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Simple Summary: The livestock industry urgently needs alternatives to antibiotics, especially in post-
weaning piglets. Numerous studies support the notion that dietary supplementation probiotics seem
to be one of the most promising tactics to reduce post-weaning diarrhea in pigs. Bacillus li-caniforms
S6 (BL−S6) supplementation in piglets was investigated for its effect on growth performance and
gut health. The researchers found that BL−S6 supplementation modulated the piglet’s immunity-
oxidative capacity and composition of the cecum microbiota, which would, in turn, modulate
intestinal barrier function, and eventually improve growth performance and relieves diarrhea. We
highlight the potential role of BL−S6 as an option to improve growth performance and relieve
diarrhea in pig production.

Abstract: Bacillus licheniformis (B. Licheniformis) has been considered to be an effective probiotic to
maintain gut health and boost productivity in the pig industry, but there is no complete understanding
of its mechanisms. We determined whether weaned piglets exposed to BL−S6 (probiotic) had altered
intestinal barrier function or microbiota composition. In our study, 108 weaned piglets (54 barrows
and 54 gilts) were divided equally into three groups, each with six pens and six piglets/pen, and fed a
basal diet supplemented without or with antibiotic (40 g/t of Virginiamycin and 500 g/t of Chlortetra-
cycline) or probiotic (1000 g/t of B. Licheniformis) for a 14-day trial. On day 14, one piglet was chosen
from each pen to collect blood and intestinal samples. Compared with the control group, dietary
supplementation with a probiotic promoted body weight (BW) gain and average daily gains (ADG)
while reducing diarrhea incidence (p < 0.05). Probiotics enhanced superoxidase dismutase (SOD)
activity and decreased malondialdehyde (MDA) levels in serum (p < 0.05), and increased the level of
mRNA expression of SOD1, Nrf2, and HO-1 (p < 0.05) in the jejunum mucosa. Moreover, supplemen-
tation with probiotics improved intestinal mucosal integrity as evidenced by higher villus heights
and a higher ratio of villus heights to crypt depths (duodenum and jejunum) and higher mRNA and
protein levels of occludin and ZO-1 in jejunum mucosa (p < 0.05). The intestinal sIgA levels (p < 0.05)
were elevated in the probiotic group, and that of serum immunoglobulin A (IgA) tended to be higher
(p = 0.09). Furthermore, weaning piglets who were given probiotics had a better balance of the
cecum microbiota, with lactobacillus abundance increased and clostridium_sensu_stricto_1 abundance
decreased. In conclusion, dietary supplementation with the probiotic BL−S6 promoted intestinal
integrity, which was associated, in part, with modulating intestinal barrier function and microbial
diversity in weaned piglets; it may offer a promising alternative to antibiotics to prevent diarrhea.

Keywords: Bacillus licheniformis; intestinal epithelial barrier function; intestinal integrity; intestinal
microbiota; weaned piglets
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1. Introduction

In the swine industry, post-weaning diarrhea is a very serious issue due to the mortality,
morbidity, and weight loss associated with it [1]. Antibiotics have been widely used in
animal husbandry, providing benefits in improving body weight and reducing the incidence
of post-weaning diarrhea in the past few decades. However, the misuse of antibiotics in
diet can have serious consequences, including the initiation of antimicrobial resistance,
loss of drug effectiveness, and adverse effects on people’s health [2,3]. Consequently, some
countries completely ban antibiotics from livestock feed for production purposes, especially
in the EU and China. Consequently, any other reliable strategy that could be used as an
alternative to antibiotics will be needed to keep pigs healthy, especially in the post-weaning
period. Antibiotic alternatives such as probiotics, plant extract, and acidifiers have gained
researchers’ attention due to their ability to minimize antimicrobial drug resistance.

