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Abstract

Purpose of review: To discuss the mechanisms by which GLP-1 agonists and bariatric surgery 

improve cardiovascular outcomes in severely obese patients.

Recent findings: Recent studies have demonstrated that both GLP-1 agonist use and bariatric 

surgery reduce adverse cardiovascular outcomes. Improvements in traditional atherosclerosis risk 

factors in association with weight loss likely contribute, but weight loss-independent mechanisms 

are also suggested to have roles.

Summary: We review the clinical and preclinical evidence base for cardiovascular benefit of 

LP-1 agonists and bariatric surgery beyond traditional risk factors, including improvements in 

endothelial function, direct impacts on atherosclerotic plaques and anti-inflammatory effects.
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Introduction

Obesity, officially designated as a chronic disease by the American Medical Association in 

2013, is a global epidemic with steadily rising prevalence.1,2 Over 40% of American adults 
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are obese,1 and in 2016, approximately 13% of the world’s population was obese – three 

times the prevalence in 1975.3 Obesity is an independent risk factor for atherosclerosis, and 

the World Health Organization estimates that nearly 25% of the worldwide cardiovascular 

disease (CVD) burden is attributable to obesity.4 Obesity is associated with greater 

prevalence and incidence of multiple causative atherosclerosis risk factors, such as diabetes, 

hypertension and dyslipidemia.5-8 Obesity may also directly contribute to atherogenesis and 

atherosclerosis progression independent of these comorbidities. 9,10

Lifestyle interventions – including dietary modification – are regarded as the cornerstones 

of obesity management, but are generally associated with only modest weight reduction 

and are often difficult for patients to maintain.11 Their utility in the prevention of 

major cardiovascular events (death from cardiovascular causes, myocardial infarction, or 

stroke) in high-risk individuals (i.e., obese adults with diabetes) is also unproven: to 

date, no randomized trials evaluating intense lifestyle interventions have demonstrated 

reductions in cardiovascular events in patients with obesity.12 Current multi-society 

guidelines recommend adjunctive pharmacotherapy in addition to lifestyle modification for 

patients with BMI ≥ 30 kg/m2 or ≥ 27 kg/m2 with adiposity-associated comorbidities.13,14 

Surgical therapies are recommended in addition to diet and lifestyle modification in adults 

with BMI ≥ 40mg/kg2 or BMI ≥ 35mg/kg2 with associated obesity-related comorbid 

conditions.13 Despite these guidelines, only about 1% of eligible patients fill an anti-obesity 

prescription or undergo bariatric surgery.15,16 This may reflect a missed opportunity for 

reduction of CVD risk. Although each has limitations due to their observational nature, 

multiple large studies strongly suggest that bariatric surgery significantly lowers risk of 

adverse cardiovascular events,17-19 and multiple randomized trials evaluating cardiovascular 

outcomes in patients using glucagon-like peptide 1 (GLP-1) agonist agents have shown 

reduction in cardiovascular events.20 Both surgery and GLP-1 receptor agonists produce 

significant weight loss which is associated with improvements in many typical CVD risk 

factors. However there is emerging evidence that additional mechanisms - including effects 

on vascular function, plaque composition, and platelet activity - also contribute to favorably 

impact cardiovascular outcomes. In this focused review, we will highlight how these 

effective weight loss modalities (GLP-1 agonists and bariatric surgery), beyond their well-

known favorable effects on the modification of traditional risk factors, may directly alter the 

pathophysiologic processes underlying atherosclerosis and lead to improved outcomes.

