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Abstract

Background/objectives—Admixed populations are a resource to study the global genetic 

architecture of complex phenotypes, which is critical, considering that non-European populations 

are severely underrepresented in genomic studies. Here, we study the genetic architecture of BMI 

in children, young adults, and elderly individuals from the admixed population of Brazil.

Subjects/methods—Leveraging admixture in Brazilians, whose chromosomes are mosaics 

of fragments of Native American, European, and African origins, we used genome-wide data 

to perform admixture mapping/fine-mapping of body mass index (BMI) in three Brazilian 

population-based cohorts from Northeast (Salvador), Southeast (Bambuí), and South (Pelotas).

Results—We found significant associations with African-associated alleles in children from 

Salvador (PALD1 and ZMIZ1 genes), and in young adults from Pelotas (NOD2 and MTUS2 
genes). More importantly, in Pelotas, rs114066381, mapped in a potential regulatory region, is 

significantly associated only in females (p = 2.76e−06). This variant is rare in Europeans but with 

frequencies of ~3% in West Africa and has a strong female-specific effect (95% CI: 2.32–5.65 

kg/m2 per each A allele). We confirmed this sex-specific association and replicated its strong 

effect for an adjusted fat mass index in the same Pelotas cohort, and for BMI in another Brazilian 

cohort from São Paulo (Southeast Brazil). A meta-analysis confirmed the significant association. 

Remarkably, we observed that while the frequency of rs114066381-A allele ranges from 0.8 to 

2.1% in the studied populations, it attains ~9% among women with morbid obesity from Pelotas, 

São Paulo, and Bambuí. The effect size of rs114066381 is at least five times higher than the FTO 
SNPs rs9939609 and rs1558902, already emblematic for their high effects.

Conclusions—We identified six candidate SNPs associated with BMI. rs114066381 stands out 

for its high effect that was replicated and its high frequency in women with morbid obesity. We 

demonstrate how admixed populations are a source of new relevant phenotype-associated genetic 

variants.
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Introduction

Overweight and obesity are risk factors for noncommunicable diseases, which are 

responsible for 63% of deaths worldwide [1] and 72% in Brazil [2]. Interindividual 

differences in BMI result from the effects of multiple genetic variants, environmental 

factors, and their interactions [3, 4]. Most of BMI heritability, estimated to be ~40%, is 

attributable to unknown genetic factors [5, 6]. Indeed, a meta-analysis of genome-wide 

association studies (GWAS) of BMI estimated that 97 loci explain ~2.7% of its variance 

[3]. The GWAS Catalog [7] and the DANCE web tool [8] report 389 SNPs associated with 

BMI, with a mean effect size of 0.054 kg/m2 (Fig. S1). Thus, BMI genetic architecture is 

characterized by a high number of loci with small effect sizes [5].

Our knowledge of the genetic architecture of complex phenotypes is biased [9] because 

only 22% of individuals included in GWAS are non-Europeans/non-US whites, 2.4% are 

from Africa, and 1.3% from Latin America [10]. The BMI meta-GWAS by Locke et al. 

[3] included only 5% of individuals of non-European ancestry among 339,226 individuals. 

Thus, expanding GWAS-based strategies beyond non-European populations is critical to 

discover differences in the genetic architecture of BMI among populations. This is especially 

important for phenotypes such as obesity, whose prevalence is higher in US African 

Americans, Hispanics, and Native Americans than in European Americans [11, 12], and 

in Brazil, higher in black women than in white women [13].

Few studies consider the influences of age- and sex-associated genetic factors on BMI. 

Despite the high correlation of intraindividual measurements of BMI at diverse ages, 

some genetic variants do have distinct effects depending on age [14–16]. For example, a 

meta-analysis of 14 GWAS [17] found that variants near to PRKD1, TNNI3K, SEC16B, 

and CADM2 genes had larger effects on BMI during adolescence/young adulthood than 

later in the lifespan, while a variant near SH2B1 had the opposite trend. Regarding sex, 

variants in SEC16B and ZFP64 were identified with stronger effects in women ([3] and see 

“Discussion”).

