic disorder with
WMAS, a virtual panel analysis from exome data rendered a diagnostic yield of 46.1%.54
Though whole genome sequencing (WGS) outweighs the diagnostic yield of ES, there is
limited data on use of this technique as well for investigation of these disorders.>>48 A
recent study reported trio genome sequencing in 41 families who were undiagnosed with trio
exome sequencing.>® This resulted in a diagnosis in 14 (34%) additional families. Further
decrease in sequencing cost and increase in the ease of data analysis is likely to result in
WGS as a test of choice for these disorders.

Biochemical tests

The role of biochemical testing for genetic disorders including those with CNS WMAs

is getting redefined in the era of broad-spectrum genomic testing. In scenarios with a
diagnostic MRI pattern, biochemical analysis aids in validating the clinical diagnosis (Table
5). This can be followed by often inexpensive targeted genetic testing. Also, easily available
biochemical tests like enzyme assays may often be used to resolve the variants of uncertain
significance, a major concern with the broad-spectrum genomic tests. In these cases,
biochemical testing adds to the evidence of pathogenicity while interpreting the observed
variants.

Pathophysiology

Genetic disorders with CNS WMA s result from molecular defects which lead to
abnormalities in myelin production and maintenance or myelin destruction.? The myelin
sheath is a modified plasma membrane of the oligodendrocytes and is wrapped around
neuronal axons. It consists of lipids (70%—-85%) and proteins (15%— 30%).57 The production
of myelin in developmental stages and its maintenance through adult life requires tightly
regulated cues within the oligodendrocytes, glial cells and the neuronal axons.>® Most

of the oligodendrocytic organelles including nucleus, rough endoplasmic reticulum, Golgi
apparatus, microtubules, lysosomes and peroxisomes play critical and unique roles in
formation and maintenance of CNS white matter.
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There are three main mechanisms of white matter abnormalities based on cellular
pathology. First, is a primary defect in oligodendrocytic activity of myelin production

and maintenance. The illustrative example for defect in myelin production is duplication
variants in PLPZ which cause misfolding of myelin followed by mislocalization. This
leads to accumulation of PLP1 in the late endosome resulting in oligodendrocytic death.
Second, is a defect on astrocytic regulation of myelination process, as seen in Alexander
disease, where mutant glial fibrillary acidic protein accumulation activates multiple stress
pathways inside the astrocytes. An astrocytic defect may also result in an ionic imbalance
and fluid accumulation in myelin (vacuolation) as observed in several mitochondrial
disorders and megalencephalic leukoencephalopathy with subcortical cysts. Third, there is
no formation or there is degeneration of previously formed neuronal axons. Variants in
neuronal axon specific genes may lead to improper formation of axons (FAM126A related
hypomyelinating leukodystrophy) or degeneration of previously formed neuronal axons
(GM1 gangliosidosis).

In addition to this, WMASs can occur as a consequence of genetic defects which lead to
vascular pathology.2 The classical example is cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy, caused by defects in NOTCH3. Variants and
deletions of NOTCH3result in accumulation of the aberrant protein which ultimately causes
a reduced cerebral blood flow in brain white matter leading to white matter abnormalities.>®
Several external factors like metabolic, mitochondrial, and non-genetic factors (toxins,
hypoxic insults) can also lead to WMAs. Defects in several genes which are not yet known
to have a direct role in oligodendrocyte or glial cell function are increasingly being identified
to cause these disorders.

Treatment

A substantial insight into the patho-mechanisms has enabled advances in specific therapeutic
strategies for these disorders. The timing of initiating therapy is of utmost importance

as these therapies are effective only if initiated before or immediately after the onset of
symptoms. Hence, an early diagnosis is warranted for optimal management and outcome for
these disorders. However, supportive care remains the mainstay of treatment for most and
involves management of spasticity, adequate nutrition including supplementation of vitamin
D and calcium, treatment of neuropathic pain, epilepsy, drugs for sialorrhea and insomnia
and monitoring for orthopedic complications like hip dislocation and scoliosis. One of the
most common symptoms, spasticity, can be managed effectively by oral spasmolytic drugs,
intramuscular botulinum toxin, intrathecal baclofen,? or selective dorsal rhizotomy.51

The effective and curative therapies developed till date for these disorders include
hematopoietic stem cell transplant and ex vivo gene therapy. Other forms of therapies like
antisense oligonucleotides, targeted drug therapy, enzyme replacement therapy and stem
cell-based therapy need further evidence before they are proved efficacious in the clinic.
Table 6 summarizes the currently recommended therapeutic measures and table S6 lists the
emerging treatment modalities for common and selected disorders.# 62-95
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The last few decades have added several insights for disorders with CNS WMAs. A
combination of clinical, radiographic, biochemical and genomic expertise has helped us
to overcome the challenges of a definitive diagnosis in disorders with CNS WMAS. The
improvement in understanding of etiopathogenesis in future is likely to result in sustained
advancement in therapeutics for several of these disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A. Disorders with deficient hypomyelination