Obesity pharmacotherapy

While not for lack of effort, the armamentarium of weight loss pharmacotherapy remains 

quite limited.21 Until 2014, the United States’ Food and Drug Administration (FDA) had 

approved only three agents: orlistat (a pancreatic lipase inhibitor), phentermine/topiramate 

(a combination sympathomimetic and antiepileptic agent), and naltrexone/bupropion (a 

combination opioid antagonist and dopamine/norepinephrine reuptake inhibitor) for the 

treatment of obesity. These agents - while associated with weight loss of ~6% (naltrexone/

bupropion) to ~10% (phentermine/topiramate) – have not been shown to improve 

cardiovascular outcomes.2,22,23 Further, several previously approved weight loss agents 

have been withdrawn due to significant adverse effects: sibutramine increased myocardial 

infarction and stroke,24 fenfluramine was found to induce acute pulmonary hypertension 
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and valvular heart disease,25 and more recently, lorcaserin (a selective 5-hydroxytyramine 

2c serotonin receptor agonist) was removed from the market after long-term safety data 

revealed increased rates of malignancy.26

GLP-1 agonists

The past decade, however, has witnessed a sea change within the medical weight loss field, 

namely with the development of the GLP-1 agonists. These agents, initially developed for 

management of diabetes, have emerged as very useful for the management of obesity. They 

are also the first glucose-lowering or weight loss facilitating medications to be consistently 

associated with improved cardiovascular outcomes – an effect that appears to be at least 

partly independent from their impact on body weight and reduction in blood glucose.20,27 

Importantly, at the time of this article, trials showing improved CVD outcomes with GLP-1 

agonists have exclusively been performed in patients with diabetes and at doses lower than 

those used specifically for weight loss (though weight loss has been consistently seen in the 

GLP-1 agonist arm of the major cardiovascular outcomes trials).20 Cardiovascular outcomes 

trials involving weight-loss dosing for GLP-1 agonists are currently ongoing.28

There is currently one GLP-1 agonist approved for weight loss: liraglutide (at 3.0mg daily 

subcutaneous dosing), largely based on the results of the SCALE (Satiety and Clinical 

Adiposity – Liraglutide Evidence) trial.29 In SCALE, 3,371 adults with overweight or 

obesity (and without diabetes) were randomized to liraglutide (3.0mg daily subcutaneous 

dosing) vs. placebo. After 56 weeks, patients randomized to liraglutide had lost a mean 

8.0% of their baseline weight, compared to 2.6% in the placebo arm.29 Another GLP-1 

agonist approved for the management of diabetes, semaglutide, is currently under evaluation 

as a weight loss treatment, and evidence suggests it may be more effective than liraglutide. 

The recent STEP-1 trial (Semaglutide Treatment Effect in People with Obesity) randomized 

1,961 adults with overweight or obesity (like SCALE, also without diabetes) to weekly 

semaglutide (2.4mg subcutaneous dosing). After 68 weeks, 50.5% of patients randomized 

to semaglutide had lost ≥15% of their baseline weight. The mean reduction in weight from 

baseline in the semaglutide arm was 14.9%, a degree of weight loss only previously seen in 

bariatric surgery.30

Potential Mechanisms of Benefit in Atherosclerosis

Native GLP-1 is an incretin hormone secreted by intestinal epithelial cells in response 

to feeding. It binds to GLP-1 receptors in the pancreas, potentiating insulin secretion, 

suppressing glucagon production, and enhancing glycemic control. GLP-1 receptors are 

also found in the arcuate nucleus of the hypothalamus where activation is thought to 

increase satiety and suppress appetite.2 As mentioned previously, there has been consistent 

randomized trial data showing that the use of GLP-1 agonists is associated with improved 

cardiovascular outcomes in patients with diabetes.20 Beyond lowering blood glucose, 

GLP-1 agonists are associated with improvement of other traditional atherosclerosis risk 

factors in obese patients with diabetes, including improvements in blood pressure31,32 and 

possibly low-density-lipoprotein cholesterol.33 Emerging evidence suggests these benefits 

are observed in obese patients without diabetes, as well.29,30 The beneficial impact on 
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cardiovascular outcomes, absent in most weight loss or diabetes medications, appears 

unique to the GLP-1 agonist medication class as liraglutide elicits similar (or less) 

reduction in blood glucose compared to other diabetes agents and less weight loss 

than phentermine/topiramate34,35 – suggesting weight-loss (and blood glucose-lowering) 

independent mechanisms of benefit. Thus, mechanisms outside of the modification of 

“traditional” atherosclerosis risk factors are hypothesized to play a role in the improved 

outcomes associated with these agents. We outline several of these mechanisms below.

