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Abstract: The choroid plexus (CP) is a structure in the brain ventricles that produces the main
part of the cerebrospinal fluid (CSF). It is covered with specialized cells which show epithelial
characteristics and are the site of the blood–CSF barrier. These cells form a contiguous cell sheet
with ventricle-lining ependymal cells which are known to express aquaporin-4 (AQP4). In contrast,
CP epithelial cells express aquaporin-1 (AQP1) apically. We investigated the expression patterns of
aquaporins in the CP-ependyma transition from human body donors using immunofluorescence and
electron microscopy. Ependymal cells and subependymal astrocytes at the base of the CP showed a
particularly high AQP4 immunoreactivity. Astrocytic processes formed a dense meshwork or glial
plate around the blood vessels entering the CP. Interestingly, some of these astrocytic processes were
in direct contact with the CP stroma, which contains fenestrated blood vessels, separated only by a
basal lamina. Electron microscopy confirmed the continuity of the subastrocytic basal lamina with
the CP epithelium. We also probed for components of the AQP4 anchoring dystrophin–dystroglycan
complex. Immunolabeling for dystrophin and AQP4 showed an overlapping staining pattern in the
glial plate but not in previously reported AQP4-positive CP epithelial cells. In contrast, dystroglycan
expression was associated with laminin staining in the glial plate and the CP epithelium. This
suggests different mechanisms for AQP4 anchoring in the cell membrane. The high AQP4 density
in the connecting glial plate might facilitate the transport of water in and out of the CP stroma and
could possibly serve as a drainage and clearing pathway for metabolites.

Keywords: aquaporin-1; aquaporin-4; choroid plexus; glymphatic pathway; water homeostasis;
cerebrospinal fluid; blood–CSF barrier

1. Introduction

After the discovery of water channels [1], aquaporins in the brain were detected in
the mid-1990s [2–4]. In the central nervous system (CNS), aquaporin-4 (AQP4) is the most
dominant water channel and is even considered to be one of the most abundant proteins in the
brain [5]. It is expressed in all vertebrate groups in cells of the astroglial family, which includes
astrocytes, radial glia and ependymal cells. In most astrocytes, the distribution of AQP4 is
highly polarized, i.e., as revealed by immunohistological stains, there is a high density of this
water channel in astrocytic membranes facing the basal lamina of blood vessels and the pia
mater. In 1998, Rash et al. discovered that the so-called orthogonal arrays of particles (OAPs)
seen in freeze–fracture preparations for electron microscopy could be labelled with AQP4
antibodies [6]. Until then, these OAPs were considered markers for astrocytic membranes in
freeze–fracture replicas [7–9]. In that sense, the distribution of AQP4 in the form of OAPs had
been investigated prior to the discovery and knowledge of aquaporins.

In their original paper describing CHIP (aquaporin-1) distribution, Nielsen, Smith,
Christensen and Agre [4] localized this water channel to the apical membrane domain of
rat choroid plexus (CP) epithelium cells, and subsequently a weak basolateral expression
was also reported [10]. In contrast, ependymal cells lining the ventricles were positive for
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AQP4, and vice versa, AQP4 was not found to be expressed by the epithelial cells of the
CP and ependymal cells were devoid of aquaporin-1 (AQP1) [11]. Functionally, the mostly
apically localized AQP1 in CP epithelial cells is thought to facilitate cerebrospinal fluid
(CSF) production, and expression of AQP4 by astrocytes has been implicated in brain water
homeostasis [12–14].

Ventricle-lining ependymal cells form a continuous cell sheet with CP epithelial cells,
yet differ in other properties other than the expression of AQPs, e.g., in the formation of
tight junctions and the expression of transport proteins. Some cells in the transition zone
from ependyma to CP have been reported to express AQP1 and AQP4 in the mouse brain
(see Figure 5 in [14]), but no study has addressed the AQP expression in the CP attachment
region of the human brain. Recently, we discovered that the strict, regionalized expression
of AQP1 and AQP4 mentioned above does not hold for the human CP, where we found
many AQP4-positive plexus epithelial cells with an irregular pattern, at least in the tissue
of aged human donors [15].