With the growing interest in probiotics and their use in animal studies, numerous
studies support the concept that dietary supplementation with probiotics appears to be
an effective way to relieve post-weaning diarrhea in pigs [4–7]. There is growing evidence
indicating that probiotic supplementation can maintain gut health in pigs by altering the
gut microbiota, enhancing immune regulation and barrier function, increasing nutrient
digestibility, and consequently improving growth performance [4]. In comparison with
other types of probiotics, B. licheniformis possesses obvious advantages for its spore-forming
characteristics, which make it thermostable when confronted with long-term storage and
feed processing and strong acid resistance at low pH in the stomach [8,9]. These above
characteristics make B. licheniformis an ideal candidate for feed additives. Supplementation
with B. licheniformis has been shown to reduce diarrhea incidence and severity, thus im-
proving growth performance in piglets [10]. Specifically, B.-licheniformis-improved growth
performance was ascribed to stimulating appetite, promoting digestion, increasing di-
gestibility, and nutrient retention [11,12]. In a weaned piglet experiment, 1 × 109 CFU/kg
B. licheniformis was added to the basal diet; the results indicated that B. licheniformis helps
to improve antioxidant capacity, promotes immune function, and regulates the intestinal
microflora of weaned piglets [10]. In addition, B. licheniformis supplementation promoted
the ratio of fecal lactobacillus in growing-finishing pigs as well as reduced their toxic gas
emissions [11].

However, despite some biological functions of B. licheniformis having been identified,
the detailed mechanism and the effect of different subtypes of B. licheniformis on intestinal
health needs further study.

We hypothesized that dietary supplementation of BL−S6 modulates the intestinal
microbial community and immune-oxidative status; ultimately, this would improve growth
performance and gut health in weaned piglets by modulating the microbiome–gut axis.
Therefore, we aimed to elucidate the effects of BL−S6, a potential alternative to the antibi-
otic, on growth performance and gut health, and furthermore, decipher the relationship
among immune-oxidative status, microbiota composition, intestinal barrier function, and
their potential effects on the weaned piglets’ gut health and growth performance.

2. Materials and Methods
2.1. Experimental Animals and Dietary Treatments

A total of 108 Duroc × Landrace × Yorkshire crossbred piglets (54 barrows and
54 gilts) were weaned at 21 ± 1 d of age (average initial BW 6.50 ± 0.21 kg), divided
into 3 treatments (6 replicate pens/treatment, 6 piglets/pen according to BW and sex),
and provided ad libitum access to feed and water. The 3 treatments included: a control
group, an antibiotic group (a basal diet containing 40 g/t of virginiamycin and 500 g/t
of chlortetracycline), and a probiotic group (basal diet + 1 × 1011 CFU/kg BL−S6). Feed
was given for 14 days. The test strain BL−S6 used in the present study was screened and
preserved in the laboratory. The dry powder product of BL−S6 contained live bacteria at a
concentration of 1 × 1011 CFU/g. Diets for piglets were formulated based on the National
Research Council (2012) and detailed in Supplementary Table S1.



Biology 2023, 12, 238 3 of 15

2.2. Growth Performance and Diarrhea

The procedures of this research were adapted from a previous study [13]. Throughout
the study, we score each pig for diarrhea by visual inspection daily score on a scale of 1 to
5 (1 = hard, dry pellet; 2 = firm, formed stool; 3 = soft, moisturizing, and holding shape;
4 = soft, unformed stool; and 5 = pourable water liquid). Diarrhea frequency was calculated
as the percentage of days with a diarrhea score of 4 or higher. The BW and feed intake
in each group were weighed on days 0 and 14. The ADG and average daily feed intake
(ADFI) were calculated. Feed conversion rate (FCR) is the specific value of feed intake to
weight gain.

2.3. Sample Collections

On day 14, one piglet, with a BW close to the average weight of the pen, was selected
from each pen and then slaughtered and sampled. Serum was obtained by blood sampling
from the jugular vein before slaughter. Intestinal samples were collected from piglets near
the middle of the intestine (including duodenum, jejunum, and ileum); segments approx-
imately 2~3 cm in length were fixed in 4% paraformaldehyde for analysis of intestinal
morphology. The jejunum (approximately 10 cm in length) was dissected longitudinally
for mucosa collection, which was snap-frozen in liquid nitrogen and then stored at −80 ◦C
prior to further analysis. Chyme from the cecum was collected and snap-frozen in liquid
nitrogen for extraction of fecal microbial genomic DNA.