Vascular Effects—GLP-1 has been shown to have direct effects on the endothelium, 

possibly through a nitric oxide (NO)-dependent mechanism. NO, synthesized by endothelial 

nitric oxide synthase (eNOS) in endothelial cells, has potent vasodilatory, anti-inflammatory, 

and anti-thrombotic effects.36 Early studies showed that recombinant GLP-1 promoted 

endothelial vasodilation in rat pulmonary arteries, an effect that was abolished after 

administration of a nitric oxide (NO) inhibitor, suggesting the response may be NO-

dependent.37 The impact of GLP-1 on NO activity has been demonstrated in other in 

vitro studies. For example, application of exendin-4 (a form of exenatide, a GLP-1 agonist) 

to human coronary artery endothelial cells produced dose-dependent increases in eNOS38 

and exposure of human umbilical vein endothelial cells to either recombinant GLP-1 or 

exendin-4 resulted in dose-dependent increases in nitric oxide (NO) production and eNOS 

phosphorylation, respectively.36,39 In a study evaluating the metabolic effects of bariatric 

surgery, rats that received a sham bariatric surgery but were subsequently treated with 

liraglutide for 8 days demonstrated improved NO bioavailability and improved endothelium-

dependent relaxation.40

GLP-1 agonists may also improve vascular health and function via direct effects on 

the extracellular matrix. Matrix metalloproteinases (MMPs) are thought to promote 

atherosclerosis through the degradation of the extracellular matrix and by stimulating 

proliferation of vascular smooth muscle cells.41 Multiple recent in vitro studies have 

shown that incubation of human coronary artery smooth muscle cells and coronary artery 

endothelial cells with GLP-1 (or exendin-4) inhibits the expression of pro-atherosclerotic 

MMPs in the extracellular matrix.41,42 GLP-1 may even promote the proliferation of 

endothelial cells. In the above study by Erdogdu et al.,38 incubation of human coronary 

artery endothelial cells with GLP-1 agonists caused an increase in cell number, hypothesized 

to be mediated through cAMP-dependent protein kinase (PKA) and phosphoinositide 3-

kinase (PI3K) pathways. Another study demonstrated that incubation of endothelial cells 

with GLP-1 reduced advanced glycation end product-induced apoptosis.43 Reduction of 

oxidative stress in hyperglycemia by GLP-1 may mediate this inhibition of apoptosis.44

Perhaps through these mechanisms, use of GLP-1 agonists has been shown to be associated 

with improved vascular function in vivo. Patients with diabetes administered recombinant 

GLP-1 exhibit increased flow-mediated vasodilation after brachial artery reactivity testing,45 

while another study using exenatide in diabetic patients demonstrated improved coronary 

flow velocity reserve in conjunction with decreased serum levels of soluble intercellular 

adhesion molecule-1 (ICAM-1) and soluble vascular cell adhesion molecule-1 (VCAM-1).39 

As mentioned above, a modest reduction in blood pressure has been seen in GLP-1 agonist 

trials;20 although it is difficult to separate this reduction in blood pressure from the expected 
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impact from weight loss achieved, it is plausible that the above mechanisms may contribute 

to this clinical outcome.