Therefore, we investigated the transition zone between the ependyma and the CP
epithelium more closely in human brain samples, including a peculiar glial structure
forming the attachment of the CP to the brain parenchyma and surrounding the blood-
supplying vessels, often referred to as the Taenia choroidea.

The fact that this glial plate covers the blood vessels enclosed by meningeal tissue,
which extends into the CP stroma, and the fact that capillaries in the CP stroma are
fenestrated raise the question of water flow through these structures. We report here that,
other than in CP epithelial cells, there is a strong AQP4 immunoreactivity in the glial
plate of the Taenia choroidea formed by the processes of astroglial cells. The extent of these
astroglial processes in the stroma of the CP and their high density of water channels might
have implications for water flow and homeostasis, at least in the aging human brain.

2. Materials and Methods
2.1. Human Post-Mortem Specimens

Human brain tissue was collected from seven individuals who volunteered to donate
their bodies to the Institute of Clinical Anatomy and Cell Analysis in Tübingen. In concor-
dance with the declaration of Helsinki, the donors gave their informed consent to the use
of their cadavers for research purposes. The Ethics Committee of the Medical Department
of the Eberhard Karls University in Tübingen approved the accuracy of this procedure
under the project number 237/2007BO1. The post-mortem time of the tissue extraction did
not exceed a time frame over 20 h according to the official death certificate provided by a
medical professional. Details on the body donors are provided in Table S1.

2.2. Immunohistochemistry

The Plexus choroidei of the lateral ventricles were removed from the brains together
with attached ependymal and subependymal tissue and fixed in 4% paraformaldehyde
for 24 h. After being rinsed in PBS, the samples were further dissected and placed in
30% (w/v) sucrose for another 24 h for cryoprotection. The fixed samples were frozen in
isopentane-nitrogen-cooled TissueTek® (Sakura, Staufen, Germany) and stored at −80 ◦C
before being cryosectioned at 18 µm.

Next, cryosections were rehydrated and washed in PBS for 10 min before being
incubated in blocking solution containing PBS, 4% (v/v) goat serum (Biochrom, Berlin,
Germany), 0.1% (v/v) bovine serum albumin (Roth, Karlsruhe, Germany) and 0.1% (v/v)
Triton® X-100 (Roth, Karlsruhe, Germany) for 90 min at room temperature.

Afterwards, sections were incubated with primary antibodies (Table 1) diluted in the
preincubation solution overnight at 4 ◦C in a humidified chamber. After washing with PBS
three times for 10 min, the secondary antibodies (Table 1) were applied for 90 min at room
temperature. Afterwards, sections were stained with the nuclear stains DRAQ5 (1:1000;
Thermo Fisher, Waltham, MA, USA) or DAPI (1:1000) and washed with PBS three times for
10 min before being mounted with Mowiol 4–88 (Roth).
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Table 1. Primary and secondary antibodies used in this study.

Primary AB
AQP-4 Santa Cruz sc-20812 rabbit 1:100
AQP-4 Santa Cruz sc-9888 goat 1:100

AQP-1 Thermo Fischer
PA5-78805 rabbit 1:100

AQP-1 Santa Cruz, sc-32737 mouse 1:100
Dystrophin abcam ab15277 rabbit 1:100

ß-Dystroglycan abcam ab49515 mouse 1:100
GFAP Santa Cruz sc-58766 mouse 1:100

Laminin abcam ab11575 rabbit 1:100

Secondary AB
Anti-mouse Alexa 488 Thermofisher goat 1:400
Anti-mouse Alexa 546 Thermofisher goat 1:400
Anti-rabbit Alexa 488 Thermofisher goat 1:400
Anti-rabbit Alexa 546 Thermofisher goat 1:400
Anti-rabbit Alexa 488 Thermofisher donkey 1:400
Anti-mouse Alexa 546 Thermofisher donkey 1:400
Anti-goat Alexa 660 Thermofisher donkey 1:400

