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Abstract: Human aging is a gradual and adaptive process characterized by a decrease in the homeo-
static response, leading to biochemical and molecular changes that are driven by hallmarks of aging,
such as oxidative stress (OxS), chronic inflammation, and telomere shortening. One of the diseases
associated with the hallmarks of aging, which has a great impact on functionality and quality of
life, is sarcopenia. However, the relationship between telomere length, sarcopenia, and age-related
mortality has not been extensively studied. Moderate physical exercise has been shown to have a
positive effect on sarcopenia, decreasing OxS and inflammation, and inducing protective effects on
telomeric DNA. This results in decreased DNA strand breaks, reduced OxS and IA, and activation
of repair pathways. Higher levels of physical activity are associated with an apparent increase in
telomere length. This review aims to present the current state of the art of knowledge on the effect of
physical exercise on telomeric maintenance and activation of repair mechanisms in sarcopenia.
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1. Introduction

Population aging has been called a “silver or gray tsunami”, considering the impli-
cations and challenges of the accelerated increase in the population of older adults in the
world [1,2]. In this context, the World Health Organization (WHO) has reported the follow-
ing data: “(i) Between 2015 and 2050, the proportion of the world’s population over 60 years
will nearly double from 12% to 22%; (ii) by 2020, the number of people aged 60 years and
older will outnumber children younger than 5 years; (iii) in 2050, 80% of older people will
be living in low- and middle-income countries; (iv) the pace of population aging is much
faster than in the past; and (v) all countries face major challenges to ensure that their health
and social systems are ready to make the most of this demographic shift”. In this regard,
the challenge implies the higher prevalence and incidence of chronic non-communicable
diseases (NCDs) [3].

López-Otín et al. (2013) published a review on “the hallmarks of aging” proposing
nine mechanisms as the biochemical and molecular processes that cause aging: (i) Ge-
nomic instability; (ii) telomere attrition; (iii) epigenetic alterations; (iv) loss of proteostasis;
(v) deregulated nutrient-sensing; (vi) mitochondrial dysfunction; (vii) cellular senescence;
(viii) stem cell exhaustion; and (ix) altered intercellular communication [4]. These biochem-
ical and molecular alterations significantly increase the risk of presenting NCDs, among
which sarcopenia stands out. Similarly, it has been shown that physical exercise training
has an antioxidant and anti-inflammatory effect, and protects against telomere shortening
during aging [5]. In this context, this review aims to present the current state-of-the-art of
knowledge on the effect of physical exercise on telomeric maintenance and activation of
repair mechanisms in sarcopenia.
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2. Human Aging

There is no consensus on the definition of human aging. Among various attempts to
define it, biological aging has received the most attention and is supported by numerous
aging theories. It is estimated that there are over 300 of these theories [6]. Nevertheless,
Troen (2003) points out five characteristics common to aging in mammals: (i) Increased
mortality after adulthood. An exponential growth in mortality has been described with
advancing age after the reproductive stage. (ii) Changes in tissue composition with age.
Decrease in muscle and bone mass with aging, increase in adipose tissue, development
of lipofuscin deposits, and crosslinking with structural proteins, such as collagen, due to
processes that occur in aging, such as oxidation and glycosylation, and increased advanced
glycation end products (AGEs). (iii) Progressive decrease in physiological capacity. It has
been documented that there are many physiological changes with increasing age after
adulthood, even in the absence of NCDs. (iv) Reduction in adaptation to environmental
stimuli. With aging, there is a gradual decline in the ability to maintain homeostasis.
(v) Increased vulnerability to disease [7]. Changes related to aging affect the cell function,
leading to tissue and organ dysfunction, which ultimately triggers systemic diseases [8].

Similarly, Lemoine (2020) in a review and analysis of the definition of biological
aging, has pointed out five characteristics commonly used in biogerontology to define
aging: (i) Structural damage; (ii) functional decline; (iii) depletion of a reserve required to
compensate for the decline; (iv) typical phenotypic changes or their cause; and (v) increase
in the probability of death (or disease). Notably, any definition of aging must include
some of these characteristics. Moreover, Cohen et al. (2020) demonstrated that there is no
consensus on the definition of aging [9,10]. In this context, our research group has defined
human aging as a “gradual and adaptive process characterized by a relative decrease in
the homeostatic response, due to morphological, physiological, biochemical, psychological,
and social factors, fostered by changes inherent to aging” [11].

It is estimated that by 2030, one in six people around the world will be 60 years or
older [3]. Therefore, efficient socio-health care and the fostering of self-care are needed
to improve the quality of life in this age group, since aging is associated with chronic-
degenerative diseases that can occur simultaneously, increasing morbidity and ultimately
death [4,12]. The deteriorated physiological function of the organism in aging is a risk factor
for certain diseases, such as cancer, type 2 diabetes mellitus (T2DM), cardiovascular disor-
ders, and neurodegenerative diseases, while in terms of skeletal muscle, the progressive
loss of mass and strength could lead to sarcopenia [4,13].

3. Oxidative Stress

In aerobic and aerotolerant organisms, there is a balance between the production of
reactive oxygen species (ROS) and the antioxidant defense system that maintains home-
ostasis, thus regulating the intracellular redox state. Therefore, oxidative stress (OxS) arises
when there is an imbalance between the formation of oxidants and antioxidants [14–16].

OxS leads to structural lesions in lipids, proteins, and nucleic acids. Damage to the
DNA is of great importance, since it serves as a permanent copy of the genome, and changes
in its structure can impact the following generations [17–19].

Among the main damages generated in the DNA by ROS are the single-strand breaks
(SSB) and double-strand breaks (DSB), as well as the formation of the adduct 8-hydroxy-2′-
deoxyguanosine (8-OHdG) that causes the production of transversions (replacement of a
purine with a pyrimidine or vice versa), which is highly related to different types of cancer.
One of the DNA regions that present the greatest susceptibility to the suffering of damage
by OxS is the telomeric region, due to its high content of guanine waste [20,21].

In this regard, guanine presents the lowest redox potential compared to the other DNA
bases [22], and therefore, is more susceptible to OxS damage.

Similarly, the oxidation of lipids and proteins can generate intermediaries that could
react with the DNA [23]. In the case of lipid decomposition, one of the final products of
lipid peroxidation is the malondialdehyde (MDA), which forms the following adducts:
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Deoxyadenosine (M1dA), deoxycytidine (M1dC), and deoxyguanosine (M1dG) [24]. Mean-
while, as protein oxidation products, carbonyl groups, such as aldehydes and ketones,
are generated [25].

Oxidative Stress and Aging

The OxS theory of aging suggests that the functional decay associated with age is due
to the progressive and irreversible accumulation of oxidative damage in biomolecules by
reactive oxygen and nitrogen species (RONS) [26,27], which have a negative impact on the
physiological function, development of diseases, and life expectancy [28].

Studies carried out in humans consider that age is a factor associated with the increase
in OxS, evidenced by an increase in lipid peroxides, decrease in total antioxidant state in
plasma, by the glutathione peroxidase (GPx) activity, and with no apparent changes in
superoxide dismutase (SOD) levels in peripheral blood erythrocytes [29].

Similarly, studies have been carried out in mammals as well as in other species, and
the findings obtained coincide, observing positive associations between the concentration
of antioxidants and chronological life, while the amount of oxidative damage to the DNA
is negatively associated with a useful life [30,31]. Similarly, two common characteristics
have been identified in long-lived species: A low production of free radicals and a high
repair rate of the damaged DNA [32].