Additional work suggests that GLP-1 agonists may also reduce vascular stiffening and 

calcification. Exenatide has been shown to reduce the expression of receptor activator of 

nuclear factor-κB ligand (RANKL) in a dose-dependent manner, subsequently reducing 

the calcification of human vascular smooth muscle cells.46 Similar findings were 

seen after incubating human vascular smooth muscle cells with liraglutide, inhibiting 

osteoblastic differentiation and calcification through activation of the PI3K/Akt/mTOR/

S6K1 signaling.47

Direct Plaque Effects—GLP-1 agonists may stabilize atherosclerotic plaques, possibly 

via direct anti-inflammatory effects. In an animal model, rabbits treated with GLP-1 agonists 

exhibited slowed plaque progression compared to placebo, with histologic evidence of 

reduced macrophage infiltration, despite higher LDL-cholesterol levels than the control 

animals.48 Similar findings have been seen in ApoE knockout mice treated with native 

GLP-1 and its split products49 or liraglutide,50 and in ApoE/Irs2 knockout mice (a murine 

model of metabolic syndrome and atherosclerosis) treated with lixisenatide or liragltuide.51 

There is also limited evidence to suggest that this effect may extend to humans. In a study 

evaluating patients who recently underwent carotid endarterectomies, the plaques of patients 

taking GLP-1 agonists, when compared to the plaques of patients not taking GLP-agonists, 

were of similar absolute size but exhibited less evidence of inflammation and oxidative 

stress along with a lower proportion of macrophage-rich areas and lower concentration 

of T-cells.52 The mechanism of suppressed macrophage activation may be from a GLP-1-

associated increase in adiponectin (which is thought to suppress macrophage activation)53 

or sirtuin (SIRT) expression (the exact role of SIRT in the pathophysiology atherosclerosis 

is still being elucidated, though several studies have suggested it has anti-inflammatory 

properties).52

Platelet Function—Obesity is associated with increased platelet activation, which may 

contribute to adverse atherothrombotic outcomes in the condition.54-56 GLP-1 agonists 

may impact platelet function, contributing to the reduction in cardiovascular events over 

relatively short study periods. This may be a direct effect, as human platelets exhibit GLP-1 

receptors.57.58 An in vitro study using human platelets found that incubation with exenatide 

resulted in inhibition of agonist-induced platelet aggregation.57 The same study showed 

that administration of a single dose of exenatide inhibited thrombus formation in vivo in a 

murine artery injury model. The antithrombotic effect was lost in mice without functional 

GLP-1 receptors.57 In murine models of sepsis, injection of liraglutide resulted in decreased 

microvascular thrombosis and improved endothelial function, effects that were attenuated 

in GLP-1-receptor-deficient mice.59 In the same study, incubation of human platelets and 

cultured monocytes with exendin or liraglutide inhibited platelet activation, presumably 

through a cAMP/PLA-dependent mechanism.59 Finally, in a rat model of chronic kidney 

disease, administration of exendin-4 improved the function of newly created arteriovenous 

fistula function, reducing ADP-stimulated platelet adhesion.60
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Bariatric surgery

A metabolic surgical procedure was actually one of the first interventions proven to improve 

cardiovascular outcomes. The results of the POSCH (Program on the Surgical Control of 

the Hyperlipidemias) trial demonstrated that lipid lowering via partial-ileal bypass surgery 

reduced adverse events in individuals with coronary artery disease in the pre-statin era.61 

It is critical to note, however, that patients with obesity were excluded from this trial. 

In the intervening decades, metabolic surgery for obesity treatment (bariatric surgery) has 

grown exponentially. During this time, a number of surgeries have risen and fallen from 

prominence. Currently, two techniques are used in more than 95% of all bariatric surgical 

procedures. Sleeve gastrectomy, a procedure developed approximately 15 years ago, is 

the predominant procedure performed in the United States.62 Roux-en-Y gastric bypass 

(RYGB), one of the earliest developed procedures, and still considered the gold-standard for 

diabetes treatment in the setting of obesity,63 accounts for most of the rest.