Here we study the genetic architecture of BMI in the admixed population of Brazil, the 

largest and most populous Latin-American country, with more than 200 million inhabitants. 

Brazilians are the product of about 500 years of admixture between Africans, Europeans, 

and Native Americans [18] and therefore, are suitable for admixture mapping. This method 

uses an admixed population to map genomic regions associated both with a specific ancestry 

and the phenotype of interest. Admixture mapping, by performing less statistical tests 

respect to classical GWAS, results in higher statistical power. Thus, for medium-sized 

studies (more feasible in limited resources setting environments hosting non-European 

populations), admixture mapping improves the power to detect an association when 

compared to GWAS that include only a few thousands of individuals. So far, admixture 

mapping has identified seven loci associated with BMI at chromosomes 2 (2p23.3), 3 

(3q29), 5 (5q13.3 and 5q14), 15 (15q26), and X (Xq25, Xq13.1) [11, 19, 20], but these 

studies were restricted to US African American populations.
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We performed admixture mapping (followed by fine-mapping) of BMI using data of ~2.3 

million SNPs for three Brazilian population-based cohorts, from Northeast (Salvador), 

Southeast (Bambuí), and South (Pelotas), with distinct admixture and socio-demographic 

backgrounds, studied by the EPIGEN-Brazil Initiative (https://epigen.grude.ufmg.br, [18]). 

Salvador has 51% of African ancestry, while Pelotas and Bambuí have predominant 

European ancestry (76% and 79%, respectively) (Table S1 and Fig. 1). As these cohorts 

include individuals of three different epochs of life—children, young adults, and older adults

—we performed three separate admixture mapping to avoid confounding effects of age. 

Additionally, we performed a replication by testing the association between 216 BMI GWAS 

Catalog hits in our three Brazilian cohorts.

Materials and methods

Study populations and genotyping

The Salvador-SCAALA cohort comprises 1445 children aged 4–11 years in 2005, when 

BMI was measured. Salvador (Fig. 1) is a city of 2.8 million inhabitants in Northeast Brazil 

[21]. This population is part of an earlier observational study and represents the population 

without sanitation in Salvador.

The 1982 Pelotas birth cohort study was conducted in Pelotas, a city in southern Brazil, with 

340,000 inhabitants (Fig. 1). Throughout 1982, 99.2% of all births in the city were enrolled. 

Of these, the 5914 liveborn infants whose families lived in the urban area constituted the 

original cohort [22]. BMI was measured in 2004/2005, when individuals were 23 years 

old. The 2012–2013 follow-up measured participants’ body fat, lean, and bone mineral 

masses using dual-energy X-ray absorptiometry (DXA; GE Lunar Prodigy densitometer) in 

a full-body scan. We calculated fat mass index by dividing the adjusted fat mass (kg) by 

squared height (meters).

The Bambuí cohort study of ageing is ongoing in Bambuí, a city of ~15,000 inhabitants, 

in Minas Gerais State in Southeast of Brazil (Fig. 1). This cohort consisted of all residents 

aged 60 years and over on January 1997. From 1742 eligible residents, 1606 constituted the 

original cohort [23–25]. BMI was measured in 1997, when individuals were between 60 and 

93 years old.

