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Abstract: The epithelial to mesenchymal transition (EMT) is a cellular process that has been linked to
the promotion of aggressive cellular features in many cancer types. It is characterized by the loss of
the epithelial cell phenotype and a shift to a more mesenchymal phenotype and is accompanied by
an associated change in cell markers. EMT is highly complex and regulated via multiple signaling
pathways. While the importance of EMT is classically described for carcinomas—cancers of epithelial
origin—it has also been clearly demonstrated in non-epithelial cancers, including osteosarcoma (OS),
a primary bone cancer predominantly affecting children and young adults. Recent studies examining
EMT in OS have highlighted regulatory roles for multiple proteins, non-coding nucleic acids, and
components of the tumor micro-environment. This review serves to summarize these experimental
findings, identify key families of regulatory molecules, and identify potential therapeutic targets
specific to the EMT process in OS.

Keywords: osteosarcoma; epithelial-mesenchymal transition; transcriptional regulation; long non-coding
RNAs; circular RNAs; microRNAs; tumor microenvironment; cancer therapeutics

1. Introduction

Osteosarcoma (OS) is a primary bone malignancy with an annual incidence of 2–4 per
million [1]. It typically affects children, teens, and young adults [2], with a peak incidence
from ages 10–19 [1], a second peak in adults over 60 [2], and a slight male preponderance [3].
The overall 5-year survival rate for OS is 60% but decreases to 27% in the presence of distant
metastases [4]; the rate of metastases at diagnosis is 18% [5].

The origin of OS is poorly understood. As a sarcoma, it arises from mesenchymal
cells, but it is not currently known whether the precursor cells are osteoblasts or mesenchy-
mal stem cells [6]. Although the etiology of OS is largely a mystery, multiple risk factors
have been identified. These include medical conditions such as hereditary retinoblastoma,
Li-Fraumeni syndrome, Werner syndrome, Rothmund-Thompson syndrome, Bloom syn-
drome, and Paget’s disease [3]. Other risk factors include exposure to ionizing radiation
and alkylating agents, both of which may have been used in the treatment of a prior
malignancy [3].

The mainstay of treatment for osteosarcoma is surgical resection and frequently in-
volves both neoadjuvant and adjuvant chemotherapy for higher grade tumors [7]. While
advances in surgical techniques and chemotherapeutic regimens were associated with an
initial improvement in outcomes, overall survival in OS has not significantly changed in
several decades [8]. As medicine becomes more personalized, there is a growing interest
in the identification of novel targeted therapies. A key component in developing targeted
therapy is identifying specific pathways, proteins, or other molecules essential to cancer
cell function. One of the cellular features often associated with aggressive cancers is the
epithelial to mesenchymal transition (EMT).

Biomolecules 2023, 13, 398. https://doi.org/10.3390/biom13020398 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13020398
https://doi.org/10.3390/biom13020398
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://doi.org/10.3390/biom13020398
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13020398?type=check_update&version=1


Biomolecules 2023, 13, 398 2 of 22

2. EMT in Cancer

EMT is depicted in Figure 1. It is a process by which cells exhibiting an epithelial
phenotype adopt a mesenchymal phenotype, which facilitates migration, invasion, and
metastasis [9]. It exists in equilibrium with a reverse and complementary process, the
mesenchymal to epithelial transition (MET), wherein cells revert back to an epithelial
phenotype. Primary epithelial tumors exhibit epithelial cell markers such as E-cadherin.
These cells demonstrate apical polarity, adhesion to a basement membrane, and tight
cellular junctions [10]. For many cancers, EMT is critical in the early transition from
normal to malignant cells. It is characterized by downregulation of epithelial cell markers,
destabilization and loss of cell–cell junctions, loss of adherence to basement membrane and
apical polarity, and cytoskeletal reorganization [9]. The result of these changes is a cell with
mesenchymal morphology and characteristics.
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Figure 1. The epithelial to mesenchymal transition (EMT) and the reverse process of the mesenchymal
to epithelial transition (MET). EMT is characterized by a loss of epithelial cell markers, an increase in
mesenchymal cell markers, a loss of apical cell polarity, a loss of tight cell junctions, and an increased
capacity for cell migration and invasion. MET is characterized by a loss of mesenchymal cell markers,
an increase in epithelial cell markers, increased apical cell polarity, tight junctions, adherence to a
basement membrane, and increased cell proliferation.

Given the migratory potential of mesenchymal cells compared to epithelial cells, EMT
has long been linked to cancer metastasis. However, inhibition of EMT has not been shown
to affect the establishment of cancer metastases in vivo [11,12], and the cells found within
metastatic tumors are more likely to exhibit an epithelial phenotype [12,13]. Despite this,
tumor cells that have undergone EMT appear to drive local invasion and angiogenesis
of the primary tumor [13]. These results suggest that EMT is critical for tumor invasion
into the local vascular system, allowing cells to migrate to distant organs where secondary
tumors are established largely by cells with an epithelial phenotype, which have a greater
propensity for proliferation [9]. These may be either cells that have undergone EMT and
subsequently MET or primary tumor cells that did not undergo EMT [13].