Additionally, in aging experimental models, an increase in oxidized proteins in hepato-
cytes has been observed, which is possibly due to the fact that the proteases which degrade
them have a lower activity, or are defective [33].

It has been proposed that the increase in OxS accelerates the development of certain
pathologies with age (cardiovascular, renal, neurodegenerative, frailty, and sarcopenia),
while the decrease in OxS retards them. This may be due to the fact that OxS exerts a very
important role in the development of these diseases [26,34].

Both frailty and sarcopenia are closely related, since sarcopenia is an important com-
ponent of frailty syndrome and both are considered predictors of morbidity, disability, and
death in the elderly [35].

4. Sarcopenia

Sarcopenia is a progressive skeletal muscle disorder (essential for functions, such as
postural support, breathing, thermogenesis, and movements), which is represented by the
loss of mass and muscle strength [36,37], as well as a decrease in the number of motor units
and myofibrillar components, denervation, and atrophy for disuse associated with age [38].
Some factors that can accelerate its progression are malnutrition, chronic diseases, and
physical inactivity [39].

This geriatric syndrome is associated with a greater risk of falls, disability, physical
frailty (strength, physiological function, and decreased resistance), functional deterioration,
greater dependence, and/or mortality [40–43]. In addition, the reduction in the regenerative
capacity of muscle fibers is due to the loss of satellite cells (muscle stem cells) [38]. Under
normal conditions, these types of cells are activated by stimuli as growth signals that ensure
homeostasis, in order to repair the integrity and function of fibers [36].

In 2016, sarcopenia was recognized as a disease [44]. In this context, the prevalence
of this disease in the world is 10%, although it has been pointed out that it can reach up
to 30% in people over 60 years [45,46]. Similarly, it is estimated that after the fifth decade,
muscle mass decreases between 1% and 2% annually and strength decreases by 3% from
60 years of age. As a consequence of the denervation of motor units and conversion of
type II muscle fibers, rapid contraction, which allows for calcium storage, facilitating nerve
conduction in fibers type I, and slow contraction, which hydrolyzes ATP slowly to contract,
cause alterations in muscle strength [47,48].

Generally, exercise interventions have been shown to significantly improve grip
strength, knee extension strength, lower extremity muscle mass, gait speed, and functional
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mobility among older adults with sarcopenia [49]. Moreover, physical exercise coupled
with an adequate diet are considered as the main roads to the prevention of sarcopenia.

On the other hand, the loss of skeletal muscle and the accumulation of intramuscular
fat mass are associated with a wide variety of pathologies through a combination of
factors, which include inactivity, chronic inflammation, mitochondrial dysfunction, insulin
resistance, and OxS (Figure 1) [50].
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Oxidative Stress and Sarcopenia

In sarcopenia, underlying mechanisms, such as OxS and chronic inflammation, par-
ticipate in age-related muscle atrophy. In the case of OxS, it is well established that the
oxidation of mitochondrial proteins increases with age, and in turn, is negatively associated
with muscle strength and malfunction of skeletal muscle [51].

In sarcopenic patients, an imbalance in the redox state has been documented, due to an
increase in the oxidized glutathione ratio/reduced glutathione (GSSG/GSH) in peripheral
blood and MDA/HNE adduct formation in plasma, which are both correlated with a
greater predisposition to cardiovascular and cancer risk [52,53]. Similarly, they have been
considered as possible mortality predictors through the decrease in pre-albumin, albumin,
and transferrin, and increase in serum carbonylated proteins [54].

In regard to the antioxidant protection mechanisms, a decrease in catalase activity
(CAT) has been evidenced with no apparent changes in the activity of SOD and GPx
in plasma [55].

Advanced oxidation protein products (AOPP) and total radical trapping antioxidant
parameter (TRAP) were associated with sarcopenia in chronic obstructive pulmonary
disease (COPD) [56], whereas a decrease in glutathione reductase is associated with a risk
of death and fewer days of survival in frail sarcopenic patients [57].

Meanwhile, in experimental models, the transverse area of myocytes and the weight
of the muscle are reduced. In addition, the levels of the OxS markers, such as the 4-hydroxy-
2-nonenal and 3-nitrotyrosine are higher in aged mice, compared to the young [58].

To date, two mitochondrial fractions have been identified that differ according to their
location and the way they participate in the pathogenesis of sarcopenia. Subsarcolemmal
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mitochondria (SS) isolated from old muscle are attributed to the greater production of ROS,
while intermyofibrillar mitochondria (IMF) are more likely to induce apoptosis under the
stimuli of cell death and ROS, causing the atrophy of muscle fibers to be muscular [59,60].
Similarly, it has been documented that the decrease in the number of copies of mitochon-
drial DNA (mtDNA) in the aged skeletal muscle can be associated with sarcopenia. The
dysfunction that arises from the oxidative damage to the mtDNA causes a decrease in
important proteins for the transport of electrons, creating a vicious circle between ROS and
mitochondrial deregulation, which finally leads to cell death by apoptosis [59,61–63]. For
example, the levels of apoptotic markers increase during aging in normal mice, and the
accumulation of mtDNA mutations may promote apoptosis, acting as a driving mechanism
for aging. Increased cleavage of caspase-3, an enzyme responsible for the biochemical and
morphological changes that occur in apoptotic cells, is a characteristic of skeletal muscle
during normal aging and results in the loss of muscle fibers [64,65].

5. Inflammation

Inflammation is considered as a mechanism for protection against infections, tissue in-
juries, and microorganisms. These stressors can go unnoticed if they are not resolved by an
efficient anti-inflammatory response, which can reverse the damage and restore homeosta-
sis, known as acute inflammation. However, if inflammation is excessive, it can encourage
homeostatic changes and be harmful, progressing to chronic inflammation [66,67].

Inflammatory markers are involved in various pathological states, such as cardio-
vascular and neurodegenerative diseases, cancer, T2DM, obesity, aging [67–70], sarcope-
nia, dementia, etc. This can lead to disability, frailty, and death. Some possible mecha-
nisms associated with inflammation have been established, which are obesity, senescence,
and OxS [71].

A characteristic of chronic inflammation is the increase in cytokines, which make the
immune system work continuously but not in an effective way [72].

Anti-inflammatory cytokines (IL-4, IL-10) are immunoregulatory molecules that con-
trol the response of pro-inflammatory cytokines (IL-1, tumor-alpha necrosis factor (TNF-α)
that act in synergy) [73,74].

Other homeostatic responses of the body against damage is the production of acute
phase proteins, such as C-reactive protein (CRP), ceruloplasmin, fibrinogen, etc., that play
an important role in both the acute and chronic inflammatory process. This type of protein
is an effective tool to identify the intensity of the inflammatory process and is used for
diagnostic purposes [75].

5.1. Inflammation and Sarcopenia

A mechanism underlying aging is the elevation of the surrounding levels of pro-
inflammatory cytokines, known as chronic low-grade inflammation, where there is an
increase in the TNF-α factor, interleukin-1β (IL-1β), and interleukin 6 (IL-6) [76–78].

This type of inflammation favors the loss of strength, muscle mass, functionality,
anabolic resistance (decreased sensitivity of skeletal muscle before anabolic stimuli) [79,80],
and cellular senescence, with the acquisition of senescence-associated secretory phenotype
(SASP) being associated with frailty [81]. There is strong evidence that links sarcopenia to
inflammation, due to the increase in biomarkers, such as adiponectin, CRP, and erythrocyte
sedimentation rate [81–83].