2.3. Light Microscopy

Stained cryosections were analyzed, and images were scanned on a Zeiss LSM510 Meta
confocal microscope (Zeiss, Oberkochen, Germany) equipped with an argon laser with an
excitation wavelength at 488 nm and two helium–neon lasers with wavelengths for excitation
at 543 nm and 633 nm, respectively, and appropriate filter sets. Some confocal images were
acquired with an LSM900 Airyscan confocal system (Zeiss). Alternatively, for overviews, images
were taken on an Axio Imager Z1 fluorescence microscope (Zeiss) with an Apotome module.
The systems’ software, ZEN Black and Blue (Zeiss), were used for image acquisition, and image
plates were assembled and processed with Adobe Photoshop CS2 (San José, CA, USA).

2.4. Electron Microscopy

Dissected pieces of CP tissue were immediately fixed in 2.5% glutaraldehyde buffered
in 0.1 M cacodylate (pH 7.4) for 2 h. Samples were post-fixed in 1% osmium tetroxide
in PBS (pH 7.4) for 1 h, subsequently dehydrated in a graded ethanol series and acetone
and embedded in epoxy resin (Sigma Aldrich, Darmstadt, Germany). Semithin sections
(1.5 µm) were taken and stained with methylene blue to identify regions of interest (i.e.,
the ependymal–CP transition area) before cutting ultrathin sections (50 nm). Ultrathin
sections were analyzed, and images were recorded on a LEO 912AB transmission electron
microscope (Zeiss, Oberkochen, Germany).

3. Results

The human choroid plexus of the lateral ventricles is a prominent folded structure
with protruding villi extending the entire length of the main ventricular cavity and further
into the inferior (temporal) horn (Figure 1a–c). The outer surface is formed by a single-
layered epithelium covering a stromal layer that contains blood vessels and connective
tissue cells. The blood supply from the anterior and posterior choroidal arteries branches
several times before entering the CP. The anatomical transition zone between the CP tissue
and the thalamic tissue contains branches of these blood vessels and is referred to as Taenia
choroidea. The CP epithelial layer forms a cell sheet that is continuous with the ependymal
lining of the ventricles (Figure 1d). Focusing on the thalamic region and staining with
antibodies against AQP4 and AQP1, we first confirmed the known pattern of apical AQP1
immunoreactivity in the CP epithelium and AQP4 reactivity in astrocytic endfeet and
basolateral ependymal membranes, as well as the recently reported occurrence of AQP4
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in some CP epithelial cells (Figure 1). AQP1 and AQP4 can be expressed in the same CP
cells but are not colocalized intracellularly. In addition, sections through the CP and its
attachment to the thalamus surface unexpectedly revealed many heavily AQP4-labeled cell
processes underneath the epithelium and extending into the plexus stroma (Figure 1e). We
verified this AQP4 staining pattern in the ependyma–CP transition of the lateral ventricles
from six body donors. Throughout all our samples, the intensity of AQP4 on astrocytes in
the glial attachment plate was stronger than on the astrocytes in the adjacent brain tissue.
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Figure 1. Overview of the location and attachment of the choroid plexus and aquaporin expression.
(a) Horizontal section through a human brain with open lateral ventricles. (b) View of the boxed area
indicated in a. showing the choroid plexus (CP) from the anterior end close to the interventricular
foramen (arrow) to the most posterior part, where it thickens to the glomus and extends further into
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the lower horn of the lateral ventricle. (c) Detailed view of the posterior region shows the firm
attachment to the thalamic surface. (d) The schematic diagram of a cross-section perpendicular to the
plane shown in c indicates the direct transition of the ependyma to the choroid plexus epithelium.
(e) Cryostat section through the choroid plexus and ependymal attachment of the lateral ventricle
stained for aquaporin 1 and 4 (AQP1, AQP4). CP epithelium is positive for AQP1, astrocytic endfeet
in the brain parenchyma and ependyma (E), and some cells (arrowheads) in the CP are positive for
AQP4. Note that the transitional ependyma connecting to the CP epithelium and underlying tissue is
strongly immunofluorescent for AQP4 (arrows). BV, blood vessels.