The molecular pathways associated with EMT are summarized in Figure 2. Zinc-
finger E-box binding homeobox (ZEB), snail family transcriptional repressor 1 (SNAIL),
snail family transcriptional repressor 2 (SLUG), and twist-related protein (TWIST) are
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well-known EMT transcription factors that are established downstream targets of multiple
signaling pathways, including the canonical wnt/β-catenin pathway, the neurogenic locus
notch homolog protein (Notch) pathway, the Transforming Growth Factor β/Suppressor
of Mothers Against Decapentaplegic (TGFβ/SMAD) pathway, the phosphoinositide 3-
kinase (PI3K)/Akt pathway, the mitogen-activated protein kinase (MAPK) pathway, the
Ras/Raf/Mitogen-activated protein kinase/ERK kinase/extracellular-signal-regulated
kinase (RAS/RAF/MEK/ERK) axis, and the Janus kinase-Signal Transducer and Activator
of Transcription JAK/STAT pathway [10]. These signaling cascades often interact, share
many intermediaries, and impact the regulation of one another. This presents a challenge
for studying and targeting EMT, as the individual pathways are difficult to isolate.
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Figure 2. Signaling pathways in EMT. EMT regulation is complex and affected by multiple pathways,
which also interact with each other. Regulation is typically via the Transforming Growth Factor
β (TGFβ)/SMAD, Notch, canonical wnt, phosphoinositide 3-kinase (PI3K)/Akt, RAS/RAF, and
JAK/STAT pathways. The transcription factors that mediate EMT are primarily Snail, Slug, ZEB1,
and TWIST. EMT is characterized by an increased production of N-cadherin, vimentin, and fibronectin,
and MET is characterized by an increased production of E-cadherin and Occludin.

3. EMT Signaling Pathways
3.1. TGFβ/SMAD Pathway

The TGFβ family of proteins includes three TGFβ isoforms, activins, and bone mor-
phogenic proteins (BMPs) [14]. In EMT, TGFβs bind to TGFβ receptors (1/2), which initiate
a signaling cascade, leading to the increased transcription of genes involved in EMT. Bind-
ing of TGFβ to its receptors (1/2) leads to phosphorylation of SMAD2 and SMAD3, which
then form a complex with SMAD4. BMPs also bind TGFβ receptors, activating SMAD1
and SMAD5 and then forming a complex with SMAD4. These trimeric complexes migrate
to the nucleus to act as transcription factors.
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SMAD complexes activate the mesenchymal genes vimentin and fibronectin, as well
as the EMT transcription factors Snail, Slug, Zinc finger E-box-binding homeobox 1 (ZEB1)
and Twist. These, in turn, repress E-cadherin and can upregulate the expression of TGFβ
ligands, establishing a positive feedback loop to maintain EMT [9,15,16].

3.2. Canonical wnt Pathway

The canonical wnt pathway is considered to be a key activator of EMT [9]. Signal-
ing is initiated by a group of wnt ligands that bind to Frizzled receptors and trigger a
cascade of events, leading to the nuclear translocation of β-catenin. β-catenin is constitu-
tively produced in the cell and stored in cytosolic pools. In the absence of wnt signaling,
phosphorylated β-catenin is associated with a destruction complex, ubiquitinated, and
degraded by proteasomes. Following activation of the canonical wnt pathway, β-catenin
is dephosphorylated and translocates to the nucleus, where it acts as a transcriptional
co-factor to induce the expression of genes involved in cell differentiation, proliferation,
and tumorigenesis [17,18].

This pathway has been directly implicated in EMT via the expression of Twist, Slug, N-
cadherin, and the repression of E-cadherin [19]. The known EMT transcription factor Snail
has been shown to positively regulate wnt signaling [20]. The inhibition of Secreted Frizzled
Related Protein 1 (SFRP), a negative regulator of wnt ligands, has also been shown to have
EMT-like effects in breast carcinoma cells in vitro, while sensitizing them to TGFβ-induced
EMT [21].

β-catenin is also located at the cell membrane as part of an E-cadherin-containing
multi-component adherens junction complex, which is a component of cell–cell interaction
junctions. β-catenin contributes to anchoring E-cadherin, a transmembrane cell–cell adhe-
sion protein at the cell surface to the intracellular actin cytoskeleton. β-catenin is released
from the adherens complex upon disruption of these adherens junctions between cells.
Once available in the cytosol, it enters the pathway described above and is either phospho-
rylated and degraded or, if the wnt pathway is active, dephosphorylated and translocated
to the nucleus to function as a transcription factor for EMT-genes [22]. E-cadherin can
therefore act as a negative regulator of the canonical wnt pathway by sequestering most of
the β-catenin in the epithelial cell membrane.