The EPIGEN-Brazil initiative genotyped individuals from Salvador, Pelotas, and Bambuí 

cohorts using the Illumina (San Diego, CA, USA) HumanOmni2.5–8v1 and the 

HumanOmni5–4v1 arrays. We used the consensus working datasets described in Kehdy 

et al. [18] that went through extensive quality control of SNPs and samples, as detailed 

in Kehdy et al. [18] and briefly explained in the Supplementary Material. For the three 

cohorts, measurements were taken by trained research staff and BMI was calculated as 

weight (kg) divided by squared height (meters). Potential confounding variables are sex, 

age, and different socioeconomic status (SES) (Table S1). In the end, we had genotyped, 

BMI, and covariables data for 1222, 3628, and 1342 individuals from the Salvador, 

Pelotas, and Bambuí cohorts, respectively. The EPIGEN protocol was approved by Brazil’s 

national research ethics committee (CONEP, resolution number 15895, Brasília). Informed 

consent was obtained from all subjects. In addition, we used African, European, and Native 
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American individual ancestries estimated in Kehdy et al. [18] and performed on the same set 

of individuals using the software ADMIXTURE [26] (Fig. 1 and Table S1).

Kinship coefficients

Relatives were identified and removed from Salvador (63 individuals) and Pelotas (83 

individuals) cohorts using a network-based approach that aims to eliminate the smallest 

possible number of individuals [18]. The Bambuí cohort has 516 (36%) individuals with 

relatives in the cohort. Thus, for Bambuí, we identified families with a categorical variable.

Phasing and local ancestry inference by PCAdmix and RFMix software

We phased our datasets using the software SHAPEIT2 [27], as detailed in ref. [18]. As 

inferences of continental local chromosome ancestry based on genome-wide data are more 

uncertain than inferences about individual or population ancestry, we used two methods 

for local ancestry inference, implemented in the software PCAdmix [28] and RFMix 

[29]. PCAdmix inferences were performed as in ref. [18]. For RFmix inferences, we used 

Europeans, Africans, and Native American as parental populations and fixed parameters as 

described in the Supplementary Methods. For PCAdmix and RFMix results, we considered 

only the windows which ancestry was inferred with a posterior probability > 0.90.

Admixture mapping

We tested the association between BMI and each local ancestry (African, European, and 

Native American) across the genome using linear regression models. The regressions were 

adjusted by age (Salvador and Bambuí), sex, SES, and genome-wide African ancestry. 

For Bambuí, we corrected for family structure. We used an additive model that considers 

the number of inferred African, European, or Native American ancestry copies (0, 1, or 

2) carried by an individual for each window. Because we found an association between 

individual African ancestry and BMI in females in Pelotas (Supplementary Methods, Tables 

S2–S4), we performed a stratified analysis for each sex in this cohort. While for Salvador 

and Pelotas we used simple linear regression [30], for Bambuí we used robust variance 

estimators to correct results by family structure [31].

To establish a significance threshold for the admixture mapping, accounting both for 

multiple testing and linkage disequilibrium (LD) due to admixture, we estimated the 

effective number of tests (ENT) for each chromosome for each individual [32], and obtained 

an equivalent Bonferroni p value threshold for significance dividing 0.05 divided by ENT 

(Table S5). We conservatively used the same genome-wide thresholds to identify admixture 

mapping hits for X-chromosome. We compared the significant admixture mapping peaks of 

each chromosome obtained using PCAdmix and RFMix local ancestry inferences (using p 
values thresholds from Table S5 multiplied by 10), and, considered a consensus significant 

peak the ones mapped to the same chromosomal region (not only the same chromosome 

bands) using both inferences. Only these consensus significant admixture mapping peaks 

were followed-up for fine-mapping.
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Imputation, fine-mapping, and annotation

Fine-mapping was performed using both genotyped and imputed SNPs. We imputed our 

dataset focusing on ±1 Mb centered in the most significant window of each admixture 

mapping hit (based on PCAdmix). To this, we used IMPUTE2 [33] with a reference panel 

that merged the public reference panel data from 1000G and 270 individuals from EPIGEN 

(90 of each cohort) genotyped for 4.3 million SNPs, and considered only SNPs imputed with 

an info score quality metric > 0.9 [34].