Secondly, we stained AQP4 in combination with GFAP in order to test whether the
intensely labeled AQP4 processes were indeed astrocytic. There was an extensive overlap
of GFAP and AQP4 reactivity in the transitional region (Figure 2a). A high-power view
revealed a dense meshwork of GFAP-positive glial processes surrounded by or coinciding
with AQP4 immunoreactivity (Figure 2b). AQP4-positive CP epithelial cells lacked GFAP
(Figure 2c). Moreover, Figure 2 shows the expansion of subependymal and perivascular
astrocytes from the glial plate into the CP stroma. The transition of ependymal cells to CP
epithelial cells is indicated by the loss of GFAP.

Biomolecules 2023, 13, x FOR PEER REVIEW 6 of 14 
 

Secondly, we stained AQP4 in combination with GFAP in order to test whether the 
intensely labeled AQP4 processes were indeed astrocytic. There was an extensive overlap 
of GFAP and AQP4 reactivity in the transitional region (Figure 2a). A high-power view 
revealed a dense meshwork of GFAP-positive glial processes surrounded by or coinciding 
with AQP4 immunoreactivity (Figure 2b). AQP4-positive CP epithelial cells lacked GFAP 
(Figure 2c). Moreover, Figure 2 shows the expansion of subependymal and perivascular 
astrocytes from the glial plate into the CP stroma. The transition of ependymal cells to CP 
epithelial cells is indicated by the loss of GFAP. 

 
Figure 2. Subependymal tissue in the transitional zone is formed by astrocytes. (a) At low magnifi-
cation, GFAP immunoreactivity largely overlaps with AQP4 stain under the transitional ependyma 
(large arrows). (b). Detailed view from the ependymal/subependymal region indicated by the white 
box shows a dense meshwork of GFAP-positive processes and strong AQP4 immunoreactivity. The 
GFAP processes are often surrounded or associated with AQP4 staining (small arrows). The surface 
ependymal cells are only weakly positive for GFAP. (c) GFAP stain is completely lacking in AQP4-
positive CP epithelial cells. Nuclei are stained with DRAQ5. BV, blood vessels. 

To further define this structural change from the ependyma to the CP, we marked 
the course of the CP epithelium with laminin. The CP epithelial cells are consistently con-
nected to a basal lamina which disappears at the point where the ependymal cells start. 
The laminin expression underneath AQP4-positive and AQP4-negative CP epithelial cells 
did not show a difference, as would be expected from previous reports that suggest that 
laminin plays a role in the AQP4 distribution on rat astrocytes [16,17]. Interestingly, the 
glial attachment plate formed by astrocytes was surrounded by laminin staining where 
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Figure 2. Subependymal tissue in the transitional zone is formed by astrocytes. (a) At low magnifica-
tion, GFAP immunoreactivity largely overlaps with AQP4 stain under the transitional ependyma
(large arrows). (b). Detailed view from the ependymal/subependymal region indicated by the
white box shows a dense meshwork of GFAP-positive processes and strong AQP4 immunoreactivity.
The GFAP processes are often surrounded or associated with AQP4 staining (small arrows). The
surface ependymal cells are only weakly positive for GFAP. (c) GFAP stain is completely lacking in
AQP4-positive CP epithelial cells. Nuclei are stained with DRAQ5. BV, blood vessels.