3.3. Notch Pathway

The Notch pathway has been implicated in inducing EMT in both normal and neoplas-
tic tissues, and is involved in controlling cell fate, differentiation, and proliferation. Four
isoforms (Notch1 through Notch4) are known to bind Delta-like or Jagged family ligands.
This interaction triggers a series of proteolytic events leading to the active fragment Notch
Intracellular Domain (Notch ICD), which then acts in the nucleus, where it associates with
binding partners and transcriptional activators [23]. Several components of the Notch path-
way are highly expressed at the invasive margins of tumors, which express EMT markers
such as vimentin, suggesting an important role for the Notch pathway in the regulation of
EMT [24]. Notch acts via transcriptional regulation of ZEB, Snail, and Slug, which repress
expression of E-cadherin and induce expression of vimentin and fibronectin [23–25].

There is crosstalk between the Notch and TGFβ pathway that occurs via SMADs.
As described above, the SMAD family of proteins are integral to TGFβ signaling. They
have also been shown to associate with Notch-ICD. This affects the expression of genes
downstream of both Notch and TGFβ that are required for mesenchymal differentiation, a
key component in EMT [26]. Silencing components of the Notch pathway have also been
shown to prevent TGFβ-induced EMT [27].

3.4. Tyrosine Kinase Pathways

Mitogenic growth factors also play a role in the regulation of EMT. The binding of
these growth factors causes their receptors to dimerize and induces the activation of both
receptor and non-receptor tyrosine kinases (TKs). This enables the activation of several
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pathways—including the MAPK, JAK-STAT, and phosphatidylinositol 3-kinase-Akt (PI3-
Akt) pathways. All of these have been implicated in EMT, and are involved in cell growth,
proliferation, and migration [28]. PI3K/Akt has also been shown to play an important role
in the regulation of transcriptionally active β-catenin, a key molecule in the previously
discussed wnt signaling pathway [29]. Inhibition of TKs is a growing field of study in
cancer therapeutics, with multiple inhibitors currently under investigation [30].

Inhibition of fibroblast growth factor (FGF), a mitogenic growth factor that participates
in the induction of EMT via activation of the MAPK, induces the reverse process MET
in vitro and delays tumor growth in vivo [31]. One isoform, FGF2, has been associated
with reduced overall survival in several carcinoma types if overexpressed [31].

The binding of epidermal growth factor (EGF) to its receptor leads to activation of
MAPK pathway and decreased expression of E-cadherin [32]. EGF also activates the JAK2-
STAT3 pathway, which leads to EMT activation via Twist [33]. Additionally, EGF has been
shown to induce EMT via TGFβ signaling and regulation of Snail [34] and phosphorylation
of SMAD2/SMAD3 [35].

The activation of Akt, or Protein Kinase B, has been shown to upregulate the phospho-
rylation of Twist1 and inhibit apoptosis [36], and the inhibition of Akt has been shown to
induce MET [37]. For example, hepatocyte growth factor (HGF) has been shown to activate
EMT [38], which can be reversed via inhibition of the PI3K/Akt pathway. HGF was found
to enhance tumor progression and metastasis of hepatocellular carcinoma in association
with the c-MET receptor tyrosine kinase [39], a known activator of PI3K/Akt.

4. EMT in OS

As a mesenchymal cancer, the importance of EMT in OS has been disputed [40,41].
In fact, an early investigation including 4 clinical osteosarcoma samples by Sato et al.
found there was no detectable E-cadherin expression in these cells [42], suggesting that the
repression/downregulation of E-cadherin—a classically described step in EMT—would
not be possible. In contrast, Yin et al. found that 20.6% of OS tissue samples expressed E-
cadherin and those that did were less likely to metastasize, whereas the expression of Twist
was significantly related to metastases and poorer overall survival [43]. The promotion of
EMT in OS characterized by increased migration and invasion in vitro has been shown to
be mediated via upregulation of Snail [44–57], Slug [58,59], Twist [60–63], and ZEB [64–67].

The following sections give an overview of studies that have examined the roles of
different EMT regulatory molecules in OS. All of these were found to affect the expression of
EMT-related cell-markers and are correlated closely with EMT-associated cellular features
such as increased migration and invasion. Many also showed a link between their proposed
EMT-regulatory molecule and OS metastases in vivo in animal models. Taken together,
these results suggest that EMT does play a role in osteosarcoma and is associated with a
more aggressive tumor phenotype. However, the term “transition” is not ideally suited
to sarcoma cancers, and EMT may be better thought of as a set of pathways utilized to
maintain and promote the existing mesenchymal phenotype.

Sannino et al. posited a possible hybrid phenotype in sarcoma tumors cells, utilizing
the EMT and MET pathways to acquire both mesenchymal and epithelial characteristics
that favor the initiation and establishment of distant metastases [40].