Genotyped and imputed SNPs were tested for association with BMI using the same linear 

regressions models used for admixture mapping. We excluded SNPs with minor allele 

frequency < 0.005 for these analyses. We considered significant, the associations with 

p values less than or equal to the ones obtained for the admixture mapping peaks and 

suggestively significant those SNPs with a p value higher than the ones obtained for the 

admixture mapping peaks but not more than one unit of −log (p value). Fine-mapping results 

were plotted using the LocusZoom tool [35] and annotated using ANNOVAR [36]. We 

estimated the LD statistics (r2, [37]) on phased data using the software Haploview [38]. A 

flowchart summarizing the study design is shown in Fig. S12.

Replication cohorts and meta-analysis

We tested for replication the association of rs114066381-A with BMI in other four cohorts: 

(1) whole-genome data with a mean target coverage of 30x from 651 unrelated females 

from São Paulo, Brazil, the SABE (Health, Wellbeing, and Aging) study [39–41]. Linear 

regression was adjusted for age, education level, SES, and individual African ancestry 

proportion; (2) 1082 women from Puerto Rico (547 non-cancer controls and 535 cases) 

genotyped on the Affymetrix Axio UK biobank array. rs114066381 was imputed with 

IMPUTE2 using samples from 1000G as reference. Linear regression was adjusted for 

age, education level, individual African ancestry proportion, and breast cancer diagnosis; 

(3) 1103 adult women (age ≥18 years) from Nigeria, Cameroon, Sudan, Ethiopia, Kenya, 

Tanzania, and Botswana [42]. Individuals were genotyped on either the Illumina 5M-Omni 

array or the Illumina 1M-Duo BeadChip array. For individuals typed on the last one, 

rs114066381 was imputed using MiniMac, based on a reference panel of 180 whole-genome 

sequences from eastern and southern Africa as well as the African populations from the 

1000G. Association tests were performed using a linear-mixed model in which age was 

modeled as a fixed effect and the kinship matrix was used for the random effects term; 

(4) 859 women from Soweto, South Africa [43] genotyped on the 2,3M H3-Africa array. 

rs114066381 was imputed using the African reference panel at Sanger Imputation facility. 

Linear regression was adjusted for age and SES. We used the package metafor [44] to 

perform the meta-analysis using a random effects model with Hedges method.

Statistical power estimation

Power estimation was performed separately for each EPI-GEN cohort, according to the 

specific BMI distribution (Table S1). SNPs associated with BMI in the GWAS Catalog 

were extracted using the keyword “body mass index”, and those with p values > 9e−05 

were filtered out. From the 2205 SNPs reported on 61 published studies, we kept 216 

SNPs with effect size unambiguously associated to a specific allele and reported as a 
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regression coefficient expressed in kg/m2 from cross-sectional studies, genotyped or imputed 

in our database. We calculated the statistical power using the latter effect size (regression 

coefficient) values, and allele frequency and number of individuals from each EPIGEN 

cohort (Table S1). The type I error rate was set at α = 0.00023. All power estimates were 

calculated with QUANTO v1.2.4 program [45], assuming an additive genetic model with 

independent individuals.

Replication analysis of previous GWAS hits

To test the association of previous BMI GWAS hits, we used the regression model used in 

fine-mapping for all the selected 216 SNPs in the three Brazilian cohorts. p values were 

adjusted considering 216 independent tests using the Benjamini–Hochberg correction [46].

Genomic in silico analyses

The search for candidate regulatory SNPs was performed using HaploReg v4.1 database 

(http://archive.broadinstitute.org/mammals/haploreg/haploreg.php, [47]), Ensembl (https://

grch37.ensembl.org/, [48]), and RegulomeDB (http://www.regulomedb.org/, [49]). ChIP-seq 

data were provided by [50], available at HaploReg v4.1 database.

Results

Admixture mapping and fine-mapping

We performed an admixture mapping analysis for the three continental ancestries (African, 

European, and Native American) in the three cohorts using an additive model considering 

the number of inferred African, European, or Native American ancestry copies (0, 1, or 2) 

carried by an individual for each chromosome fragment.