2.4. Digestive Enzyme Activity

Intestinal mucosal digestive enzyme activity was assayed by use of commercial kits
(Amylase, REF, C010-1-1; Chymotrypsin activity, REF, A080-3-1; Lipase activity, REF, A054-
1-1; Trypsin, REF: A080-2-1, Shanghai Enzyme-linked Biotechnology Co., Ltd., Shang-
hai, China).

2.5. Morphological Analysis of Small Intestine

Haematoxylin and eosin (H&E) staining were used to analyze intestinal morphology
following the protocol used in our laboratory [13]. Digital photos of intestinal morphology
were obtained through a microscope (Olympus CX31, Olympus Corporation, Tokyo, Japan),
and 6 fields were randomly selected to measure the villus height and the crypt depth.

2.6. Enzyme-Linked Immunosorbent Assay

Commercial kits (Shanghai Enzyme-linked Biotechnology Co., Ltd., Shanghai, China)
were used to analyze secretory immunoglobulin A (sIgA, Cat # ml603477) in jejunum
mucosa and the content of immunoglobulin in the serum, including immunoglobulin A
(IgA, Cat # ml660941), immunoglobulin G (IgG, Cat # ml002328), and immunoglobulin M
(IgM, Cat # ml002334). The specific test procedures follow the manufacturer’s protocol.

2.7. Relative Quantitative Real-Time PCR(qRT-PCR)

Approximately 0.1 g of frozen jejunal mucosa samples were ground into powder and
lysed in Trizol. Then, total RNA was reverse-transcribed with iScript cDNA Synthesis
Kit (Bio-Rad, Hercules, CA, USA). qRT-PCR was carried out to determine the mRNA
expression levels using a PCR Detection System (Bio-Rad, Hercules, CA, USA) and SYBR
Green reagents (Bio-Rad, Hercules, CA, USA) under the manufacturer’s instruction. The
specific primers were listed in Supplementary Table S2. GAPDH was used as the reference
gene. By using 2−∆∆Ct, the expression differential of target genes is calculated relative to
their reference genes [14].

2.8. Western Blot Analysis of Intestinal Mucosa Tight Junction Proteins

The protein of jejunum mucosa used for western blotting (WB) was prepared using
RIPA lysis buffer added with protease inhibitor cocktail, and the protein concentrations
were detected with the BCA Protein Assay Kit. In brief, aliquots containing 35 mg protein
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were separated by 12% SDS-PAGE and then transferred to PVDF membranes. Incubation
with the primary antibody was performed overnight after the membrane was blocked in 5%
skim milk for 1 h at room temperature. For immunoreactive bands, membranes were incu-
bated with a second antibody conjugated with peroxidase (HRP), and chemiluminescence
substrate (Thermo Fisher Scientific Inc., San Diego, CA, USA) was used after 3 washes.
Bio-Rad Quantity One software (Bio-Rad Laboratories, Richmond, CA, USA) was used for
the analysis of blot images. Supplementary Table S3 lists dilution details for all antibodies.

2.9. Analysis of Microbiota in Cecum Digesta

Microbial diversity of cecal digesta was detected according to Majorbio’s standard
protocol. The V3–V4 hypervariable regions of 16S rDNA were amplified with universal
primers 338F (ACTCCTACGGGAGGCAGCAG) and 806R (GGACTACHVGGGTWTC-
TAAT). Illumina MiSeq PE300 platform (San Diego, CA, USA) was used to sequence PCR
products. The sequences of raw data were quality-filtered with fast (0.19.6). Following
the de-noising of the high-quality sequences, amplicon sequence variants (ASVs) were
obtained. The number of reads from each sample was thinned out to 4000, which is still
good with an average yield of 97.90%. ASV-based data analysis was performed on the
Majorbio cloud platform (Bio-Pharm, Technology Co., Shanghai, China) according to the
standard protocol, an online platform provided by Majorbio Biopharm Technology Co.,
Ltd. (Shanghai, China).