To further define this structural change from the ependyma to the CP, we marked
the course of the CP epithelium with laminin. The CP epithelial cells are consistently
connected to a basal lamina which disappears at the point where the ependymal cells start.
The laminin expression underneath AQP4-positive and AQP4-negative CP epithelial cells
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did not show a difference, as would be expected from previous reports that suggest that
laminin plays a role in the AQP4 distribution on rat astrocytes [16,17]. Interestingly, the
glial attachment plate formed by astrocytes was surrounded by laminin staining where
their processes extended into the stroma (Figure 3c). Laminin was also present at the border
of the glial plate on the side facing blood vessels entering the CP (Figure 3a,b). Thus, we can
define a perivascular and an ependymal side of the glial plate (Figure 3b). We confirmed a
basal lamina on the perivascular side on the ultrastructural level (Figure 3d–f). The EM
analysis of the astrocytic processes also showed large bundles of intermediate filaments
(Figure 3g) which corresponded to the heavy GFAP staining shown in Figure 2. These
astrocytes represented the subependymal zone, and their perivascular side showed a basal
lamina which continues to underlie a single cell layer, as can be seen in Figure 3e, defining
the transition to the CP epithelium.
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AQP4 and laminin reveals a basal lamina under the CP epithelial cells that are apically positive for
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AQP1. Higher magnification of the indicated areas shows that there is a basal lamina (arrowheads)
bordering the astrocytic processes and surrounding blood vessels. (b) Moreover, astrocytic processes
extending into the stroma (c) of the CP are surrounded by laminin staining (c, arrowheads). (d–g)
Electron micrographs of the transition zone between ventricle lining ependyma and choroid plexus
epithelium. (d) An overview of an ependymal/glial surrounding of blood vessels which turns
into a single-layered epithelium towards the CP villi on the right. (e) Higher magnification of the
boxed areas as indicated shows a continuous basal lamina (highlighted in blue) from the multi-
layered ependymal side (left) to the single cell layer (right, cell with nucleus). Ependymal cells have
apical microvilli (arrows) and occasional cilia. (f) Detailed view of the basal lamina under astrocytic
processes (arrowheads). (g) Astrocytic processes under ependymal cells (E) show large bundles of
intermediate filaments (IF). Large arrows point to microvilli, and arrow heads point to the basal
lamina. E, ependymal surface; PS, perivascular space; CP, choroid plexus.

The effect of laminin on AQP4 distribution in astrocytes is thought to be mediated by
the dystrophin–glycoprotein complex (DGC). We therefore investigated whether dystro-
glycan binding to components of the extracellular matrix. such as laminin and dystrophin
interacting with the cytoskeleton, corresponded to the expression of AQP4. Indeed, in
comparison to astrocytes of the adjacent thalamic brain region (Figure 4a) and similarly to
the increased AQP4 expression, the glial plate was heavily immunopositive for dystrophin.
However, the AQP4-positive CP epithelial cells were negative for dystrophin (Figure 4b).
A higher magnification revealed distinct cellular localizations in astrocytic processes with
AQP4 staining often surrounding dystrophin immunoreactivity (Figure 4c). The perivas-
cular side of the glial plate showed an even stronger immunoreactivity for both proteins
(Figure 4d). In contrast, the distribution of dystroglycan did not match the pattern of AQP4
we had observed in the glial plate. Instead, it coincided with the immunoreactivity of
laminin at blood vessels in the ependyma and on the perivascular side of the glial plate (Fig-
ure 4f,h). In addition, CP cells expressed dystroglycan basolaterally where facing the basal
lamina delineated by laminin immunoreactivity (Figure 4g). Essentially, all CP epithelial
cells were positive for dystroglycan without a correlation to AQP4-expressing cells.
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Figure 4. Dystrophin and β-dystroglycan localization in the CP and ependymal transition zone.
(a) Co-staining with antibodies against AQP4 and dystrophin shows an overlap in the glial subependy-
mal plate but not in the CP. The white rectangles indicate the details shown (b–d). (b) AQP4-positive
cells in the CP (arrows) are negative for dystrophin, whereas (c,d) subependymal astrocytic processes
were intensely positive for both dystrophin and AQP4. An even stronger immunoreactivity is found
on the perivascular side where the processes face a basal lamina than on the ependymal side of the
glial plate (d, c.f., Figure 3b,f). (e) β-dystroglycan and laminin co-stainings show a close association of
both stains. Detailed views (f–h) of the indicated areas reveal that the ependyma as well as astrocytic
processes in the glial plate were immunonegative for β-dystroglycan (f), except where they contact a
basal lamina as indicated by laminin staining. Both stains are also found in and around blood vessel
walls (h). In the choroid plexus (CP), epithelial cells express β-dystroglycan basolaterally close to the
basal lamina (g).
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4. Discussion
4.1. Topography of the Transitional Glial Plate