Additionally, in a meta-analysis, the increase in CRP was evidenced, without apparent
change in TNF-α and IL-6 [84]. There are contradictory data regarding these last two
cytokines, since other studies indicate that patients with sarcopenic obesity (simultaneous
presence of sarcopenia and excess adiposity) show high levels of IL-6 and additional
inflammatory loads with the presence of adipokines [85]. In a similar study, an increase in
IL-6 and TNF-α was associated with poor exercise practice and nutritional habits in people
with sarcopenia [86]. Moreover, an increase in interleukin-10 (IL-10, anti-inflammatory
cytokine) was observed, probably as a compensatory mechanism in sarcopenic people [87].
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In this context, it has been noted that the systemic, chronic, subclinical, and low-grade
inflammatory process associated with aging, known as inflammation, may be the most sig-
nificant risk factor for the development and progression of the most common age-related dis-
eases, frailty, and ultimately, death. On the other hand, adopting a healthy lifestyle can have
an epigenetic impact and enhance anti-inflammatory and anti-fragility mechanisms [88].

5.2. Sarcopenic Obesity

Sarcopenic obesity (SO) occurs when an individual experiences both excessive body fat
and low muscle mass and function. This combined condition increases the risk of functional
impairment, development of metabolic diseases, and death compared to only one of these
factors. The development of SO is linked to physical inactivity, insulin resistance, changes in
hormone production, and overconsumption of energy [89,90]. One of the factors involved
in the pathophysiology of SO is OxS, through an imbalance in the regulation of muscle
mass (increased catabolism and decreased muscle anabolism), stress of the endoplasmic
reticulum (which favors the overactivation of unfolded proteins, aggregation, and decrease
in protein synthesis), as well as mitochondrial dysfunction (decreased ability to eliminate
defective mitochondria and increased mtDNA damage). Similarly, OxS increases the
activity of the ubiquitin-proteasome system (UPS) and activates caspases, impacting the
regenerative function of satellite cells [91].

Elevated levels of fibrinogen and pro-inflammatory markers, such as IL-1, IL-6, CRP,
and TNF-α are commonly observed in individuals with SO [92,93]. The cytokine IL-1 is
involved in muscle catabolism via UPS, which increases the expression of atrogin-1 (an
enzyme that is significantly expressed in muscle atrophy) and reduces myofibrillar proteins.
On the other hand, low levels of IL-6 promote the turnover of muscle proteins, while high
levels lead to skeletal muscle wasting. The increase in CRP contributes to a decrease in the
proliferation rate of myoblasts. TNF-α induces transcriptional activation of nuclear factor-
κB (NF-κB), generating ubiquitin-dependent muscle proteolysis. Overall, these cytokines
contribute to muscle degradation by causing increased muscle catabolism, decreased
muscle protein synthesis, and chronic systemic inflammation, leading to the loss of muscle
mass and function [94–100].

6. Telomeres

Telomeres are heterochromatic structures located at the ends of the chromosomes,
and are integrated by TTAGGG sequences in double-strand DNA tandem, with around
2 to 20 kb and 50 to 200 bases in the monocatenary outgoing strand. These sequences
are protected by a specialized protein complex, called “shelterin”, which is comprised of
six proteins that are assembled along the final portion of telomeres, known as follows:
Telomeric repeat-binding factor 1 and 2 (TRF1 and TRF2), protection of telomeres protein
(POT1), TRF1-interacting nuclear factor 2 (TIN2), adrenocortical dysplasia protein homolog
(TPP1), and repressor activator protein 1 (RAP1) [101,102].

In addition to protection, another function of shelterin is maintenance, which is
the prevention of DNA from recognition as a damaged DSB site by the kinases ataxia-
telangiectasia mutated (ATM), as well as ataxia telangiectasia and rad3-related protein
(ATR). Similarly, it recruits the enzyme telomerase [101–103].

TRF1 and TRF2 proteins are united directly to double-chain telomeric repetitions
in the form of homodimers with the TRF homology subdomain (TRFH) [104]. TRF1 is
associated with other proteins, such as TIN2, POT1-interacting protein 1 (PIP1), and POT1,
and interacts with TIN2 in the nucleus and the chromosomes in the metaphase. In turn,
TIN2 interacts with TRF2. Therefore, a defective association of this protein with the factors
of binding to telomeric repeats induces a DNA damage response (DDR) and POT1, and
interacts with TIN2 in the nucleus and the chromosomes in the metaphase, destabilizing its
union in the telomeric region [105,106].

Another function of TRF1 is to recruit a protein necessary for the regulation of telom-
eres in human cells called POT1, by joining the outgoing single strand that is 3′-rich in
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guanines [107]. Another protein that acts negatively to regulate the length of telomeres and
interacts with POT1 and TIN2 is the PIP1 protein. It has been observed that the inhibition
of PIP1 and POT1 through infection with the short hairpin RNA (shRNA) viral vector leads
to the elongation of telomeres [108,109].

On the other hand, TRF1 binds to the tankyrase protein (TNKS) and accepts the
adenosine diphosphate (ADP)-ribosylation, which is catalyzed by the tankyrase-poly (ADP-
ribose) polymerase complex (TANKs-PARP).

RAP1 telomeric in mammals is associated exclusively with TRF2. In addition, beyond
its function for the maintenance of telomeres in the nucleus, it has various pleiotropic
functions in different physiological and pathological conditions associated with metabolism,
inflammation, and OxS, which is its main function to protect the ends of the chromosomes
of degradation, as well as the unwanted DNA repairs and chromosomal mergers [110–112].
On the other hand, it has been observed that TRF2 levels are decreased as neonatal human
fibroblasts grow naturally. Similarly, RAP1 decreases but to a lesser extent, which occurs
only in the nuclear fraction of old fibroblasts subjected to OxS with de hydrogen peroxide
(H2O2) and not in the cytoplasmic. This is due to the functions of RAP1, as a positive
regulator of the kappa-right-chain-enhancer of activated B cells (NFҡB) [113,114].

In general, it has been observed that when acute OxS occurs in the telomeric region,
there is a decrease in TRF1 and TRF2 that could be contributing to its erosion [115]. The
function of distinguishing between the natural extremes of the chromosomes with the
DSB is regulated mainly by TRF2 and POT1, which prevents the cascades from damage
signaling to the repair means of DNA and DSB [116]. T loop formation by TRF2 kidnaps the
3′-end of the chromosomes, which prevents the recognition of the DDR [117]. In addition,
if the DDR is activated, it causes the arrest of the cell cycle until the damage is repaired and
if the response persists, it can induce senescence [118].

6.1. Telomerase

The telomerase was biochemically identified by Greider and Blackburn, who showed
that the synthesis of the enzyme was based on an RNA that serves as a guide for the
polymerization of telomeric DNA sequences [119,120]. This is attributed to the elongation
of the telomeres with the help of the TRF1 protein, which recruits TIN2 and acts as the
damping mechanism for the elongation of the same protein [105,106]. This occurs through
ribosylation-ADP (a post-translational modification that involves the addition of one or
more ADP-ribose) of TRF1, reducing its ability to join the telomeric DNA, and in turn, the
above allows for telomerase to extend telomeres and life is extended [121–123].