2.10. Measurement of Organic Acid in Cecum Digesta

Cecum digesta were analyzed for concentrations of microbial metabolites following
previously reported protocol3. Sample analysis was performed by ion-exclusion chromatog-
raphy on an ion chromatograph (IC; Metrohm, Switzerland) using a Metrosep Organic
Acids-250/7.8 column. The mobile phase was 0.5 mM sulfuric acid and the column flow
rate was 0.8 mL/min. Detection of organic acids was carried out using suppressed conduc-
tivity detection.

2.11. Statistical Analysis

SPSS 17 (SPSS Inc., Chicago, IL, USA) was used to analyze the data using a completely
randomized block design. For growth performance, the pen was the experimental unit,
and for intestinal parameters and serum parameters, each piglet was the experimental
unit. Growth performance was measured by the pen, and intestinal parameters and serum
parameters were measured by the piglets. Using Tukey’s test, multiple comparisons of
treatment were made, and the incidence of diarrhea was analyzed using the chi-square
test. Values are indicated as means ± SEM, and statistical significance was determined at
p < 0.05 and tendency at 0.05 ≤ p < 0.10, respectively.

3. Results
3.1. BL-S6 Supplementation of Weaning Piglets’ Diets Affects Growth Performance and Diarrhea

Table 1 shows that ADG, ADFI, and FCR of the antibiotic group were not different
from those of the control group, and FCR was not different among the three treatment
groups. However, the supplementation of the probiotic increased BW on d 14, ADG, and
ADFI compared to the control and antibiotic groups (p < 0.05).

Antibiotics and probiotic supplementation decreased diarrhea incidence in weaned
pigs from days 0 to 14 compared with the control group (p < 0.05; Table 1).
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Table 1. Growth performance and diarrhea incidence of weaned pigs fed BL−S6 enriched diets.

Items Control Antibiotics Probiotic SEM p Value

Weight, kg
Day 0 6.50 6.50 6.50 0.21 0.97
Day 14 8.1 b 7.94 b 8.52 a 0.24 <0.001
ADG, g 115 b 103 b 144 a 5.2 <0.001
ADFI, g 195 ab 182 b 231 a 7.7 0.02

FCR 1.71 1.77 1.60 0.03 0.21
Diarrhea incidence, %

Day 0–14 14.85 a 7.34 b 10.71 b - 0.001

ADFI = average daily feed intake; ADG = average daily gain. a,b Mean with different superscripts in the same row
differ significantly (p < 0.05).

3.2. Effect of Dietary BL-S6 Supplementation on Digestive Enzyme Activity

When dietary supplements with antibiotics and probiotics were given to piglets,
chymotrypsin activity increased in the jejunum mucosa (p < 0.05; Figure 1B). Nevertheless,
the activity of trypsin, lipase, and amylase activities among the three treatments were not
significantly different (Figure 1A,C,D).
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Figure 1. BL−S6 effects on digestive enzyme activity in piglets’ jejunum: (A) Amylase activity;
(B) Chymotrypsin activity; (C) Lipase activity; (D) Trypsin activity. n = 6. * indicates the degree of
significant difference (p < 0.05).

3.3. Dietary BL-S6 Supplementation Improves the Immune Antioxidant Status of Serum and
Jejunum Mucosa

Although serum MDA levels were significantly lower in the probiotic group than
in the control group (p < 0.05; Figure 2A), SOD activity was significantly higher in the
probiotic group (p < 0.05; Figure 2B), but no differences were detected in the activity of
catalase and glutathione peroxidase (GSH-px) (p > 0.05; Figure 2C,D). On day 14, antibiotics
significantly increased serum IgA, IgG, and IgM concentrations compared with control
(p < 0.05; Figure 2E–G), whereas probiotics showed a trend towards increasing IgA (p = 0.09;
Figure 1E).