Table 1 shows the five consensus significant admixture mapping peaks found in Salvador 

and Pelotas. The distribution of BMI for each allele of African or European ancestry for 

the five peaks are shown in Supplementary Figs. S2–S4. No consensus significant peak was 

found in older adults from Bambuí.

Fine-mapping on Salvador children

The high African ancestry (51%) in children from Salvador allowed us to identify two 

genomic regions where this ancestry is positively associated with BMI and within these 

regions, we identified three significant variants (Tables S8 and S9 and Fig. S5): within 

10q22.1, rs1334909357-CTTT in an intron in the PALD1 gene and, within 10q22.3, the 

linked SNPs rs79947827-A and rs141274185-T (LD: r2 = 0.86) in the ZMIZ1 gene, that 

encodes a protein that regulates the activity of many transcription factors [51]. Other SNPs 

in ZMIZ1 are associated with 19 complex disorders, and this gene is among the 21 human 

genes most associated with complex phenotypes, including not only BMI-related phenotypes 

such as height and sitting height ratio, but also psychiatric disorders, breast cancer and 

autoimmune diseases (http://gilderlanio.pythonanywhere.com/home, Fig. S6).
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Fine-mapping in young adults from Pelotas

While the low non-European admixture reduces the power to detect non-European 

associated variants in Pelotas, this is compensated by its larger size (n = 3628) in respect 

to the Salvador cohort. Also, as Pelotas is a birth cohort, all individuals have the same age, 

which limits nongenetic variance for BMI. For the entire Pelotas cohort, we identified one 

genomic region, 16q12.1, where African ancestry is negatively associated with BMI and, 

within this region, we found one significant SNP, rs76416629-G, 2 kb upstream of NOD2 
gene (Tables S6 and S7 and Fig. S5).

Furthermore, we identified a genomic region, 13q12.3, for which European ancestry is 

associated with lower values of BMI in females and, within this region, two significant 

SNPs (not in LD, r2 < 0.001). rs113214936-G in the intron of MTUS2, a gene previously 

associated with obesity-related traits [52]. Our most striking result is the association of the 

SNP rs114066381-A with a strong effect on BMI in females (beta = 3.99 ± 0.84 kg/m2 per 

allele, 95% CI: 2.32–5.65, p = 2.76 × 10−6, Table 2 and Fig. 2). This SNP is present in 

31 unrelated females (all heterozygous) that have a mean BMI of 27.99 kg/m2, which is 

larger than the mean BMI for the cohort females (23.61 kg/m2, p = 0.0008, Fig. 3). These 31 

females have a mean African ancestry of 35%, while the mean in unrelated females is 16%. 

Remarkably, the BMI of 25 males carrying the rs114066381-A allele (mean: 23.72 kg/m2) 

does not differ from the general population (mean: 23.81 kg/m2, p = 0.5397, Fig. 3).

rs114066381 is 2 kb from a CTCF-binding site [48], but no evidence of transcription 

regulation is shown by RNA-seq [50]. Besides, this genomic region contains binding sites 

for the histone-interacting proteins KAP1 and SETDB1, as reported by ChIP-seq data 

(HaploReg v4.1, [47], [50], Fig. S7). However, there is no evidence in the literature that the 

region acts as an enhancer in vivo. This genomic region is primate-specific, being absent 

from the genome of other vertebrates (Supplementary Methods, UCSC Genome Browser 

2013, [53], Figs. S8 and S9). The derived allele A is very rare in Europeans, but has 

frequencies of ~3% in West Africans (Table S6).