Telomerase is a polymerase DNA that extends the 3′-end of the chromosome by synthe-
sis of multiple telomeric repetitions. Moreover, it is the only ribonucleoprotein that contains
RNA reverse transcriptase (TERT) and human telomerase RNA component (TERC) [124].
Ribonucleoprotein TERT is active in progenitor and carcinogenic cells, although it is also
located in somatic cells, where its activity is very low or null [125]. In addition, telomerase
is constituted by some associated proteins for proper functioning, such as dyskerin (DKC1),
telomerase Cajal body protein (TCAB1), and ribonucleoproteins: H/ACA ribonucleopro-
tein complex subunit 3 (NOP10), H/ACA ribonucleoprotein complex subunit 2 (NHP2),
and H/ACA ribonucleoprotein complex subunit 1 (GAR1).

The loss of function of these proteins has been associated with different patterns
of inheritance, such as ribosomal disease (impaired ribosome biogenesis and function),
including congenital dyskeratosis (caused by poor maintenance of the telomeric length
resulting in short telomeres), cartilage hair hypoplasia-anauxetic dysplasia (characterized
by short limbs, sparse hypoplastic hair, defective T-cell immunity, hypoplastic anemia,
and an increased risk in developing malignancies) [126,127]. The silencing of DKC1 and
NOP10 decreases the activity of telomerase with the increased GSSG/GSH ratio, protein
carbonylation, and high expression of manganese SOD (MnSOD), suggesting that the
loss of the functions of DKC1 and NOP10 induces OxS independently to the telomere
shortening [128] (Figure 2). Similarly, DKC1 mutations increase OxS and DDR [129]. There
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is scientific evidence, which sustains that during each cell division and due to the low
expression of the telomerase enzyme, telomeres are gradually shortened [130,131]. It has
been determined that during each replication round, telomeres are shortened on average
between 30 and 200 base pairs, where only 10 base pairs are lost due to the problem of final
replication, while the rest is as a consequence of OxS in somatic cells [132,133]. In addition,
the age-dependent telomere shortening can be decelerated by suppressing intracellular
OxS or by DNA repair mechanisms [134].
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Figure 2. Representation of the telomerase. Telomerase is a DNA polymerase responsible for extend-
ing the 3′-end of chromosomes. It is composed of TERT reverse transcriptase, TERC telomeric RNA,
and associated proteins, including DCK1, NOP10, NHP2, and GAR1. The poly ADP-ribosylation
of TRF1 stimulates telomere elongation, whereas a loss of function of the associated proteins can
lead to telomere shortening. Silencing of DCK1 and NOP10 can also cause oxidative stress (OxS).
Key components of sheltering and telomerase complex are described as follows: TRF1 (telomeric
repeat-binding factor 1); TRF2 (telomeric repeat-binding factor 2); POT1 (protection of telomeres
protein); PIP1 (POT1-interacting protein 1); TIN2 (TRF1-interacting nuclear factor 2); RAP1 (repressor
activator protein 1); TERC (human telomerase RNA component); TCAB1 (telomerase Cajal body
protein); NOP10 (H/ACA ribonucleoprotein complex subunit 3); NHP2 (H/ACA ribonucleoprotein
complex subunit 2); GAR1 (H/ACA ribonucleoprotein complex subunit 1); DCK1 (dyskerin); and
TNKS (tankyrase protein).

6.2. Sarcopenia and Telomeric Length

There is a causal relationship between telomeric length, loss of skeletal muscle mass,
frailty, and OxS in older adults with multiple morbidities and sarcopenia [57,135]. However,
it has been observed that shorter telomeric lengths are associated with cardiovascular
disorders (blood pressure, aging, and coronary arteries disease), T2DM, OxS damage, and
inflammation [136]. In an observational study carried out over 12 months, OxS markers,
total antioxidant capacity, telomeric length, and apoptosis in peripheral blood samples of
poly-pathological patients (heart disease, autoimmune, pulmonary, neurological, etc.) were
evaluated with frailty and/or sarcopenia with an average age of 77.3 years, where it was
observed that there was a significant decrease in total antioxidant capacity and telomeric
length, with an increase in SOD, without evidence of apoptosis compared to non-sarcopenic
or fragile patients [135] (Table 1).
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Table 1. Association of telomeric length and sarcopenia.

Population
Sarcopenia Determinations Objective Findings Ref.

142 persons aged
≥65 years.

The presence of sarcopenia
was established according to

the EWGSOP.
Whole-body fat-free mass

was measured by BIA.
The frailty status of

participants was assessed
according to both Fried’s

criteria and the elative
telomere length of qRT-PCR.

Determine whether PBMC
telomeres obtained from
sarcopenic older persons
were shorter relative to
non-sarcopenic peers.

PBMC telomere length,
expressed as T/S values, is
shorter in older outpatients

with sarcopenia. The
cross-sectional assessment of
PBMC telomere length is not
sufficient for capturing the
complex, multidimensional

syndrome of frailty.

[135]

The stratified sample
includes a total of

976 males and
1030 females,
in order that

approximately 33%
would each be aged

65–69, 70–74, and
75 years and older.

Diagnosis of sarcopenia.
The T/S ratio was assessed

by qRT-PCR.

To examine the association
between telomeric length

and diagnosis of sarcopenia
based on an appendicular

skeletal mass index (ASMI),
grip strength, walking speed,

and chair sit-to-stand in a
5-year prospective study.

Longer telomere length was
associated with a slower

decline in grip strength in
Chinese older persons.

[137]

36 sarcopenic
people and

36 healthy people. Older
adults (age ≥ 65 years).

Anthropometric
measurement.
Grip strength.

Measurement of telomere
length analysis was
performed by qPCR.
RNA isolation and

quantification of TERRA.

To explore the impact of
sarcopenia on telomere

length and TERRA
expression, and changes
following exercise and

nutrition intervention in the
sarcopenic population.

No significant difference in
telomere length between

control subjects and
participants with sarcopenia.

[138]

Included 444 patients
with an average age of

77.3 ± 8.4 years.

Determination of sarcopenia.
Determination of frailty by
meeting three or more of

Fried’s criteria.
OxS markers.

Telomere length.
DNA fragmentation.

To explore the main markers
of OxS, telomere length, and

apoptosis parameters in a
multicenter cohort of

patients with multimorbidity
in a hospital.

OxS markers and telomere
length were enhanced and
shortened, respectively, in

blood samples of
poly-pathological patients

with sarcopenia and/or
frailty. Both were associated

with decreased survival.

[57]

20,400 older adults
(average age:

67.79 ± 4.9 years,
53% male).

Baseline leukocyte telomere
length was measured using a

multiplex qPCR technique
and expressed as a T/S ratio.

Examined the association
between leukocyte telomere
length and osteosarcopenia.

Telomere length was not
associated with

osteosarcopenia; however, a
slow walking pace

was associated.

[139]

5397 individuals;
(average age: 44.7 years,

51.3% male).

Body composition evaluation
using dual-energy X-ray
absorptiometry (DXA).

Evaluation of whole blood
telomeric length by qPCR.
Average telomere length is
expressed as the ratio T/S.

Examine the relationship
between sarcopenic obesity
(SO) and telomere length
(TL) in a representative

adult population.

Sarcopenia and obesity may
act synergistically to
shorten telomeres.

[140]

EWGSOP: European working group on sarcopenia in older people; BIA: Bioelectrical impedance analy-
sis; qRT-PCR: Quantitative real-time polymerase chain reaction; PBMC: Peripheral blood mononuclear cells;
T/S: Telomere length/single copy gene; ASMI: Appendiceal skeletal mass index; TERRA: Telomeric repeat-
containing RNA; OxS: Oxidative stress.