The highlighted pathways important in EMT regulation have all been shown to have a
role in OS. TGFβs promote EMT and metastases in OS [68], and TGFβ inhibition has been
shown to decrease EMT in OS [58,69–74]. Chen et al. also identified that estrogen-related
receptor α (ERRα) upregulates TGF-β-mediated EMT in two OS cell lines [50]. Others have
highlighted roles for MAPK [63,75–77] and JAK/STAT [52,78–82].

Notch signaling promotes proliferation, migration, and invasion of OS cells, and
Notch overexpression increased tumor growth in vivo [83–86]. Notch inhibition reduced
chemo-resistance in OS in vitro [87,88]. Wnt signaling has also been shown to mediate EMT
in OS [49,89–104]. It has been proposed that wnt signaling is particularly important in the
pathogenesis of OS cancer stem cells [105].
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TKs are of particular interest in OS, and multiple different TK proteins have been asso-
ciated with aggressive cellular phenotypes. Many studies have demonstrated a regulatory
role in OS for the downstream TK pathways PI3K/Akt [106–114] and RAS/RAF/MEK/
ERK [61,115–118]. Multiple TK inhibitors have been a part of recently completed or ongoing
clinical trials in the treatment of OS, including Apatinib, Axitinib, Cabozantinib, Cediranib,
Crizotinib, Dasatinib, Imatinib, Pazopanib, Regorafenib, Sorafenib, and Sunitinib [119,120].

5. Regulation of EMT in OS—Proteins

As a complex and multi-faceted process, several proteins have been implicated in EMT
regulation in OS [44,48,49,53–55,61,62,64,78,89,91,93,94,97,100,106–109,112–114,116,121–151],
and these are summarized in Tables 1 and 2. These proteins were found to either
promote [44,48,53,54,61,64,78,89,93,94,97,100,106–109,112–114,116,121–146] or
inhibit [49,55,62,91,147–151] EMT in vitro, and the majority were found to be corre-
spondingly upregulated or downregulated in clinical OS tissue samples and/or established
cell lines compared to normal controls. Each group of authors found a significant correla-
tion between the studied protein and the levels of EMT-related proteins, such as E-cadherin,
N-cadherin, and vimentin. They also reported a significant effect on aggressive cellular
characteristics, such as migration and invasion ability in vitro. Where noted, the results
were confirmed in vivo with mouse xenograft experiments.

A detailed review of the individual proteins investigated for their regulatory role in
EMT of OS cells is outside of the scope of this review. Generally, their endogenous functions
can be grouped into the following families: cell cycle regulation, immunity/inflammatory,
cell signaling, cell structure, and metabolism. Each of these categories has a logical impact
on EMT and/or cancer cell behavior.

Changes to cell differentiation and cell cycle regulation are recognized mech-
anisms by which normal cells can become cancerous. We identified 22 proteins
with a regulatory role in EMT in OS whose endogenous functions impact these
processes [53,54,62,64,78,91,97,100,112,116,126,130,131,139–146,151]. This group can
be represented by several ubiquitin ligases [142,143] and deubiquitinases [97,145,146] that
are known to target proteins critical for cell growth, proliferation, and differentiation. These
were all found to be upregulated in clinical samples of osteosarcoma, and the overexpres-
sion or inhibition of these proteins was found to correlate with markers for EMT and OS
cell proliferation.

The importance of immunity and inflammation on cancer progression is widely
recognized [152], and these systems have also been implicated in the regulation of EMT [153].
Twelve of the EMT regulatory proteins described in Tables 1 and 2 function as part of immu-
nity and inflammation [44,48,107,109,114,123,124,127,132,135,137,150], many of which can
be designated as “pro-inflammatory” proteins [107,114,123,124], and others that function
as part of the development and activation of immune cells [44,48,109,127,137]. For example,
the Programmed Death Ligand 2 (PD-L2) protein is a ligand for the Programmed Death
1 (PD-1) receptor, which is protective against T cell-mediated death in conjunction with
tumor-associated macrophages [154]. Ren et al. found that PD-L2 knockdown decreased
EMT and inhibited migration, invasion, and colony formation of OS cells in vitro, and
reduced OS metastases in vivo in a mouse model [137].

Table 1. Effects of highly expressed proteins on EMT in OS.

Protein
Increased Levels

in Clinical
Sample

Promoted
EMT

Promoted Cell
Migration/
Invasion

Promoted In
Vivo Tumor

Growth

Promoted In
Vivo Metastasis

Endogenous
Function

ACTL6A [121] Yes Structure
AIM2 [114] No Immune
BMP-2 [93] No Cell Signaling

Calponin 3 [122] Yes Structure
Cathepsin E [123] Yes Immune

COPS3 [116] Yes ns Cell Cycle Regulation
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Table 1. Cont.