The effect of the probiotic on the gene expression levels of the antioxidant-related
genes in the jejunum mucosa are shown in Figure 2H–N. Adding antibiotics/probiotics to
piglets’ diets could increase SOD1, Nrf2, and HO-1 mRNA expression levels compared to
controls (p < 0.05); however, a significant difference in CAT1, Gpx4, Keap1, and NOQ-1 did
not exist among the three treatments (p > 0.05). In addition, immune effector factors, such as
secretory immunoglobulin A (sIgA) and mucin-2 were also detected in the jejunum mucosa
of piglets (Figure 1O,P). It was found that antibiotics/probiotics significantly increased
sIgA levels in comparison to the control group (Figure 2O), but no differences were detected
in mucin-2 mRNA expression levels (Figure 2P).
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Figure 2. The effects of BL−S6 on antioxidant and immune status in serum and jejunum mucosa
of piglets. (A) Serum Malondialdehyde (MDA) level. (B–D) Measuring SOD, CAT, and GSH-Px in
serum. (E–G) The evaluation of serum IgA, IgM, and IgG in serum. (H–N) The mRNA expression
level of SOD1, CAT1, Gpx4, Keep-1, Nrf2, HO-1, and NOQ. (O) The contents of sIgA in jejunum
mucosa. (P) The mRNA expression level of mucin-2 in jejunum mucosa. n = 6. * indicates the degree
of significant difference (p < 0.05).

3.4. A Diet Containing BL-S6 Improves Weaned Pigs’ Intestinal Morphology and Epithelial
Barrier Function

Figure 3A presents the results regarding intestinal morphology. In the duodenum,
dietary supplement of probiotics increased the villus height and villus height/crypt depth
ratio (p < 0.05), while antibiotics and probiotics did not significantly differ (p > 0.05).
As compared with the control, dietary supplementation with the probiotic significantly
increased the villus height/crypt depth ratio in the jejunum (p < 0.05).
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Figure 3. BL−S6 affects intestinal (duodenum, jejunum, and ileum) morphology of piglets. (A) H&E
staining shows intestinal morphology (100×). (B,D) Statistical analysis of villus height (mm) (B),
crypt depth (mm) (C), and the ratios of villus height (mm) to crypt depth (mm) (D) in the intestinal
tract, respectively. * indicates the degree of significant difference (* p < 0.05). n = 6.

According to Figure 4, tight junction proteins are present in weaned piglets’ jejunal
mucosa. In the probiotic group, ZO-1 mRNA expression levels were significantly higher
than those in the antibiotic group (p < 0.05; Figure 4B); probiotics increased occludin levels
significantly compared to controls (p < 0.05; Figure 4C). Comparatively to controls, probiotics
and antibiotics increased occludin and ZO-1 expression levels (p < 0.05; Figure 4D–F).
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Figure 4. BL−S6 affects pigs’ physical barrier functions of intestinal epithelial. (A–C) The mRNA
expression level of tight-junction protein in jejunum mucosa: claudin (A), ZO-1 (B), and occludin
(C). (D–F) WB detects the protein levels of ZO-1, occludin, and a housekeeping protein (GAPDH)
in the jejunum mucosa from weaned piglets. (D) Specific protein bands detected by WB; each
lane represents an individual replicates; results of replicates 3~6 of each treatment are exhibited in
Supplementary file S1 of WB original bands, replicate-1,2 (Repli-1,2). Semi-quantitative analyses of
ZO-1 (E) and occludin (F). n = 6. * indicates the degree of significant difference (p < 0.05).