In a prospective study (follow-up for 5 years) conducted in older adults, no association
between the telomeric length and the diagnosis of sarcopenia was observed; however,
longer telomeric lengths are associated with greater grip strength [137]. Moreover, it has
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been observed that in mononuclear cells of the peripheral blood of people with sarcopenia,
the telomeric length is shorter compared to non-sarcopenic people [135]. On the other hand,
middle-aged people (44.7 years) with sarcopenic obesity expressed high adiposity, low
muscle mass, and significantly shorter telomeres, as compared to the reference group [140].
Molecular studies indicate that the TERRA expression (long non-coding RNA consisting
of UUAGGG repetitions and telomerase regulator) was lower in sarcopenic participants
compared to non-sarcopenic, while the exercise-nutrition intervention increased the TERRA
expression, although this did not significantly increase the length of telomeres in sarcopenic
people [138,141]. On the other hand, in experimental models, it has been shown that
the absence of an enzyme that reduces peroxides with a preserved cysteine residue and
protects OxS cells called peroxirredoxin-6 (PRDX6) (Prdx6−/− mice), induced T2DM,
dramatically reduced the telomeric length with increased activity of senescence-associated
beta-galactosidase (SA-β-gal) (biomarker for aging and senescent cells), and decreased
nuclear-cytoplasmic transport of SIRT1 (important enzyme for the replacement of defective
mitochondria). Moreover, it has been observed that the absence of PRDX6 results in
decreased grip strength and reduction in the cross-sectional area of muscle fibers compared
to the control group. However, in this study, sarcopenia may be due to the consequence of
the T2DM and not to the normal aging process, which would indicate metabolic sarcopenia
and may be associated with the increase in OxS with the loss of PRDX6 [142–149].

In regard to the inflammatory process, it has been observed that an increase in TNF-α,
IL-1β, IL-6, and CRP can contribute to telomeric attrition [76–79] through an inflammatory
waterfall activated by NF-κB, which in turn, regulates telomerase expression, as well as the
protein belonging to the shelterin RAP1 complex [114].

7. Base Excision Repair (BER)

It is estimated that the number of injuries suffered by a normal cell per day is
1000 molecules of 8-OHdG or 8-oxodG, and the base excision repair (BER) is one of the most
important roads involved in correcting oxidative lesions to the DNA (Table 2) [150,151].
This repair route is subdivided into two pathways: The short patch pathway and the long
patch pathway, which differ in the number of nucleotides that are split and the number
of enzymes that participate in them. On the short patch pathway, only a nucleotide is
removed and incorporated, while in the long patch pathway, from two to six nucleotides
are incorporated. The short route begins when the damaged DNA is recognized by a DNA
glycosylase, which splits the N-glycosyl link that joins the nitrogenous base with the back-
bone of the deoxyribose phosphate. This split generates an abasic/apurinic/apyrimidinic
or AP site, which is processed by an AP endonuclease. The AP endonuclease cuts the
phosphodiester bond at the 5‘-end of the AP site, thus generating an SSB, which has a free
hydroxyl at the 3′-end and a phosphate group at the 5′-end to deoxyribose sugar [152]. It is
a requirement that the SSB has the 3′-hydroxyl and 5′-phosphate ends, in order that the
polymerase DNA incorporates the corresponding nucleotide, and thus the link can seal the
loose ends of the DNA. The long patch pathway requires a greater amount of enzymes to
finish the repair, such as the proliferating cell nuclear antigen (PCNA), which serves as a
scaffolding protein for polymerase, the DNA ligase, and the exonuclease FEN 1. The latter
was in charge of removing the strand that was hanging when the DNA polymerase added
the nucleotides to the broken strand. It has been observed that cells which lack the enzyme
that eliminates the adduct 8-oxodG (OGG1) increase cell fragility without compromising
its survival [153].
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Table 2. Repair mechanisms of BER and NER.

Causing Damage

ROS, alkylating agents, and UV UV and ROS

Injuries

8-OHdG, 8-oxodG, alkylated bases, or
mismatch bases

Pyrimidine dimers
bulky lesions

BER NER

Recognition of the damage Recognition of the damage

Short patch pathway Long patch pathway GG TC

Bifunctional
glycosylases

OGG1, NTH, NEIL1,
NEIL2, and NEIL3

Monofunctional
glycosylases

UNG, MUTY, MBD4,
MPG, and SMUG

Complex Cul4-DDB
(XPE):

RBX1, Cul4, DDB1,
DDB2

Complex XPC:
XPC, HR23B, CETN2

Complex Cul4-CSA:
RBX1, Cul4, DDB1,

CSA, CSB

Chain excision sugar removal Relaxed DNA

APE1 and APE2 APE1 and APE2

Complex TFIIH:
CDK7, XPB, TFIIH1,

MNAT1, XPD,
TFIIH2, CCNH,
TTDA, TFIIH3,

TFIIH4,

XPG, XPA, and RPA

Synthesis Incision, excision, and synthesis of DNA
Incision: XPF and ERCC1

Excision: PCNA, RFC
Synthesis: Polδ and Polε

Dpol, XRCC1, Lig3 Dpol, PCNA, Polδ,
Polβ, Polε, Fen1

Ligation
Lig1

ROS: Reactive oxygen species; BER: OGG1: 8-oxoguanina DNA glicosilasa; NTH: Nth-like DNA glycosylase 1;
NEIL1: Nei-like DNA glycosylase 1; NEIL2: Nei-like DNA glycosylase 2; NEIL3: Nei-like DNA glycosylase 3;
UNG: Uracil DNA glycosylase; MUTY: MutY DNA glycosylase; MBD4: Methyl-CpG binding domain 4 DNA
glycosylase; MPG: N-methylpurine DNA glycosylase; SMUG: Single-strand-selective monofunctional uracil-DNA
glycosylase 1; APE 1 and 2: Apurinic/apyrimidinic endonuclease 1 and 2; Dpol: Polimerase DNA; XRCC1: X-ray
repair cross complementing 1; Lig3: DNA ligase 3; PCNA: Proliferating cell nuclear antigen; Polδ, Polβ, Polε: DNA
polimerase; FEN1: Flap endonuclease-1; NER: RBX1: Ubiquitin-protein ligase RBX1; CUL4: Cullin 4; DDB1: DNA
damage-binding protein 1; DDB2: DNA damage-binding protein 2; XPC: Complex subunit, DNA damage
recognition and repair factor; HR23B: Homolog B, nucleotide excision repair protein; CETN2: Centrin-2; RBX1: E3
ubiquitin-protein ligase RBX1; CSA: DNA excision repair protein ERCC-8; CSB: DNA excision repair protein
ERCC-6; CDK7: Cyclin-dependent kinase 7; XPB: DNA excision repair protein ERCC-3; TFII1–4: Transcription
initiation factor TFIIH subunit 1–4; MNAT1: CDK-activating kinase assembly factor MAT1; CCNH: Cyclin H;
TTDA: TFIIH basal transcription factor complex TTD-A subunit; XPG: DNA excision repair protein ERCC-5;
XPA: DNA-repair protein complementing XPA cells; RPA: Replication factor A1; XPF: DNA excision repair protein
ERCC-4; ERCC1: DNA excision repair protein ERCC-1; RFC: Replication factor C subunit 1. Database Kyoto
Encyclopedia of Genes and Genomes (KEEG).