The investigation of body donor brain samples enabled us to carefully examine the
expression of aquaporins in the transition zone between the ependyma and the CP epithe-
lium in the human brain, as well as the border of the subependymal zone to the CP stroma.
We showed that the tissue plate surrounding blood vessels entering the CP consists of
astrocytes and their processes, which were strongly positive for AQP4. This glial plate is an
extension of the subependymal zone and is covered by ependymal cells. The single cell
ependymal layer continues on as the CP epithelium; both are derivatives of the neuroepithe-
lial ventricular lining but distinct in their morphology and aquaporin expression [4,18,19]
(see Figures 1 and 3). The astrocytic processes in the glial plate form a cuff around the
entering blood vessels and can therefore be considered perivascular astrocytic endfeet. On
the other hand, the blood vessels are surrounded by leptomeningeal tissues that accompany
them into the stroma of the choroid plexus due to developmental processes. Therefore,
astrocytic processes in the transition zone can also be considered subpial. In any case, the
glial plate is delimited by a basal lamina that is continuous with the basal lamina of the
CP epithelium, as illustrated in Figure 5. Our data also showed that astrocytic processes
reach and contact the CP stroma in the CP stalk, where they are separated only by the
basal lamina.
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Figure 5. Summary and suggested implications of aquaporin expressions in the ependyma–choroid
plexus transition zone. (a) AQP4 expression is particularly high in astrocytic processes that form
a glial plate or cuff around the blood-supplying vessels of the CP. AQP4 staining is also found
basolaterally in some CP epithelial cells (red lines). The astrocytic processes delimited by a basal
lamina reach the CP stroma, which includes fenestrated capillaries. AQP1 is expressed mostly apically
in CP epithelial cells, which also form tight junctions as the basis for the blood–CSF barrier. Note
that the basal lamina of blood vessels is not included in the schematic. (b) Water and solutes can
diffuse into the CP stroma through fenestrated capillaries and can enter the brain parenchyma via the
glial plate. The basal laminae might have a filtering effect but do not constitute a barrier. Water flow
is likely restricted by the dense meshwork of astroglial processes in the glial plate. (c) Depending
on the osmotic gradient, the high density of AQP4 water channels in the glial plate could also
serve as a drainage and clearing pathway for metabolites, which are then taken up by postcapillary
venules in the stroma. This would contribute significantly to processes suggested by the glymphatic
pathway hypothesis.
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4.2. Astrocytic Polarity in the Transitional Glial Plate

As has been demonstrated many times, perivascular and subpial astroglial endfeet
express a high density of AQP4 [20,21], in contrast to their cell somas and perineuronal
processes with low or undetectable levels of AQP4. However, the processes in the glial plate
and some subependymal areas showed little polarity of an overall high AQP4 expression.
The dystrophin–glycoprotein complex (DGC), together with associated proteins such as
agrin and alpha-syntrophin, is believed to play a pivotal role in the polarized localization
of AQP4 to astrocytic endfeet membranes [22–25]. The DGC binds to components of the
extracellular matrix such as laminin, which recently has been shown to be involved in
AQP4 clustering [26]. Additionally, deletion of the associated alpha1-syntrophin leads to
an almost complete loss of perivascular AQP4 [27]. Our stainings for beta-dystroglycan
and dystrophin showed a differential result of co-localization with AQP4: the unpolarized
staining of AQP4 was matched by the distribution of dystrophin in the glial plate but not in
the AQP4-positive cells in the CP epithelium. In contrast, beta-dystroglycan was associated
with laminin in the glial plate and the CP epithelium, where it was not restricted to AQP4-
positive cells. This suggests that the membrane localization of AQP4 is determined by
different mechanisms in astrocytic perivascular endfeet, astrocytic processes in the glial
plate, and CP epithelial cells. Indeed, AQP4 expression independent of dystrophin has
been reported previously for astrocytic subpial endfeet and ependymal cells [28]. For
mouse CP cells, the dystrophin homolog utrophin has been localized to the basolateral
membrane [29], which might not be recognized by our anti-dystrophin antibody. Thus,
variations in the dystrophin–glycoprotein complex might determine local anchoring of
AQP4. Since our previous studies in mice suggested an age-related AQP4 expression in the
CP epithelium [15], we cannot rule out that the high expression in the glial plate is also due
to age-related processes (see below).