PIGH related EIEE

B. Disorders with de/dysmyelination and characteristic MRI patterns

Krabbe disease

Merosin deficient congenital Mitochondrial

muscular dystrophy disease CARASIL

Leigh disease FKTN related muscular dystrophy ISCA1 related MMDS

Figure 1. Neuroimaging findingsin selected disorders
A. Disorderswith deficient myelination. Variable degrees of hypomyelination in

Pelizaeus-Merzbacher disease (PMD) at 11 months, hypomyelination with congenital
cataract (HCC) at 5 years and 4H leukodystrophy (4H) at 5 years. Delayed myelination
at 1 year in PIGH related early infantile epileptic encephalopathy which improved by

2 years. Advanced stage in hypomyelinating leukodystrophy type 17 showing cerebral,
cerebellar atrophy. B. Disorderswith de/dysmyelination and characteristic MRI
patterns. M etachromatic leukodystrophy (MLD): T2W and FLAIR symmetrical white
matter hyperintensity, sparing of subcortical U-fibers with tigroid pattern. X-linked
adrenoleukodystrophy (X-ALD): T2W hyperintensities involving the white matter of
bilateral parieto-temporal and frontal lobes. Krabbe disease: T2W hyperintense signals
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in the periventricular white matter, posterior limb of the internal capsule, brainstem along
the pyramidal tracts and cerebellar white matter. Vanishing white matter disease: T2W
hyperintensities and FLAIR hypointensities in deep and subcortical white matter, sparing
basal ganglia and internal capsule. M erosin deficient congenital muscular dystrophy:
T2W bilateral diffuse hyperintensities in deep cerebral white matter. Mitochondrial:
Necrotizing leukoencephalopathy, FLAIR hyperintensity of bilateral white matter with
cystic changes. Cerebral autosomal recessive arteriopathy with subcortical infarctsand
leukoencephalopathy (CARASIL): FLAIR and T2W hyperintensities with lacunar infarcts
and T2W hyperintensities indicating pons-arc sign. M egalencephalic leukoencephalopathy
with subcortical cysts (ML C): T2W hyperintensities with involvement of subcortical
U-fibers. Subcortical cysts in anterior temporal lobes. Glutaric aciduriatype 1:

Temporal lobe hypoplasia, widened sylvian fissures and hyperintense basal ganglia

with periventricular deep and subcortical white matter involvement. L eigh disease:
Hyperintensities in corpus callosum, brain stem, spinal cord and thalamus. FKTN

related dystroglycanopathy: Symmetric frontal lobar polymicrogyria-pachygyria complex,
symmetrical changes in frontal lobe white matter. Brainstem and cerebellar hypoplasia

seen. | SCA1 related multiple mitochondrial dysfunctions syndrome (MMDS) 5: Diffuse
cerebellar and cerebral white matter hyperintensities, ventriculomegaly and pachygyria.
Canavan disease: Diffuse bilateral symmetrical T2W white matter hyperintensity with
subcortical U-fiber involvemen, Elevated NAA on MRS. Maple syrup urine disease

(M SUD): Diffusion-weighted images show symmetrical diffusion restriction in cerebellar
white matter, brain stem, cerebral peduncles, posterior limb of internal capsule, thalami,

and perirolandic cerebral white matter. Aicardi-Goutieres syndrome: Delayed myelination,
high signal in frontotemporal white matter with atrophy. SWI sequence shows calcifications,
paucity of white matter, cerebellar atrophy and arteriopathy in advanced stage.
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Table 2.

Clinical findings as a diagnostic clue for disorders with CNS WMAs

Clinical feature

Disorders

Macrocephaly

Alexander disease, Canavan disease, Megalencephalic leukoencephalopathy with subcortical
cysts, 1,2-hydroxy glutaric aciduria, GM2 gangliosidosis

Coarse facies

Sialic acid storage disease, Fucosidosis, Multiple sulfatase deficiency, Mucopolysaccharidosis

Progeroid appearance

Cockayne syndrome

Enamel hypoplasia and other enamel
defects

Oculodentodigital dysplasia, Peroxisomal disorders

Oligodontia, hypodontia, delayed
eruption, altered sequence of eruption,
abnormal colour /shape

POLRS related disorders (not universal and highly variable)
Oculo-dentodigital dysplasia