7.1. Nucleotide Excision Repair (NER)

NER is an essential method to repair bulky bases damaged in the DNA (Table 2), such as
adducts 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine
(NNN) [154]. In this route, the steps for reparation are as follows: (i) Recognition of
the damage; (ii) double incision (3‘ and 5′) of the damaged monocatenary fragment
(24–32 nucleotides); (iii) release of the damaged oligomer; (iv) synthesis to fill the hole; and
(v) sealing of the loose ends of the DNA. NER is a repair system capable of eliminating
injuries that distort DNA, such as UV-induced photoproducts, cyclobutane pyrimidine
dimers, as well as pyrimidine photoproduct 6–4 pyrimidine and DNA adducts induced by
chemicals as aflatoxins [155–157].
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NER is also subdivided into two pathways: (1) The repair of the global genome (GG),
which repairs the lesions throughout the genome; and (2) the traffic coupled (TC), which is
limited to eliminating injuries that block transcription [158].

The GG repair begins with the recognition of the damage, which occurs with the pro-
tein complex CUL4-DDB (XPE), consisting of the DNA damage-binding protein 1 (DDB1).
This protein participates in the union to damage DNA and is associated with DDB2, which
is a complex that can recognize the damage induced by UV, preferably to cyclobutane
pyrimidine dimers. Cullin 4 (Cul4) is a member of the ubiquitin ligase E family, in which
ubiquitin to the H3 and H4 histones weakens the histones-DNA union and facilitates the
recruitment of repair proteins [159–161].

The GG can also recognize injuries through the complex subunit, DNA damage recog-
nition and repair factor (XPC), homolog B, nucleotide excision repair protein (HR23B), and
centrin-2 (CETN2). Moreover, XPC interacts with XPE to complete the damage recognition
step, as well as with the basal transcription factor TFIIH [160]. This factor is responsible for
opening the DNA that surrounds the damaged base, with an helicase activity. TFIIH is com-
posed of cyclin-dependent kinase 7 (CDK7), DNA excision repair protein ERCC-3 (XPB),
transcription initiation factor TFIIH subunit 1 (TFIIH1), CDK-activating kinase assembly
factor MAT1 (MNAT1), DNA excision repair protein ERCC-2 (XPD), transcription initia-
tion factor TFIIH subunit 2 (TFIIH2), cyclin H (CCNH), TFIIH basal transcription factor
complex TTD-A subunit (TTDA), transcription initiation factor TFIIH subunit 3 (TFIIH3),
and transcription initiation factor TFIIH subunit 4 (TFIIH4). At a later time, this gives way
to the incision through the nucleases DNA excision repair protein ERCC-4 (XPF) and DNA
excision repair protein (ERCC-1), and then, the PCNA and replication factor C subunit
1 (RFC) are split. Finally, the synthesis of DNA polymerase (Polδ and Polε) and union is
given by Lig1 [160,162].

7.2. Telomere Repair Mechanisms

OxS damage to the DNA with the formation of 8-oxodG and 8-OHdG molecules repre-
sents the most frequent damage to human cells, especially at a telomeric level [115]. More-
over, the erosion of telomeres is associated with the presence of infectious diseases and the
mechanisms that protect the organism, since the inflammatory process can induce OxS [76].

In vitro studies in U2OS cells point out that when DNA damage in telomeres is not
repaired efficiently, compared to the DNA damage in non-telomeric regions, its length is
shortened. In HeLa cells, the production of oxidative damage, specifically in the telomeric
region, induced by the pLVX-IRES-Puro KR-TRF1 vector, leads to cellular senescence or
death. The specific damage of telomeres induces chromosomal aberrations, including the
loss of chromatid telomers. In general, OxS damage induces the dysfunction of telomeres
and underlines the importance of maintaining the integrity of telomeres against this type
of damage [163]. Concerning the BER repair mechanism, it has been documented that in
cells that lack OGG1, the chronic 8-oxodG formation increases the fragility and shortening
of telomeres, altering cell growth [153].

The NEIL3 glycosylase protects the stability of the genome by the directed repair of
oxidative damage in telomeres during the S/G2 phase. It has been observed that NEIL3 is
colocalized with TRF2 during phase S and this association increases with OxS. Moreover,
its recruitment can be through TRF1 and its interaction improves its activity [164]. Fur-
thermore, it has been proven that the telomeric DNA containing thymine glycol, 8-oxodG,
or spiriminodihydantoin can generate quadruplex DNA in the telomeric region and only
NEIL3 can split injuries with thymine glycol in this type of DNA. Therefore, NEIL1 shows
better activity in the repair of DNA injuries with guanidinohydantoin [165].

On the other hand, the XPF-ERCC1 endonuclease that participates in the NER pathway,
in the repair of cross bonds, and in homologous recombination, can interact with TRF2 and
function as a negative regulator in the maintenance of telomeres length [166].

It has been observed that the expression of TRF2 in mice skin (K5-TRF2) has a severe
phenotype, such as premature skin deterioration, hyperpigmentation, and increased cancer,
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which is similar to xeroderma pigmentosum syndrome in humans. Similarly, the skin
cells of these mice report a marked shortening of telomeres and increased chromosomal
instability compared to wild-type mice (WT). On the other hand, the strain of mutant mice
ERCC4−/− (a gene that encodes for XPF) has the same telomeric length compared to the
WT strain and K5-TRF2 ERCC+/+ mice. However, they have a marked reduction in the
telomeric length. This demonstrates the link between telomeres and damage repair, in
which this alteration is the basis of genomic instability, cancer, and aging [167].

8. Sarcopenia Prevention Interventions

To date, a causal relationship between OxS and the aging process has not been fully
established; however, this does not indicate that the reduction in oxidative damage is not
intended as an alternative to promote a healthy life, delaying sarcopenia, and its associated
events [168]. Similarly, various therapies have been implemented to counteract the effects of
sarcopenia through the administration of food supplements (mainly proteins), antioxidants,
anti-inflammatories, physical activity, resistance training, and caloric restriction [79,85]. It
has been shown that supplementation with resveratrol for 10 months at 0.05% increases
the enzymatic activity of MnSOD, and reduces the levels of lipoperoxidation and H2O2,
without significant changes in carbonylated proteins in muscle samples, suggesting a
protective effect against OxS as evidenced by the correct functioning of fast twitch fibers.
Of note, supplementation did not improve strength or reduce muscle loss [169]. Another
therapy with promising results is growth hormone (GH) replacement, which reduced
oxidative damage at the DNA level by decreasing the levels of 8-OHdG and carbonylated
proteins in skeletal muscle [170].