Bariatric surgery is far more effective at achieving marked, sustained weight loss in 

severe obesity than either lifestyle or pharmacologic interventions,64 and through this 

profound weight loss can result in complete resolution, or at least improvement, in diabetes, 

hyperlipidemia, and hypertension in the majority of obese patients.65 The effects of bariatric 

surgery – particularly sleeve gastrectomy and RYGB – on traditional atherosclerosis risk 

factors are well described.23,66 This risk factor modification is thought to contribute 

to reductions in major adverse cardiovascular events and mortality in those who have 

undergone a bariatric procedure,17,18 including those with previous ischemic heart disease 

or heart failure.19,67 However, accumulating data suggest that additional effects of bariatric 

surgery, beyond improvement in traditional risk factors, may suppress atherogenesis and 

atherosclerosis progression. These include changes in incretin and bile acid signaling, 

modulation of the gut microbiome, improved vascular function, altered adipokine profile, 

and reduced inflammation. These mechanisms will be addressed below.

Incretin and Bile Acid Signaling

As discussed above, the incretin hormone GLP-1 may improve atherosclerotic risk through 

diverse mechanisms beyond its role in insulin sensitization and weight loss. Several studies 

have demonstrated increased postprandial levels of GLP-1 following bariatric surgery, 

specifically following RYGB.68,69 The unique anatomic gut arrangement following RYGB 

leads to rapid carbohydrate transit from the pylorus to the small intestine.70 Additionally, 

the modified enterohepatic circulation of bile acids created following RYGB increases 

intraluminal and systemic concentrations of these compounds, which modifies the release 

of gut hormones such as GLP-171 via binding to farnesoid-X (FXR) and Takeda G-protein-

coupled receptor 5 (TGR5).72 Combined, postprandial GLP-1 secretion following RYGB is 

enhanced. Notably, the increases following RYGB are greater than those seen with sleeve 

gastrectomy,70 suggestive of a specific role for the anatomical alterations in RYGB in 

inducing this response.

The increased concentrations of bile acids following RYGB may have beneficial effects 

on atherosclerosis via mechanisms independent from GLP-1 as well. Absence of 

FXR has been shown to be associated with worse lipid profiles and results in more 
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extensive atherosclerotic lesions in several mouse models of hypercholesterolemia and 

atherosclerosis.73,74 Additionally, administration of synthetic FXR agonists in APOE−/− 

and LDLR−/− mice prevents plaque formation.75 Administration of TGR5 agonists in 

LDLR−/− mice has also been shown to attenuate atherosclerosis via dampened intraplaque 

inflammation.76 Taken together, increased concentrations of bile acids following RYGB 

could plausibly have direct anti-atherogenic effects via FXR and TGR5 agonism.

The increases in GLP-1 and bile acids after RYGB may mediate the rapid and surgery-

specific metabolic improvement achieved within days of the procedure, before any 

substantial weight loss occurs.40 For example, a study by Osto et al. showed that eight 

days after RYGB in rats, higher plasma levels of bile acids and GLP-1 were associated with 

improved endothelium-dependent vascular relaxation ex vivo, as measured by percent of 

pre-contraction to norepinephrine in isolated aortic rings.40 The beneficial effect of bariatric 

surgery on vascular function outside of GLP-1- and bile acid-mediated effects is discussed 

further below.

Gut Microbiome

Obesity is associated with gut dysbiosis, which encompasses both modifications in gut 

microbiota composition as well as reduced microbial gene richness and diversity.77 Bariatric 

surgery has been shown to alter the gut microbiota composition in both short-term78,79 

and long-term studies.80 Tremaroli et al. analyzed the gut microbiota of weight-stable 

women nine years after randomization to either RYGB or vertical banded gastroplasty 

(VBG). They found significant differences in microbiota composition for RYGB versus 

non-operated women with BMI matched to each patient’s pre-surgical BMI (OBS), but not 

for VBG versus OBS, again highlighting the unique metabolic effects of RYGB – in this 

case, even nine years after the procedure.80 Importantly, the microbiomes of OBS and non-

operated women with BMI matched to the patient’s post-surgical BMI were similar, strongly 

suggesting that differences in gut microbiota occur due to bariatric surgery specifically and 

not from weight loss itself.