Propensity for cavities Cockayne syndrome
Cataract At birth
Hypomyelination with congenital cataract, Childhood ataxia with central nervous system
hypomyelination (only connatal cases), Peroxisomal disorders
Childhood onset
Cerebrotendinous xanthomatosis, POLRS3 related disorders
Cherry red spot Sialidosis, GM2 gangliosidosis, Metachromatic leukodystrophy (some cases)
Glaucoma Aicardi-Goutieres Syndrome, Oculodentodigital dysplasia
Optic atrophy Metachromatic leukodystrophy, Canavan disease

Childhood ataxia with central nervous system hypomyelination, Cerebrotendinous xanthomatosis,
Peroxisomal disorders (+/-), POLR3 related disorders (+/-), Hypomyelinating leukodystrophies,
Mitochondrial disorders, Oculodentodigital dysplasia

Retinitis pigmentosa

Refsum disease (adolescent and adult onset), Peroxisomal disorders

Vascular retinal defects

Cerebroretinal microangiopathy with calcifications and cysts (Coats plus syndrome)

Angiokeratoma corporis diffusum

Fucosidosis

Ichthyosis

Congenital

Sjogren-Larsson syndrome, Ichthyotic keratoderma, spasticity, hypomyelination, and dysmorphic
facies

Childhood onset

Multiple sulfatase deficiency, Sialic acid storage disorder, Peroxisome biogenesis disorders
including neonatal Zelleweger syndrome

Adrenoleukodystrophy and Infantile Refsum disease

Adulthood onset

Refsum disease

Hyperpigmentation

X-Adrenoleukodystrophy, Mitochondrial neurogastrointestinal encephalopathy

Xanthomas

Cerebrotendinous xanthomatosis

Photosensitivity

Cockayne syndrome, Tay syndrome

Adrenal insufficiency

X-linked Adrenoleukodystrophy, Peroxisome biogenesis disorders

Hypothyroidism

POLR3 related disorders, Aicardi-Goutiéres Syndrome, Cerebrotendinous xanthomatosis,
Peroxisomal biogenesis disorders

Hypogonadotropic hypogonadism

POLR3 related disorders

Growth Hormone deficiency

POLRS related disorders, Aicardi-Goutiéres Syndrome

Ovarian dysgenesis (Premature ovarian
failure)

Ovarioleukodystrophy, AARSZ-related leukoencephalopathy
Peroxisome biogenesis disorders

Hepatosplenomegaly

Multiple sulfatase deficiency, Galactosialidosis, Sialic acid storage disorders

Hepatic dysfunction

Peroxisomal disorders, Aicardi-Goutiéres Syndrome, Mitochondriopathies
Fucosidosis, Sialic acid storage disorders

Chondrodysplasia punctata

Peroxisomal disorders

Clin Genet. Author manuscript; available in PMC 2023 February 24.




1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Shukla et al.

Page 21

Clinical feature

Disorders

Dysostosis multiplex

Multiple sulfatase deficiency, Sialidosis
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Biochemical testing in common disorders

Table 5.

Testing parameter

Disorders

Creatine phosphokinase (Serum)

Muscular dystrophies
Merosin deficient congenital muscular dystrophy
Dystroglycanopathies

L actate, pyruvate (Plasma, Cerebrospinal fluid)

Mitochondrial disorders

Glycosaminoglycans (Urine)

Metachromatic leukodystrophy
Multiple sulfatase deficiency

Organic acids (Urine)

L-2-hydroxyglutarate

N-acetylaspartic acid for Canavan disease
Metabolic disorders of Krebs cycle

Other mitochondrial disorders

Amino acids (Urine)

Aminoacidopathies

Maple syrup urine disease

Homocystinuria
Hyperornithinemia-hyperammonemia-homocitrullinemia syndrome
Pyruvate dehydrogenase complex deficiency

Very long chain fatty acids (Plasma)

Peroxisomal disorders
X-linked adrenoleukodystrophy

Lysosomal enzymes (leukocytes/fibroblasts)

Krabbe (galactosyl cerebrosidase)

Metachromatic leukodystrophy (arylsulfatase A)
Multiple sulfatase delciency (arylsulfatase A,B,C,D)
GM1 gangliosidosis (beta galactosidase)

GM2 gangliosidosis (hexosaminidase A & B)

Sialidosis (neuraminidase)

Galactosialidosis (neuraminidase and beta galactosidase)

1,4-alpha-glucan-branching enzyme activity

Adult polyglucosan body disease

Cholestanol

Cerebrotendinous xanthomatosis

Fatty aldehyde dehydrogenase enzyme

Sjogren-Larsson syndrome
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