We confirmed the rs114066381 female-specific association using the fat mass index (a more 

direct measurement of adiposity), measured by DXA, 7 years after the measurement of BMI 

on the same individuals (beta = 2.21 kg of fat/m2 per allele, 95% CI: 0.55–3.88, p = 9× 10−3, 

Table 2). We replicated with 89% of power the association in older adult females from São 

Paulo (Brazil) (SABE cohort, [40]) and in the merged dataset from São Paulo and Bambuí 

(power = 99%, Table 2). We tested but did not observe significant association for the 

other cohorts tested (Table 2). However, a meta-analysis synthesizing the seven effect sizes 

showed a positive association between rs114066381-A allele and BMI in females (Fig. 4) 

both considering all effects together or only the effects obtained with admixed populations. 

Remarkably, while in Pelotas and São Paulo the frequency of rs114066381-A allele is 1.1%, 

its frequency increases in women with overweight (1.2%) and obesity (1.98%), and attains 

9% among women with morbid obesity. The same pattern is also observed in Bambuí and 

Soweto populations but not in Puerto Rico, in which the frequency of rs114066381-A allele 

is higher only for women with obesity (Table S10). We observed that the BMI distribution 

of Salvador and rural Africa are very different compared to the other populations, while in 

Pelotas, Bambuí, São Paulo, Puerto Rico, and Soweto, 27% of individuals have BMI greater 
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than 25 kg/m2, in Salvador and rural Africa, 11% of individuals fall in this category (and 

only 0.2% of individuals are morbidly obese in both cohorts, contrasting to more than 1% 

in the other populations). Moreover, 23% of the individuals of rural Africa are underweight 

(BMI < 18.5 kg/m2).

Power estimation and replication of previous GWAS hits

We estimated the statistical power to detect associations for 216 BMI GWAS catalog hits 

on the three EPIGEN cohorts, conditioning on the effect sizes reported in kg/m2 units 

on the GWAS Catalog (took as a population parameter), the BMI distribution, as well 

as the number of studied individuals and the allele frequencies in each of the EPIGEN 

cohorts. These 216 GWAS Catalog hits were selected because, in the context of the high 

heterogeneity of data stored in the GWAS Catalog, their effect sizes (linear regression 

coefficient) were unambiguously associated with a specific allele and were consistently 

reported in units of kg/m2. Out of the 216 hits, 189 were observed in adults, 4 in children, 

and 23 in both, in individuals with predominant European ancestry.

Based on the mean statistical power of the 216 GWAS Catalog hits, and assuming that these 

SNPs (and their regression coefficient) are part of the genetic architecture of BMI in the 

Brazilian cohorts, we would expect to observe 24 SNPs out of 216 (average power = 11%, 

but we observed 0 replications) associated in Salvador children, 22 SNPs (average power 

= 10%, we observed 20) in Pelotas young adults, and 15 SNPs (average power = 7%, and 

we observed 8) in Bambuí older adults (Fig. S10 and Table S11). Specifically, in Pelotas, 

we confirmed the association for the six FTO SNPs included in our analysis (rs9930333, 

rs62033400, rs8050136, rs3751812, rs1558902, and rs9939609).

Discussion

Leveraging admixture in Brazil, we used genome-wide data of three population-based 

cohorts to find loci associated with BMI through admixture mapping followed by fine-

mapping. We acknowledge that a limitation of our study is the relatively small number 

of individuals respect to GWAS standards in European or US populations; but this is a 

limitation shared by several studies, considering the difficulties of achieving larger sample 

sizes in admixed populations of low-medium income countries. Besides, the present study 

has important characteristics absent in most studies. First, it relies on population-based 

cohorts that better capture the phenotypic variation of populations, but are rarely considered 

in genetic studies [54, 55]. Second, it is one of the few studies that explore the genetic 

architecture of BMI in three different age stages: children, young adults, and older adults. 

Third, in the context of under-representation of non-European populations in GWAS, 

we analyzed populations of South America with African and Native American ancestry. 