Bariatric surgery leads to significantly increased gut microbiota richness.79 This increase in 

microbial diversity is associated with reduced insulin resistance, adiposity, dyslipidemia, 

and systemic inflammation.81 Increased microbial diversity may also reduce bacterial 

energy harvest from food and decrease caloric absorption, thus facilitating weight loss.82 

Additionally, the altered microbiota likely contributes to increased circulating bile acid 

concentrations and associated increases in GLP-1,23,72 as the gut microbiota is an important 

regulator of bile acid pool composition.83,84

It is important to mention that, in contrast to the wholly beneficial impacts of medical 

and surgical weight loss therapies discussed so far, several studies in both animals and 

humans have demonstrated that circulating trimethylamine-N-oxide (TMAO) is increased 

following bariatric surgery.68,69,80,85 TMAO, a metabolite exclusively generated by the 

gut microbiota from dietary phosphatidylcholine and carnitine, is mechanistically linked 

to both atherosclerosis and thrombosis.86,87 Interestingly, Tremaroli et al. found that 

TMAO was increased following RYGB but not VBG.80 In another study, Trøseid and 

colleagues reported equivalently increased TMAO levels following RYGB and duodenal 
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switch procedures, whereas TMAO levels were unchanged following weight loss induced 

by lifestyle interventions.85 Finally, there are minimal data on the effect of SG on TMAO, 

despite its status as the dominant bariatric surgical procedure for more than a half-decade. 

These observations highlight the persistent uncertainty surrounding the role of the gut 

microbiome in atherogenesis and progression. The relevance of the changes following 

bariatric surgery remains unclear and highlight the need for further study of the myriad 

metabolic impacts of different bariatric procedures.

Vascular Function and Subclinical Atherosclerosis

Several surrogate markers of endothelial function and subclinical atherosclerosis have been 

used to evaluate the cardiovascular effects of bariatric surgery, such as carotid intima-media 

thickness, flow-mediated dilation, and nitrate-mediated dilation.88,89 These markers have 

been shown to be strong predictors of CV events,90-93 and are suboptimal in obese 

subjects.94,95

A meta-analysis of studies evaluating changes in in the above measures of vascular function 

and plaque burden in obese patients undergoing bariatric surgery found that surgery resulted 

in a significant reduction of intima-media thickness and increase in brachial artery flow-

mediated dilation.88 These effects were enhanced when restricted to subjects who underwent 

RYGB specifically. While there was no significant increase of nitrate-mediated dilation 

after bariatric surgery when all surgical procedures were included, significant improvements 

were again seen when restricted to subjects undergoing RYGB. One study included in the 

meta-analysis also included a group treated with medical therapy alone and demonstrated 

that bariatric surgery resulted in a greater improvement in endothelial function than 

medical treatment alone, although the non-surgical weight loss group experienced far less 

weight loss.96 Nonetheless, these data suggest a cardioprotective effect of bariatric surgery, 

specifically RYGB, through beneficial effects on endothelial function and among patients 

with established subclinical atherosclerosis,88 beyond that expected with the improvement of 

traditional atherosclerosis risk factors associated with weight loss.

One potential mechanism by which bariatric surgery has vascular protective effects is via 

GLP-1. As discussed above, postprandial levels of GLP-1 are elevated following bariatric 

surgery.68,69 Additional mechanisms by which bariatric surgery may enhance vascular 

function include improvement in the hypercoagulable state of obesity via modulation of 

the hemostatic and fibrinolytic balance,97 and reduction in obesity-associated systemic 

inflammation,98 which will be further discussed in the next section.