3.5. Microbiota Diversity in the Cecum Digesta in Response to BL-S6

Weaned pigs exposed to BL−S6 had altered cecum microbiota as shown in Figure 5.
Within the three groups, 2139 core ASVs were detected, of which 522, 367, and 422 unique
CSV were unique to the control, antibiotics, and probiotic groups, respectively (Figure 5A).
For the analysis of β-diversity, using the first two principal component factors (31.41%
and 22.28) of PC1 and PC2, PCoA plots based on Bray–Curtis distances were generated to
demonstrate the differences in the composition of the three groups of microbes (Figure 5B).
Alpha diversity was assessed according to Shannon, Simpson, Ace, and Chao indices; alpha
diversity parameters did not differ among the three groups (Figure 5C–F).
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3.6. The Effects of BL-S6 on the Bacterial Abundance in the Cecum Digesta

A diagram showing the composition and abundance of the cecum digesta micro-
biota is shown in Figure 6. Firmicutes and Bacteroidota dominate at the phylum level.
The majority of dominant genus-level groups are prevotella, lactobacillus, and clostrid-
ium_sensu_stricto_1 (Figure 6B). By evaluating LDA (LDA threshold > 4.0), the effect
of microbial abundance on different effects was examined. Probiotic supplementation
had an impact on the species-level composition of the cecum microbiota (Figure 6C,D).
An increased richness of s_unclassified_g_clostridium_sensu_stricto_1 in the control group,
s_uncultured_bacterium_g_anaerostipes in the antibiotics group, as well as s_unclassified_g_
lactobacillus and s_uncultured_bacterium_g_alloprevotella in the probiotic group were detected
(Figure 6D). Probiotics showed an increased relative abundance of g_lactobacillus (p < 0.05) in
the Kruskal–Wallis sum-rank test (Figure 6E); in contrast, the g_clostridium_sensu_stricto_1
value decreased (p = 0.06) in comparison with the controls (Figure 6F). We conclude that
dietary supplementation with the probiotic improves cecum microbiota balance by boosting
lactobacillus relative abundance while reducing clostridium_sensu_stricto_1 relative abundance.
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Figure 6. Piglet cecum microbiota is affected by BL−S6. (A,B) Test for significance at the phylum and
genus level among treatments. (C,D) Discriminant analysis of multi-level species differences by LEfSe
analysis from phylum to species level. Changes in lactobacillus (E) and clostridium_sensu_stricto_1 (F)
at the genus level. p values < 0.05 were considered significant, and p values between 0.05 and 0.10
were considered a tendency, n = 5. * indicates the degree of significant difference (p < 0.05).

3.7. Effects of BL-S6 on the Contents of Organic Acid in Cecum Digesta

Table 2 exhibited the effects of BL−S6 supplementation in the diet on the composition
of organic acid of the cecum digesta in weaning piglets. Probiotics increased lactate
(p = 0.05), formic acid (p = 0.053), and propionic acid (p = 0.07) contents compared to
the control and antibiotic groups, respectively, while the tendency of isobutyric acid was
higher in the probiotic group when compared with the antibiotic group (p = 0.059). Acetic
acid, butyric acid, isovaleric acid, and valeric acid content was not different among the
three groups.
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Table 2. The contents of organic acid (mg/kg) in cecum digesta of weaned pigs with diets supple-
mented with BL−S6.

Items Control Antibiotics Probiotic SEM p Value

Lactate 150 b 153 b 468 a 162 0.024
Formic acid 15.8 y 21.2 xy 28.6 x 6.7 0.064
Acetic acid 5552 5256 4972 312 0.215

Propionic acid 1315 y 1273 xy 1541 x 185 0.062
Isobutyric acid 105 xy 91 y 118 x 12 0.068

Butyrate 1076 1008 914 214 0.921
Isovaleric acid 93 66 78 16 0.393

Valeric acid 199 188 220 26 0.200
a,b Means listed in the same row with different superscripts are significantly different (p < 0.05). x,y Means listed
in the same row with different superscripts tended to be different (0.05 ≤ p < 0.10).

