Skip to main content
. 2023 Jan 20;10(2):140. doi: 10.3390/bioengineering10020140

Table 2.

Summary of performance metrics for Fet-Net and prominent CNN architectures during the 5-fold cross-validation experiment.

Architecture Average Accuracy (%) Average Loss Number of Parameters
Fet-Net 97.68 0.06828 10,556,420
VGG16 96.72 0.12316 14,847,044
VGG19 95.83 0.15412 20,156,740
ResNet-50 88.37 0.40604 24,113,284
ResNet-50V2 95.20 0.16328 24,090,372
ResNet-101 82.12 0.47086 43,183,748
ResNet-101V2 94.69 0.18866 43,152,132
ResNet-152 84.12 0.41756 58,896,516
ResNet-152V2 94.61 0.20502 58,857,220
Inception-ResnetV2 94.20 0.21042 54,731,236
InceptionV3 93.83 0.21720 22,328,356
Xception 96.08 0.13956 21,387,052