Protein
Increased Levels

in Clinical
Sample

Promoted
EMT

Promoted Cell
Migration/
Invasion

Promoted In
Vivo Tumor

Growth

Promoted In
Vivo Metastasis

Endogenous
Function

COX2 [107] No Inflammation
CPE-∆N [94] No Cell Signaling
cPLA2a [124] Yes Inflammation
CPXM2 [125] Yes Cell Signaling
Cul4A [126] Yes Inflammation
CXCR6 [127] Yes Immune

Cyr61 [61,128] No Cell Signaling
E2F1 [78] Yes Cell Cycle Regulation

EPB41L3 [129] Yes ↓ ↓ Structure
Fibulin-3 [89] Yes Structure

Fibulin-4 [106] Yes Structure
HOXB7 [130] Yes Cell Cycle Regulation

HuR [131] Yes Cell Cycle Regulation
ICSBP [44] Yes Immune
IL-33 [109] No Inflammation

MAGL [132] Yes Inflammation
Metadherin [133] No Cell Signaling

NETO2 [113] Yes Cell Signaling
OLR1 [134] Yes Cell Signaling
P2X7 [108] Yes Cell Signaling

PADI4 [135] Yes Inflammation
PDGFRβ [112] No Cell Cycle Regulation

PD-L2 [137] Yes Inflammation
PGI [136] No Metabolism

RIPK4 [100] Yes Cell Cycle Regulation
SenP1 [138] No Cell Signaling
SENP3 [139] Yes Cell Cycle Regulation
SIRT1 [64] Yes Cell Cycle Regulation
SOX3 [53] Yes Cell Cycle Regulation
SOX5 [54] Yes Cell Cycle Regulation

ST6Gal-1 [140] No Cell Cycle Regulation
TANK1 [141] No Cell Cycle Regulation

Tim-3 [48] Yes Immune
TRIM29 [142] Yes Cell Cycle Regulation
TRIM66 [143] Yes Cell Cycle Regulation
UHRF1 [144] No Cell Cycle Regulation

USP7 [97] Yes Cell Cycle Regulation
USP17 [145] Yes Cell Cycle Regulation
USP22 [146] Yes Cell Cycle Regulation
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regulation of multiple cell processes that affect multiple other pathways and functions,
including but not limited to cell cycle regulation, inflammation, immunity, and metabolism.

Finally, a subset of the proteins associated with EMT in OS are either structural proteins
or regulate cell structure via interaction with the cytoskeleton [89,106,121,122,129,148]. This
is perhaps the simplest and most logical grouping given the key morphological changes
that take place during the EMT transformation, as depicted in Figure 1. Interestingly,
Yuan et al. found that Erythrocyte Membrane Protein Band 4.1-like 3 (EPB41L3)—a cy-
toskeletal protein involved in cytoskeletal rearrangement, intracellular transport, and signal
transduction—was increased in OS tissues and cell lines but was associated with an inhibi-
tion of EMT, migration, invasion, and cell viability in OS cell culture [129]. This pattern
of expression was opposite to all of the other proteins impacting EMT in OS identified in
this review.

When reported, the EMT pathways most implicated in these studies were wnt and
PI3K/Akt. The nuclear localization and, therefore, transcriptional activity of the wnt/β-
catenin pathway has also been shown to be regulated by PI3K [30], suggesting overlap in
these EMT control mechanisms. The most frequently identified downstream target was
Snail, which is known to promote EMT by suppressing E-cadherin expression [155], and
further upregulates wnt signaling and EMT [20].

6. Regulation of EMT in OS—Non-Coding Ribonucleic Acids

Another key group of regulatory factors of EMT/MET in OS are non-coding ri-
bonucleic acids (ncRNAs). These molecules have many forms and functions [156], one
of which is gene regulation. Typically identified through queries to the Gene Expres-
sion Omnibus (GEO), the differential expression of multiple separate long non-coding
RNAs (lncRNAs) [157], microRNAs (miRNAs) [158], circular RNAs (circRNAs) [159,160],
and pseudogenes [161] have been found to relate to OS prognosis [162]. Tables 3 and 5
summarize ncRNAs implicated in OS EMT regulation. Again, they were found to
have a role in either promoting [57,63,66,76,85,86,90,95,98,99,101,103,109,163–196] or
inhibiting [47,49,51,65,77,92,96,102,104,111,197–225] EMT and invasive cellular behaviors
of OS cells in vitro, and there was significant overlap in the affected pathways and ultimate
downstream targets. Very frequently there are multiple non-coding RNAs involved in the
same pathway as they can also regulate other nucleic acids.

Table 3. Effects of highly expressed non-coding ribonucleic acids.