In humans, interventions with high-quality protein supplements, such as whey that
has a large amount of essential amino acids including leucine, as well as resistance training,
are promising treatments to counteract sarcopenia [171,172]. Nutritional intervention for
13 weeks with whey protein (20 g) supplemented with vitamin D (800 IU), total leucine
(3 g), carbohydrates (9 g), and fat (3 g) improved lower extremity function and muscle
mass in sarcopenic patients [173], although it was subsequently shown that the necessary
basal levels of vitamin D and proteins are required, in order that the aforementioned is
possible [174]. Another vitamin that improves muscle strength in sarcopenic older adults is
vitamin E, coupled with a decrease in proinflammatory markers, such as interleukin-2 (IL-2)
and insulin-like growth factor 1 (IGF-1) [175]. Similarly, in obese sarcopenic women, it
was observed that caloric restriction and supplementation with whey protein and leucine
improve strength and muscle mass [176]. Nutraceuticals are products derived from human
food that claim to provide health benefits, but there is insufficient evidence to support
these claims [177]. For example, taking vitamin D supplements is generally considered as
safe, since toxicity from high levels of vitamin D in the blood is rare. However, long-term
use of vitamin D can result in hypercalcemia, hypercalciuria, and hyperphosphatemia,
which are indicators of vitamin D overdose. [178]. Supplementation with collagen peptides
(15 g/day) combined with resistance training (three sessions per week) for 3 months
improves muscle mass and strength in sarcopenic individuals [179]. Moreover, the leucine
metabolite β-hydroxy-β-methylbutyrate (HMB) (3 g/day) has been shown to preserve
muscle mass in healthy older adults after only 10 days of supplementation [180]. However,
a systematic review found that HMB supplementation has no impact on muscle strength or
body composition in adults aged 50 to 80 years [181].

It should be noted that there are several promising pharmacotherapies for countering
sarcopenia, but combining these therapies with exercise, nutritional supplements, and a
balanced diet enhances their effects. One therapy targeting the myostatin-ActRII pathway
is the intravenous administration of bimagrumab (700 mg per month) for 6 months, which
moderately increases lean body mass by 7%, with no apparent changes in physical per-
formance or gait speed, as compared to the placebo group receiving a balanced diet and
light exercise [182,183]. Another promising monoclonal antibody is LY2495655, which has
a beneficial effect on lean mass and physical performance [184]. The consumption of the
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androgen receptor modulator MK-0773 (50 mg two times per day for 6 months) shows
an increase in lean body mass compared to the placebo, but with no changes in muscle
strength or function [185].

Similarly, in sarcopenic experimental models, administration of apelin has been shown
to improve mitochondrial biogenesis and autophagy in myofibers, as well as regeneration of
satellite cells, through stimulation of the trophic forkhead box O3 (FOXO3)-MURF-1-atrogin
axis and activation of AMP-activated kinase (AMPK) [186]. Additionally, a combination
of HMB supplementation and low-magnitude high-frequency vibration (LMHFV) for
3 months has been shown to enhance muscle strength and suppress the Wnt/β-catenin
signaling pathway that promotes adipogenesis [187].

Caloric restriction (CR) without malnutrition refers to a reduction in energy intake
between 20% and 40% [188,189]. CR favors hormesis, delaying the appearance of age-
related diseases, including sarcopenia, and prolonging lifespan. By reducing glucocorticoid-
mediated inflammation, it increases serum cortisol (with anti-inflammatory activity) and
decreases TNF-α transcription (proinflammatory cytokine), inhibits apoptosis by reducing
caspase-3 and caspase-8 (enzymes that induce programmed cell death), as well as activates
autophagy by increasing the expression of autophagic markers beclin-1 and microtubule-
associated protein 1A/1B-light chain 3 (LC3) [190–192]. Moreover, it decreases FR levels at
the mitochondrial level and oxidative damage at the mtDNA level [193]. Furthermore, it
suppresses muscle atrophy in both slow and fast muscle fibers of the soleus muscle [194],
which leads to the improvement in quality and cell function in skeletal muscle and a delay
in frailty.

8.1. Physical Exercise

Exercise, unlike physical activity, is a subset of planned, structured, and repetitive
physical activity that aims to improve or maintain physical fitness. Physical activity is any
bodily movement produced by skeletal muscles that result in energy expenditure, and
includes activities of daily life that are carried out at home, transportation, and recreational
or occupational [195]. The American College of Sports Medicine (ACSM) recommends
moderate- to vigorous-intensity cardiorespiratory exercise for adults to achieve a minimum
total energy expenditure of 500–1000 MET/min/week. This can be achieved through
moderate-intensity exercise for at least 30 min a day, on at least 5 days a week (totaling
at least 150 min a week) or vigorous-intensity exercise for at least 20 min a day, on at
least 3 days a week (totaling at least 75 min a week), or a combination of both [196]. To
maintain strength, flexibility, and muscular endurance, training programs that include
aerobic, resistance, and flexibility training are recommended. In this context, physical
activity is one of the most important interventions to treat sarcopenia, since it assists in
improving muscle structure and function, preventing disability and frailty, with beneficial
effects on metabolic and cardiovascular diseases in the elderly [197]. It has been suggested
that regular physical activity may be essential in maintaining the anabolic response to
protein intake with aging [80].

8.2. Exercise and Sarcopenia

There is sufficient scientific evidence that highlights the beneficial effect of physical
activity on skeletal muscle health. In addition, it is pointed out that unless you have
an active lifestyle, the mitochondrial decline in muscle cells will occur as you age [63].
Therefore, exercise has been used as a strategy to prevent or delay sarcopenia. On the one
hand, it seems to reduce the loss of muscle mass. On the other hand, it increases the aerobic
metabolism, and thus promotes mechanical damage due to free radicals accumulation [38].
To avoid the risk of falls, balance, strength, and resistance training are recommended to
facilitate muscle protein anabolism [198]. Another strategy to prevent loss of muscle mass
is to avoid losing weight, since the quantities and quality of proteins are of paramount
importance for the correct synthesis of muscle proteins. Moreover, it has been suggested
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that the consumption of antioxidants, vitamin D, and fatty acids may contribute to the
maintenance of muscle function [199].

8.3. Exercise and Telomere Length

Studies carried out on lifestyles based on nutritional recommendations, physical train-
ing programs (aerobic, strength, and balance), cognitive training, and management of
metabolic risk factors allow for the maintenance of the telomeric length in the peripheral
blood of older adults (Figure 3). In addition to nutritional and exercise interventions, telom-
eric length increased in overweight and obese children and adolescents [200,201]. Although
it appears that exercise can induce apparent telomere lengthening, the mechanisms by
which this occurs remain unknown [202]. It is well known that chromosomal aberrations
and instability are more frequent in the older adult population, which can lead to cell
death, releasing intracellular content. Among them, genomic DNA can be found to be
circulating in the bloodstream (cfDNA) and integrated into the genome of the cells of the
organism, thus increasing genomic instability [203]. Exercise can lead to a rapid increase in
cfDNA, which is released mainly or almost exclusively by granulocytes with overtraining
or strenuous training, returning to its basal levels almost immediately [204,205]. In a study
on the telomeric length and its possible association with cfDNA, they did not find any type
of correlation between them; however, there was an association between improved chair
lift testing with longer telomeric lengths in people who underwent resistance training with
high-protein supplements [206]. Another study showed that longer telomeres are posi-
tively associated with greater physical activity and the most active subjects had 200 more
nucleotides in the telomeric region than the least active individuals [207]. A randomized
controlled trial showed that 1 year of aerobic exercise did not cause changes in telomeric
length among the exercise group compared to the control. Similarly, diet and exercise-based
weight loss did not change telomeric length telomeres in both studies conducted on post-
menopausal women [208,209]. Although the previously mentioned studies are based on
the telomeric region of blood cells, not muscle cells, it has been evidenced that the length of
telomeres of leukocytes and skeletal muscle cells can be positively related to a healthy life
and inversely correlated with a greater risk of various age-related diseases [5].
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recognized as damaged sites and from being erroneously repaired and recognized as double-strand
breaks, and can generate chromosome instability. Exercise assist in maintaining or improving physical
activity and is one of the main interventions for sarcopenia. Its effect lies in preventing the decrease
in satellite cells, the increase in fatty tissue infiltrates in muscle fibers, and assists in obtaining
bone mass, muscle mass, and skeletal muscle strength. Although exercise generates an increase
in the formation of free radicals, it maintains the balance between the number of pro-oxidants
and antioxidants. It also helps maintain and increase the length of telomeres, thus preventing
erosion of the ends of chromosomes. Key components of the sheltering: TRF1 (telomeric repeat-
binding factor 1); TRF2 (telomeric repeat-binding factor 2); POT1 (protection of telomeres protein);
PIP1 (POT1-interacting protein 1); TIN2 (TRF1-interacting nuclear factor 2); and RAP1 (repressor
activator protein 1).