Adipokine normalization

Obesity is characterized by dysfunctional adipose tissue, which is implicated in 

atherosclerosis development and progression partly through increased secretion of leptin 

and deficient adiponectin.99 Leptin concentrations similar to those found in obesity 

have been shown to impair NO-dependent coronary artery vasorelaxation induced by 

acetylcholine in dogs both in vitro and in vivo,100 and leptin has been shown to augment 

ADP-induced platelet aggregation in vitro in studies of human platelets when applied at 

concentrations found in obese subjects.101,102 Furthermore, in vivo studies suggest that 
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leptin is directly involved in atherogenesis. Ob/ob mice—mice lacking the gene responsible 

for the production of leptin—are resistant to atherosclerosis,103 and exogenous leptin 

administration has been shown to aggravate spontaneous atherosclerotic lesions in ApoE−/− 

mic.104 Hyperleptinemia has also been associated with several additional proatherogenic 

mechanisms including increased oxidative stress, vascular smooth muscle cell (VSMC) 

proliferation, and vascular inflammation.105 Therefore, it is unsurprising that increased 

leptin levels are associated with increased intima-media thickness, atheroma formation, and 

myocardial infarction.106

Adiponectin has anti-atherosclerotic properties via enhanced endothelium-dependent 

vasodilation, reduced VSCM proliferation, reduced scavenger receptors in macrophages, 

and increased cholesterol efflux from atherosclerotic plaques.107 Adiponectin has also 

been shown to reduce atherosclerosis burden in ApoE-knockout mice.108 This study 

implicated reduced endothelial activation and increased plaque inflammation. This could 

possibly be mediated by adiponectin-elicited increases in NO production through eNOS 

activation which has been shown to improve endothelial cell function in vitro.109 Increased 

adiponectin may also reduce atherosclerosis and improve cardiovascular outcomes by 

inducing increased cholesterol efflux from plaques.107 Adiponectin is a strong predictor of 

high-density lipoprotein cholesterol efflux capacity, a functional marker inversely associated 

with incidence of cardiovascular events,110 irrespective of BMI and fat distribution.111

A recent meta-analysis by Askarpour et al. demonstrated that leptin levels are substantially 

decreased, and adiponectin levels increased following bariatric surgery.112 Furthermore, 

investigators comparing cardiovascular risk markers following intensive medical therapy 

and bariatric surgery found that RYGB results in relatively larger decreases in leptin 

was significantly and increases in adiponectin.113 By correcting these abnormalities in 

circulating adipokines, the benefits described are suggested to play a role in improved 

cardiovascular outcomes following bariatric surgery. For example, bariatric surgery has 

been shown to restore CEC in both rats and humans.40,114-116 Aron-Wisnewsky et al. 

showed that while ABCA1-independent CEC increased significantly following RYGB, it 

was not significantly affected by intensive medical therapy.114 Interestingly, Heffron et al. 

showed that SG, but not RYGB, improved ABCA1-independent CEC at 6-month follow-up. 

While both procedures improved ABCA1-independent CEC at 12-month follow-up, SG 

produced overall superior improvement.115 Further studies are needed to further elucidate 

these surgery-specific effects on CEC.

Conclusions

The worldwide prevalence of obesity continues to rise, and through a variety of mechanisms, 

contributes to the global burden of cardiovascular disease. The prevention of obesity - 

through the foundation of a healthy lifestyle - remains paramount, but is increasingly failing. 

With the development of the GLP-1 agonists and increasing use of bariatric surgery, we 

now have pharmacologic and surgical options to not only augment weight loss but to 

improve cardiovascular outcomes in patients with severe obesity. While we have outlined 

many potential mechanisms by which GLP-1 agonists and bariatric surgery may reduce 

atherosclerotic cardiovascular disease, few have been rigorously tested. Further study and 
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improved understanding of the weight-loss independent mechanisms underlying reduced 

atherosclerotic cardiovascular disease in obese patients treated with surgical management or 

GLP-1 agonists is sorely needed. The expanded knowledge may lead to the development 

of novel therapies to reduce atherosclerotic cardiovascular disease risk in patients with or 

without obesity.
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