Ribonucleic Acid
Increased Levels

in Clinical
Sample

Promoted
EMT

Promoted Cell
Migration/
Invasion

Promoted In
Vivo Tumor

Growth

Promoted In
Vivo

Metastasis

Associated
Pathways/Targets

circ-FOXM1 [103] No miR-320a, wnt
circ-PRKAR1B [163] No miR-361-3p, FZD4

LINC00319 [164] Yes miR-455-3p, NFIB
LINC00324 [165] Yes WDR66, HuR

LINC00460 [166] No miR-1224-5p,
FADS1

LINC02381 [167] Yes miR-503-5p,
CDCA4

lncRNA AFAP1-AS1 [63] Yes Rho, ROCK, p38
lncRNA BCRT1 [168] Yes miR-1303, FGF7

lncRNA CASC15 [101] Yes wnt/β-catenin
lncRNA CCAT2 [169] Yes LATS2, c-Myc

lncRNA CRNDE [85,98] Yes Notch1, SP1,
wnt/β-catenin

lncRNA DDX11-AS1 [170] No miR-873-5p,
IGF2BP2

lncRNA FAL1 [171] Yes GSK-3β
lncRNA GHET1 [99,172] Yes Ki67, wnt/β-catenin

lncRNA HCP5 [173] No SP1
lncRNA HNF1A-AS1 [174] Yes
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Table 3. Cont.

Ribonucleic Acid
Increased Levels

in Clinical
Sample

Promoted
EMT

Promoted Cell
Migration/
Invasion

Promoted In
Vivo Tumor

Growth

Promoted In
Vivo

Metastasis

Associated
Pathways/Targets

lncRNA HIF1A-AS2 [175] Yes miR-33b-5p, SIRT6
lncRNA HOXA-AS2 [176] Yes miR-502c-3p
lncRNA LMCD1-AS1 [177] Yes miR-106b-5p, SP1
lncRNA miR210HG [178] Yes miR-503
lncRNA MNX1-AS1 [179] Yes Snail

lncRNA MSC-AS1 [180] Yes miR-142, CDK6,
PI3K/Akt

lncRNA NEAT1 [181] Yes miR-186-5p, HIF-1α
lncRNA PGM5-AS1 [182] Yes miR-140-5p, FBN1

lncRNA PVT1 [183] Yes

lncRNA RUSC1-AS1 [184] Yes miR-340-5p,
PI3K/Akt

lncRNA SNHG1 [185] Yes miRNA-101-3p,
ROCK1, PI3K/Akt

lncRNA SNHG4 [186] Yes miR-377-3p

lncRNA SNHG7 [86] Yes
MiR-34a, Notch-1,

BCL-2, CDK6,
SMAD4

lncRNA SNHG20 [187] Yes
lncRNA SPRY4-IT1 [47,66] No miR-101

lncRNA TUG1 [90,188] Yes
miR-144-3p,

miR-143-5p, EZH2,
HIF-1α, wnt

lncRNA XIST [57] Yes miR-153, SNAI1
miR-17-5p [189] Yes SRCIN1

miR-19 [76] Yes SPRED2,
ERK/MAPK

miR-31-5p [95] Yes AXIN1,
wnt/β-catenin

miR-93 [190] Yes TIMP2
miR-130a [191] Yes PTEN
miR-135b [192] No TAZ
miR-155 [193] No TNFa, TP53INP1
miR-196a [194] Yes HOXA5

miR-199b-5p [195] Yes HER2
miR-210-5p [110] Yes PIK3R5, Akt

Pseudogene MSTO2P [196] Yes PD-L1
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Table 4. Effects of poorly expressed non-coding ribonucleic acids.

Ribonucleic Acid
Decreased
Levels in

Clinical Samples

Inhibited
EMT

Inhibited Cell
Migration/
Invasion

Inhibited In
Vivo Tumor

Growth

Inhibited In
Vivo

Metastasis

Associated
Pathways/Targets

lncRNA FER1L4 [197,198] Yes miR-18a-5p,
PI3K/Akt

lncRNA GAS5 [199] Yes miR-221, ARHI
lncRNA MEG3 [200] Yes miR-361-5p, FoxM1
lncRNA NKILA [201] Yes ↑ NFκB, Snail
lncRNA TUSC8 [202] Yes miR-197-3p, EHD2

miR-7 [203] Yes IGF1R
miR-16 [204] Yes RAB23
miR-25 [205] Yes SOX4

miR-29a [206] Yes SOCS1/NFκB,
DNMT3B

miR-107 [92] Yes wnt/β-catenin
miR-125a-5p [207] Yes MMP11

miR-128 [208] Yes Integrin A2
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Table 5. Cont.