8.4. Exercise and DNA Repair

There is clear evidence that an acute period of intense exercise generates enough
ROS to challenge the body’s antioxidant defense system. In general, activation of redox-
sensitive pathways results in gene products that restore intracellular oxidant-antioxidant
homeostasis, such as the expression of genes that code for SOD and GPx [210]. It has
been observed that aerobic exercise can cause DNA damage in athletes associated with
the intensity and the distance covered; namely, DNA lesions were more evident when
running a distance of 42 km than a distance of 5 and 10 km [211]. A study found that
12 weeks of moderate-intensity, low-frequency explosive-type resistance training had
significant benefits for older people (70–75 years), improving their muscle strength and
power compared to the control group (without exercise). Additionally, the exercise group
had a higher proportion of reduced glutathione, which improved the redox state, with
low levels of malondialdehyde and protein carbonylation [212]. Physical exercise has
many health benefits; however, its properties will depend on the type and intensity of the
exercise routines. In this context, various studies indicate how DNA repair mechanisms are
activated by physical activity (Table 3).

Table 3. Physical exercise and DNA repair.

Population Determinations Objective Finding Ref.

Fifty-seven healthy
males (40 to 74 years)

Strength tests.
Power tests.

DNA damage.
Assessment of
repair capacity.

Lipid peroxidation.
TAC.

This study aimed to
determine the effects of a

16-week combined physical
training program on DNA

damage and DNA repair of
human lymphocytes, taking

into account the
improvement of
physical fitness.

To investigate the role of OxS
in these changes.

Improvement in general physical
performance in the experimental
group. Decrease in DNA chain

breaks and sites, sensitive to
formamide-pyrimidine

glycosylase, with a concomitant
increase in antioxidant activity and

a decrease in lipid peroxidation
levels after physical training.

There are no significant changes in
the enzymatic activity of DNA
glycosylase and 8-oxoguanine.

[213]

Endurance-trained and
young healthy males
(age 20 to 36 years)

Simple DNA single
break detection.
Poly detection

(ADP-ribose) and
phosphorylation of the
H2AX histone (γh2ax).

Determine the general effect
of acute exhaustive exercise

and physical aptitude
(aerobic capacity) on DNA

damage, radiosensitivity, and
PLP1 activity induced by
radiation in immune cells
isolated from trained and

non-healthy
trained volunteers.

Acute exercise induces DNA
strand breaks in lymphocytes in
untrained individuals. During
acute exercise, trained subjects

repaired radiation-induced DNA
strand breaks more rapidly than

untrained subjects.
Trained subjects maintained

higher levels of radiation-induced
PARP1 activity after acute stress.

[214]
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Table 3. Cont.

Population Determinations Objective Finding Ref.

Thirty-two healthy
Caucasian males
(40 to 74 years)

Assessment of strand
break DNA (SB) and

oxidative damage
to DNA.

Evaluation of sites
sensitive to FPG.

Assessment of repair
capacity with the

comet assay.
The activity of OGG1.

TAC.
Determination of the
hOGG1 (Ser326Cys)

polymorphism.

To investigate the possible
influence of genetic

polymorphisms of hOGG1
on DNA damage and repair

activity OGG1 enzyme in
response to 16 weeks of

combined physical training.

At baseline, there were no
differences in DNA damage and

OGG1 activity between the groups.
With 16 weeks of physical exercise,

there was a decrease in DNA
strand breaks in both groups, as

well as a decrease in FPG-sensitive
sites and an increase in TAC

in WTG.

[215]

Fourteen (apparently
healthy recreationally

active males (age
22 ± 2 years, stature

178 ± 6 cm, mass
83 ± 8 kg,

BMI 26.2 ± 2)

DNA single-strand
breaks and

FPG-sensitive sites.
Detection of

double-strand breaks via
histone γ-H2AX

and 53BP1.
Lipid hydroperoxides.
Soluble antioxidants.

EPR.

Characterization of the
interplay of exercise and

hypoxia about DNA
damage repair.

Quantification of the effects
of exercise in hypoxia on
single- and double-strand
DNA damage using the

comet assay in conjunction
with γ-H2AX and
colocalized repair

protein 53BP1.

Increase in γ-H2AX and 53BP1
foci after high-intensity exercise,

with markers, increased in
hypoxia. Although normoxia

resulted in a marked increase in
foci detection, hypoxia challenge

resulted in a 2.5- and 3.5-fold
increase in γ-H2AX and 53BP1
foci, respectively, after exercise.

[216]

Sixty-one T2DM
subjects, aged

(mean ± SD: 50.3 ± 4.2)

Glycemic status.
DNA damage
(Comet assay).

Oxidative DNA damage.
OGG1 protein expression.

TAC.

Elucidation of the
mechanism of action of yoga

on T2DM-related DNA
damage in terms of its effect
on oxidative DNA damage
and DNA repair markers.

The yoga group showed a
significant reduction in DNA

damage, oxidative DNA damage
marker, and fasting blood sugar

compared to the control.
The beneficial effect of yoga on
DNA damage in T2DM subjects
was found to be mediated by the

mitigation of oxidative DNA
damage and enhancement of

DNA repair.

[217]

TAC: Total antioxidant capacity; OxS: Oxidative stress; γH2AX: H2AX histone; PLP1: Polymerase poly;
PARP: Poly(ADP-ribose) polymerase; FPG: Formamidopyrimidine DNA glycosylase; OGG1: 8-Oxoguanine
DNA glycosylase; WTG: Wild-type group; BMI: Body mass index; 53BP1: 53-Binding protein 1; EPR: Electron
paramagnetic resonance spectroscopy; T2DM: Diabetes mellitus type 2.

9. Conclusions

Physical exercise is a crucial intervention for delaying the loss of skeletal muscle mass.
It stimulates the growth of muscle fibers, prevents the conversion of fast fibers into slow
fibers, and reduces the decline in satellite cells. Moreover, physical activity generates the
hormetic state, which promotes pro-oxidation and stimulates the production of antioxidant
enzymes. Studies have shown that physical training has protective effects on the DNA of
lymphocytes, which may be related to an increase in antioxidant capacity and a decrease
in DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG) sensitive sites.
It has been suggested that lesions caused by guanine oxidation in telomeric DNA can be
eliminated by the glycosylases NEIL1 and NEIL3, since OGG glycosylase activity has been
reported to be null in this region. It is clear that physical exercise prevents the wear and tear
of telomeres and, in some cases, lengthens them. However, the effect of exercise on DNA
repair in the telomeric region and its connection to sarcopenia is not yet fully understood.
Therefore, further translational research is needed to better understand these mechanisms.
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