Because none of the six new candidate SNPs to influence BMI reported in this study (Tables 

S7 and S9) are in LD with previous 389 GWAS Catalog hits of BMI (r2 < 0.022), we 

conclude that we have contributed to expand the catalog of SNPs of the global genetic 

architecture of BMI.
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Factors supporting the female-specific effect of rs114066381 on adiposity

First, we replicated the female-specific association in an independent admixed cohort from 

São Paulo and confirmed its association by a meta-analysis. Second, while our initial 

female-specific association with BMI and fat mass index is based on imputed genotypes, 

replication in the São Paulo cohort is based on whole-genome data. Third, in the discovery 

cohort, we not only observed a strong association with BMI, but also with fat mass index 

measured with DXA, a more direct measure of adiposity collected 7 years later than BMI in 

the same individuals. Fourth, rs114066381 is located in a potential regulatory region, which 

makes a biological role for this genomic region plausible. With respect to the pattern of LD, 

rs114066381 presents an r2 = 0.5 with three SNPs in LD with each other (r2 = 1) mapped 

in near regulatory regions (in sensu HaploREG v4.1, [47], Fig. S11). In Bambuí the r2 of 

rs114066381 with the same three SNPs varies between 0.3 and 0.7 (Fig. S11). rs114066381 

is ~300 kb from rs7335631 associated with “Fat distribution in HIV” [56], but there is no (r2 

< 0.001) LD between these two SNPs in any of our three Brazilian populations. Thus, our 

results suggest a specific role for rs114066381.

The discovery size effect for rs114066381 (beta = 3.99 ± 0.847 kg/m2) is one of the highest 

observed for BMI, considering both sexes. The size effects suggested by meta-analyses (Fig. 

4) are also high considering the distribution of BMI effect sizes. According with GWAS 

Catalog (October/2019), the range of estimated beta in kg/m2 for BMI hits is 0.013–4.119 

with an average of 0.054 kg/m2.

The female-specific association for rs114066381 is observed in the following context: out of 

833 hits reported in GWAS Catalog as associated with BMI with beta reported in kg/m2 

(October/2019) independently of sex, 229 are female-specific associations (beta range: 

0.009–0.484, beta mean: 0.025) and 134 male-specific [beta range: 0.013–0.095, beta mean: 

0.025]. Even if mean effect sizes are similar in men and women, the effect size distribution 

of women shows a tail of higher beta values, which suggests that higher effect sizes are 

more common in women than in men. Our finding is paradigmatic of this context: in adult 

females of Southern Brazil, rs114066381 alone explains a similar portion of the variance 

of BMI (r2 range for Pelotas, Bambuí, and São Paulo cohorts: 0.008–0.044) as the entire 

set of 97 GWAS hits recently reported [3]. Also, we can speculate that rs114066381 could 

be an example of a thrifty genotype [57, 58] associated with energy storage in females and 

pregnancy (but see [59] for a counterpoint of the thrifty theory).

Replication of other GWAS hits

We replicated 28 of the 216 associations reported for SNPs in previous GWAS, mostly 

performed in adults of European ancestry, with the Pelotas cohort presenting not only the 

largest rate of replication (20/216) (Table S11), but also a very good concordance between 

the observed (20) and expected (22) number of replications. This is consistent with: (1) 

the larger size of Pelotas cohort; (2) the relative lower SES of the Salvador cohort adds a 

layer of complexity to the definition of the genetic architecture of BMI, respect to GWAS in 

predominantly European populations with different socioeconomic background; (3) the age 

dependence of the genetic architecture of BMI, and the fact that most GWAS of BMI were 

performed in adults and in Pelotas BMI was also measured in young adults, while in the 
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Salvador and Bambuí cohorts, BMI was measured in children and older adults, respectively. 

Lasky-Su et al. [54] showed how age-dependent effects can be an important and misjudged 

cause of non-replication. These results exemplify how differences in age, SES and ancestry 

contribute to differences in the genetic architecture of BMI in particular and complex traits 

in general.