4. Discussion

The use of probiotics in animal husbandry has attracted widespread attention because
of its potential to replace the use of antibiotics in feed to improve gut health and growth per-
formance. Probiotics, such as lactobacillus and bacillus, have been shown to benefit animal
growth [10,15,16]. Weaned piglets receiving B. licheniformis had improved growth, reduced
post-weaning diarrhea, and improved intestinal epithelium and gut microbiota. [5,7,10,17].
Dietary supplementation of 109 CFU/kg or 1.5 × 109 CFU/kg B. licheniformis signifi-
cantly improved growth performance in pigs and chickens, respectively [10,15]. The
outcome of this study showed that dietary supplementation with antibiotics or BL−S6
(1 × 1011 CFU/kg) reduced the diarrhea incidence of weaned piglets, while it increased
the growth performance of piglets; the effect of BL-S6 with a lower level on weaning piglets
will be tested in our future study.

Redox status affects livestock growth and gut health, according to researchers [18–20].
Early weaning triggers redox imbalance, and total antioxidant capacity (T-AOC), SOD, GSH-
Px, and MDA are important biomarkers reflecting the imbalance of redox status [21–24].
The T-AOC balances active oxygen, while MDA indicates how much oxidative damage
has been done by ROS and lipid peroxidation, SOD serves to catalyze the conversion
of reactive superoxide anions into hydrogen peroxide, and GSH-Px inactivates peroxide.
B. licheniformis and bioactive compounds have been reported to enhance the oxidation
capacity of pigs [10,25,26]. In piglets, the supplementation of B. licheniformis enhanced
antioxidant capacities by increasing T-AOC, GSH-Px, and SOD levels, while reducing MDA
levels [10]. The antioxidant capability was also significantly increased in goldfish-fed diets
with B. licheniformis, increasing the antioxidant-related gene expression (CAT and GSR) [27].
This study also showed that B. licheniformis supplementation increased SOD activity and
reduced MDA levels in serum. Furthermore, BL−S6 supplements are also found to increase
the expression of antioxidant-related genes (Nrf2, SOD1, and HO-1) in weaned piglets’
jejunum mucosa.

Intestinal epithelial barriers can be damaged by weaning stress, harming gut health
and growth performance [28]. Besides acting as a protective barrier, the intestinal epithe-
lium facilitates nutrient absorption, and its morphology can be used to assess the function
and upgrowth of the gut. Pigs’ intestinal barrier function was improved after the sup-
plementation with B. licheniformis [5,29]. An increased villi height of the duodenum and
the villi height/crypt depth of the duodenum and jejunum were reported after supple-
mentation with BL−S6. (Figure 2). Accordingly, mucosal digestion enzyme activities and
villi height were found to be linearly related in weaned piglets [30]. Bacillus increased
the activity of the digestive enzyme in rabbits [31], and the activity of Chymotrypsin was
elevated with the supplementation of dietary BL−S6 in this study, which might contribute
to the improvement of intestinal function. Furthermore, tight junction proteins, including
ZO-1, occludin, and claudin-1, play an important role in the maintenance of intestinal
integrity and barrier function. Livestock exposed to probiotics (including B. licheniformis)
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express higher levels of tight junction proteins in the intestinal epithelium [6,32]. A dietary
supplement containing BL−S6 significantly enhanced both the mRNA and protein content
of intestinal epithelial tight junction proteins (ZO-1 and occludin) (Figure 3). The mucus
layer is an important chemical barrier for intestinal epithelial cells against bacterial infection.
Previous studies showed that B. licheniformis significantly increased intestinal mucin 2 in
chickens and pigs [33–35]. However, our data demonstrated that BL−S6 supplementation
doesn’t affect the level of mucin-2 which is consistent with the previous results that pro-
biotics did not affect the intestinal mucin expression [36]. Intestinal mucin proteins are
regulated by probiotics in a multi-faceted manner. The results from this study enable us to
gain a better understanding of BL−S6’s beneficial effects on the intestinal epithelial barrier
function of weaned piglets, which could lead to improved gut function.