Ribonucleic Acid
Decreased
Levels in

Clinical Samples

Inhibited
EMT

Inhibited Cell
Migration/
Invasion

Inhibited In
Vivo Tumor

Growth

Inhibited In
Vivo

Metastasis

Associated
Pathways/Targets

miR-132 [209] No SOX4
miR-139-5p [210] Yes DNMT1
miR-140-3p [211] Yes TRAF6, TGFB

miR-145 [51] Yes Snail
miR-181c [212] Yes SMAD7, TGFB
miR-203 [213] Yes RAB22A

miR-331-3p [104] Yes MGAT1, Bcl/Bax,
wnt/β-catenin

miR-342-5p [96] Yes wnt/β-catenin
miR-363 [214,215] Yes PDZD2, NOB1

miR-377-3p [186] Yes CuL1,
wnt/β-catenin

miR-382 [216] Yes YB-1
miR-384 [217] Yes MECP2, IGFBP3
miR-449a [111] Yes EZH2, PI3K/Akt
miR-486 [218] Yes PIM1
miR-488 [219] Yes AQP3
miR-489 [220] Yes NAA10

miR-499a [221] Yes TGFβ, EGFR, Akt,
SHKBP1

miR-503 [222] No c-myc
miR-506-3p [223] No SPHK1, LC3II/I
miR-708-5p [65] No ZEB1
miR-761 [224] Yes ALDH1B1, TGFB
miR-765 [117] Yes MTUS, ERK
miR-CT3 [77] Yes p38/MAPK

miR-let-7d [225] No ↑ CCND2, E2F2
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Unlike the pattern observed in the majority of these findings, Yuan et al. found that al-
though erythrocyte membrane protein band 4.1-like 3 (EPB41L3) was upregulated in OS cell
lines and clinical tissue samples, knockdown of EPB41L3 significantly increased the migra-
tion and invasion capacity of the investigated cell lines despite decreased cell viability [130].
The findings were similarly mixed for lncRNA NKILA [201] and miR-let-7d [225]. These
studies highlight the complexity of EMT regulation in OS and suggest that it is only one
possible factor relating to tumor behavior and prognosis.

7. Regulation of EMT in OS—The Tumor Microenvironment

There has been increased recognition of the importance of the tumor microenvironment
on various cellular functions and characteristics. This is the three-dimensional structure
surrounding tumor cells and comprises immune cells, vascular network, and extra-cellular
matrix (ECM), among other components. The tumor microenvironment is unique not only
for different cancer types but also for individual patients, and it is influenced by multiple
factors, including patient sex and presence of metastases [226]. A better understanding of
the interactions within the tumor micro-environment is expected to lead to the development
of personalized treatments targeted at individual patients’ tumors.

Han et al. found that the presence of tumor-associated macrophages (TAMS) and
the expression of the inflammatory marker cyclo-oxygenase 2 (COX2) correlated with OS
metastases in clinical samples [80]. They also found co-culture of OS cells with TAMS
promoted EMT and aggressive cellular features in vitro, which was reversible by COX2
inhibition. Additionally, COX2 inhibition reduced pulmonary metastases in vivo in a
murine model [80]. Ling et al. found that Von Willebrand Factor (VWF)—which is secreted
by the endothelial cells lining blood vessels—promoted EMT in vitro following OS and
endothelial cell co-culture, as well as tumor growth and metastasis in vivo in a mouse
model [227].
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In addition to the cellular and biochemical makeup of the tumor microenvironment,
the biomechanical properties of the ECM may also play a role in regulating EMT. Dai
et al. developed a three-dimensional cell culture model with varying degrees of ECM
stiffness [228]. This may be of particular relevance when evaluating OS tumors that exist in
the bone—a relatively rigid environment—but eventually expand into the surrounding soft
tissues, which are substantially less rigid. It may also account for some of the differences in
OS metastatic patterns as more than 85% of metastatic OS occurs in the lungs, a soft tissue,
compared to only 21% that occurs in the bone [229].

8. Targeting EMT in Osteosarcoma

Given its close association with aggressive and metastatic OS, EMT is a natural target
for OS treatment. Treatments targeting EMT in OS include known medications, hormones,
novel small molecules, and herbal medicines. The currently recommended chemotherapy
regimen for OS includes doxorubicin, cisplatin, and high-dose methotrexate. At low
doses, cisplatin has been shown to promote EMT, migration, invasion, and in vivo tumor
growth [87]. However, these findings were reversible with inhibition of the EMT-related
Notch pathway. EMT is recognized as an important factor contributing to chemotherapy
resistance in multiple cancers [230], which was shown in OS by Ding et al., who found that
OS cells induced to be resistant to methotrexate exhibited higher levels of EMT proteins
and greater migration and invasion [231].

Other drugs that have not traditionally been used to treat osteosarcoma clinically
but have been shown to inhibit EMT in OS in vitro include the cholesterol medication
lovastatin [232] and zolendronate, a bisphosphonate medication used in the treatment of
osteoporosis and other metabolic bone disorders [233,234]. In addition to the suppression
of EMT, migration, and invasion, Kim et al. showed that OS cells and orthotopic tumors in
mice had increased radiation-sensitivity following treatment with zolendronate, and this
combination therapy was more effective than either treatment on its own [234].