4.3. Functional Implications of High AQP4 Expression in the Transitional Glial Plate

The blood–brain barrier (BBB) and blood–cerebrospinal fluid barrier (BCSFB) separate
the blood milieu from the brain’s internal environment. They are formed by tight junctions
located between capillary endothelial cells and between CP epithelial cells, respectively [30].
The capillaries of the CP, however, are fenestrated, allowing for an increased fluid and
metabolite exchange, likely to facilitate CSF production [19,31]. The stromal space of the CP
between blood vessels and the CP epithelium is not separated from the brain parenchyma
by a barrier in the transition zone in the form of tight junctions. Instead, as our data show,
it faces a basal lamina and a dense meshwork of AQP4-positive processes.

Previously, the CP has been suggested to be an entry site for immune cells into the brain
parenchyma, either by crossing the CP epithelium or by the leptomeningeal route [31,32].
In fact, immune cells, especially macrophages, have been identified in the CP stroma [33].
Parasites such as trypanosomes might enter the brain through the stromal-fenestrated
blood vessels as well [34]. Moreover, there is evidence that viruses, including COVID-19,
can enter the brain via the CP [35,36]. Likewise, the CP represents an entry site for fluids:
as indicated in Figure 5, water and solutes entering the CP stroma from capillaries could
flow into the transitional glial plate. Such an outflow has already been pointed out by
Brightman and Reese [37], who termed it a ‘functional leak’ and implied the possibility
of a bidirectional flow. The dense meshwork of astrocytic processes we observed in the
human CP transition zone might form a cuff around CP-entering blood vessels, providing
a barrier and limiting stromal fluid from entering the brain interstitial fluid. This might be
facilitated by the high level of AQP4 expression on astrocytic processes taking up leaking
fluid from the stroma.

It is well documented that CSF production decreases with age and structural changes
occur in the CP, such as accumulating deposits and stromal thickening [38–40]. Additionally,
sex differences in CP gene expression have been reported [41,42]. Thus, age, cause of death,
and sex might have an impact on aquaporin expression in the CP and ependyma. However,
so far, we have not found any differences in the body donor tissues we analyzed regarding
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these factors. Along the lines of our previous study [15], it is certainly possible that age has
a relevant impact on AQP4 expression in the glial plate, but this remains to be shown.

In the last decade, a recycling and draining fluid system has been proposed for the
brain, termed the glymphatic system, recently reviewed in [13]. This system includes the
perivascular spaces that connect to the subarachnoid space and serves as a fluid drainage
and waste removal system. It is supported by AQP4 in the perivascular endfeet since
deletion of AQP4 alters CSF flow [43,44]. Moreover, in AQP4-KO mice the clearing of
tau protein CSF and the glymphatic pathway are impaired, and tau accumulates in the
brain, causing neurodegenerative symptoms [45]. The high expression of AQP4 in the CP
transition plate might be part of the glymphatic drainage system by facilitating water flow
and accompanying waste into the CP stroma (Figure 5c).

Since water is driven through aquaporin channels by osmotic and hydrostatic gradi-
ents, the direction of water flow through AQP4 in the glial plate cannot be determined
with certainty. We propose that the high expression of water channels serves as a control
for influx as indicated above, while at the same time or alternatively serving as part of a
drainage system that clears into the CP stromal space, where waste products can be taken
up by fenestrated blood vessels.
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