In conclusion, we performed three admixture mapping/fine-mapping for BMI and tested the 

association of GWAS Catalog hits in three Brazilian population-based cohorts. We provide 

six candidate SNPs associated with African or European ancestry that are associated with 

BMI. More importantly, our admixture/fine-mapping in Brazilians reveals a West African 

associated potential regulatory variant (rs114066381), with a female-specific effect on BMI, 

which seems to be particularly important for the development of morbid obesity. Altogether, 

our results show that the study of South American admixed populations, as well as other 

populations worldwide [60–62] are a source of novel non-European associated variants 

with considerable effect size that may explain in non-European populations an important 

portion of the current “missing heritability”. This statement can be generalized by the 

observation that ~25% of the variants discovered in GWASs of BMI were identified by 

studies with Latin Americans, although they represent only 11% of such studies, indicating 

the importance of increase the number and size of studies with these populations.

Code availability

Used bioinformatics pipelines are available in the EPIGEN-Brazil Project Scientific 

Workflow (http://www.ldgh.com.br/scientificworkflow, [34]).
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Admixture in the Brazilian cohorts, BMI distributions, and admixture mapping (AM) 
Manhattan plots with significant peaks.
A, B Manhattan plots showing AM peaks using linear regressions with PCAdmix local 

ancestry inferences. Consensus significant AM peaks for PCAdmix and RFMix local 

ancestry inferences are specified on each plot. A Manhattan Plot showing the AM results of 

African (left) and European (right) ancestry in Salvador cohort. African ancestry AM shows 

two positive significant peaks 10q22.1 (β = 0.36, p value = 3.21e−05) and 10q22.3 (β = 

0.36, p value = 7.87e−05). European AM ancestry analysis shows one negative associated 

peak 10q22.3 (β = −0.36, p value = 2.92e−05). B Manhattan plot showing the AM results 

of African (left) and European (right) ancestry in the Pelotas cohort. One peak in 16q12.1 

(β = −0.80, p value = 4.30e−06) was observed associated with African ancestry, and two 

associated peaks, 13q12.3 (β = −0.95, p value = 1.84e−05) and 20p12.1–2 (β = −1.05, 

p value = 1.79–06), with European ancestry in females. Results are presented as log10(p 
value) to the given ancestry of each window of 100 SNPs along the genome. Black line 
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in the Manhattan plots correspond to the genome-wide threshold p value estimated for the 

given ancestry and dataset (Table S5). The linear regression coefficient (β) and p values for 

all peaks correspond to the lead window, the genomic window with the most significant p 
value in the linear regression result. C Brazilian regions and continental individual ancestry 

bar plots for each cohort. D Histogram of Z-score adjusted by sex and age according 

to WHO guidelines in Salvador (top), histogram of BMI in Bambui (center) and Pelotas 

(bottom) cohorts.
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Fig. 2. LocusZoom plot of the fine-mapping of consensus significant admixture mapping peak in 
young adults from Pelotas at 13q12.3 associated with European ancestry in females performed 
using both genotyped and imputed SNPs ±1 Mb from target region (lead windows).
The SNP with the lowest p value is color coded in purple and labeled. The linkage 

disequilibrium between this SNP and the remaining nearby SNPs is indicated by the color 

coding according to r2 values based on Africans from 1000 Genomes Project (Color figure 

online).
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Fig. 3. Body mass index (BMI) in females and males’ adults from Pelotas cohort, according to 
their genotypes in the SNP rs114066381.
The increase of BMI associated with the rs114066381-A is observed in females (p value = 

0.0008), but not in males (p value = 0.5397).
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Fig. 4. Forest plots from the meta-analysis synthesizing association results between rs114066381 
and BMI from seven populations.
Effect size [95% confidence interval (CI)] in each individual study, subgroups of African 

populations and admixed populations, and combining all populations.
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