Several hormone therapies have also been investigated for their effect on EMT in
OS. These include estrogen, which inhibited EMT and promoted apoptosis of OS cells at
high doses [235]. Treatment with irisin, a hormone derived from skeletal muscle, also sup-
pressed OS EMT, cell proliferation, migration, and invasion [52]. Melatonin, a sleep-related
hormone that is widely commercially available, has been shown to inhibit EMT [56,236,237]
and OS cell migration and invasion in vitro, with additional results in vivo showing re-
duced metastasis in mice [237]. In contrast, treatment of OS cells with visfatin [45], a
metabolic peptide first identified in visceral fat, induced EMT and increased cell migration
and invasion. While these results do not suggest a direct role for visfatin in treatment of
OS, further studies could examine the potential therapeutic effects of visfatin regulation.

Newer therapies with peptides and other small molecules allow for targeting more
specific biologic functions, often associated with receptor inhibition. Inhibition of CXCR4
with Peptide R inhibited EMT, cell migration, and invasion in OS cells, and was thought to
have the potential for less toxicity than existing CXCR4 inhibitors [238]. Similar suppression
of EMT, inhibition of cell migration/invasion, and reduced tumorigenesis in vivo was
observed with inhibition of vascular endothelial growth factor receptor-2 (VEGFR2) by
Apatinib [239], Krüppel-like factor 5 (KFL5), and early growth response gene 1 (EGR1) by
ML264 [81], and TGF-β by RepSox [70]. The 4′-aminochalcones D14 and D15 were found
to inhibit EMT, cell migration, and invasion through upregulation of p53 [240].

The investigation of traditional and herbal medicines and their derivatives (both
natural and synthetic) is a growing area of interest. The effect on EMT in OS has been
studied for a number of these compounds [46,58,69,71–75,82,115,118,241–249], with results
summarized in Table 6. While the majority of these inhibited both EMT and aggressive
cellular characteristics, such as migration and invasion, Jiang et al. found that triptolide, a
compound found in the vine Tripterygium wilfordii, increased EMT in OS cells in vitro but
inhibited proliferation and invasion [249].
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Table 6. Traditional and herbal medicine effects on EMT in OS.

Compound Inhibits EMT Inhibits Cell
Migration/Invasion

Inhibits In Vivo
Tumor Growth

Inhibits In Vivo
Metastasis

Associated
Pathways/Targets

3’hydroxyflavone [115] MEK/ERK
Baicalin [74,118] ERK, TGF-β

Berberine [241,242] EZH2, Rad51

Chimaphilin [73] PI3K/Akt, ERK,
TGF-β

Cinnamomum cassia extract [69] TGF-β
Dehydroandrogranpholide [243] SATB2

Delphinidin [75] ERK, MAPK
Gamabufotalin [71] PI3K/Akt, TGF-β

Glaucocalyxin A [72] TGF-β, Smad

Magnoflorine [244] miR-410-3p, HMGB1,
NF-κB

Nitidine Chloride [46] Akt, GSK-3β, Snail
Oridonin [58] TGF-β, Smad, Snail

Piperlongumine [82] miR-30d-5p, SOCS3,
JAK2/STAT3

Polyphillin I [245] NF-κB, c-Myc
Rosmarinic acid [246] DJ-1, PI3K/Akt

Salvia 13landestine extract [247] Akt/PKB
Sauchinone [248] Sonic hedgehog
Triptolide [249] ↑ miR-181a, PTEN
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A non-pharmacological treatment targeting EMT in OS was also reported. Tumor-
treating electrical field (TTEF) was reported to suppress EMT, cell migration, invasion, and
angiogenesis of OS cells in culture via potential effects on VEGF and matrix metallopro-
teinase 2 (MMP2) [250].

9. Conclusions

EMT has significant implications in OS, despite its mesenchymal origin. Multiple
studies have correlated changes in EMT with a more aggressive OS phenotype, both in vitro
and in vivo. More than 100 proteins and non-coding nucleic acids have been identified as
having a potential regulatory role in the OS EMT/MET pathways, and these may prove to
be viable therapeutic targets and/or prognostic factors. These results should be interpreted
with caution. While many of the studies discussed in this review confirmed the presence of
their specific molecule of interest in clinical samples, most of the cell culture and animal
studies were performed with only a handful of established cell lines. The majority of OS
samples do not exhibit any E-cadherin and would therefore not experience a significant
change secondary to E-cadherin suppression, a key process in EMT. It is possible that the
cell lines most frequently utilized for these investigations are in the minority that do express
E-cadherin and therefore exaggerate the EMT effect. Unfortunately, as OS is a rare cancer,
any findings such as these are difficult to generalize. However, a role for EMT/MET has
clearly been shown in cell culture and may well be a viable therapeutic target. Further
work in additional cell lines or primary cell culture would help to confirm the findings
outlined in this review.
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