Probiotics act as immune modulators to enhance the mucosal barrier of the host, thus
preventing the intestinal epithelium from being infected by pathogens [37,38]. Immunoglob-
ulin (IgA, IgM, IgG) is mainly existed in serum, which is one of the main components of
the immune system in animals. Several studies describe the immunomodulatory effects
of B. licheniformis [10,15,39]. Supplementation with B. licheniformis has been reported to
improve immune function in piglet serum by increasing IgA, IgM, and IL-10 levels and
reducing IL-6 and IL-1β levels [10]. Dietary supplementation of BL−S6 could boost the
non-specific immunity of eriocheir sinensis in Chinese mitten crab eriocheir sinensis; this may
be regulated by the elevated expression of genes encoding immune-related enzymes in
E. Sinensis blood cells [39,40]. Our study suggests that dietary supplementation with
BL−S6 may improve intestinal epithelial immune barrier function by increasing serum IgA
concentration and sIgA content in jejunal mucosa. The above data indicated that BL-S6
supplementation contributes to intestinal mucosal immunity mediated by sIgA and to
anti-infection immunity mediated by IgA. Recent studies reported that some probiotics (in-
cluding lactobacillus [37,41–43], bifidobacterium bifidum [44], and saccharomyces cerevisiae [45])
promote enhancing the host sIgA abundance and other probiotics (bacillus subtilis [10,46].
In addition, probiotic bacteria, including lactobacillus [47,48], regulate IgA levels in the pig’s
serum or IgA+ cells. Therefore, our findings contribute to a better understanding of the
immune system’s regulation by probiotics.

Previous studies evidenced that probiotics contributed to promoting the colonization
of the gut by beneficial bacteria, which was vital for improving the host’s health and
growth performance [5,10,49,50]. Several studies have demonstrated the gut microbiota-
modulatory effects owing to B. licheniformis supplementation [5,10,22]. Recent studies have
shown that supplementing a mixture including B. licheniformis in pig diets significantly
increases the Simpson diversity index of the gut microbiota [5]; however, our data demon-
strated that BL−S6 supplementation does not affect the parameters of α-diversity according
to Shannon, Simpson, Ace, and Chao. Consistent with previous research results, Firmicutes
and Bacteroidota were the predominant bacterial phyla in this study [10]. A genus-level
alteration of gut microbiota was detected in the BL−S6 supplementation group, lactobacillus
abundance was increased, and clostridium_sensu_stricto_1 abundance was decreased fol-
lowing BL−S6 supplementation. Numerous studies support the concept that the benefit of
Lactobacillus to its hosts is far greater than the harm, which mechanisms mainly involved
regulating antioxidant capacity, improving immune function and microbial homeostasis,
reducing harmful bacterial colonization, etc. [51,52]. An analysis by Wang et al. (2021)
found a negative correlation between clostridium_sensu_stricto_1 level and ADG in piglets
and litter weight gains [53]. However, some researchers revealed that the B. licheniformis
group had an elevated abundance of clostridium_sensu_stricto_1 compared with the control,
which could reduce the diarrhea ratio by producing volatile fatty acids (VFAs), promot-
ing the adherence of pathogens to the intestinal mucus barrier, decreasing the contents
of inflammatory factors [10,48,54,55]. Numerous studies reported B. licheniformis may
have distinct influences on the manipulation of intestinal microbiota, even the probiotics
belonging to the same genus/species. Several factors influence the composition of gut
microbial communities, including the level and subtype of probiotics, the feed formula, and
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the feeding mode. Therefore, the effects and mechanism of B. licheniformis on microbiota
required further research.

5. Conclusions

A diet supplemented with probiotic BL−S6, a new subtype of B. licheniformis, im-
proved piglets’ gut health and growth performance in weaned piglets. Furthermore, we
demonstrated that BL−S6 promoted intestinal integrity, which was associated, in part, with
modulating intestinal barrier function and microbial diversity, thus providing a new option
for us in pig production to prevent diarrhea.

Supplementary Materials: The following supporting information can be downloaded at: https:
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