Skip to main content
. 2023 Feb 16;11(2):581. doi: 10.3390/biomedicines11020581
Algorithm 5 Ensemble Stacking Classification to Predict Liver Disease
Input:     Training set record
Output:   Class of record (liver disease or no liver disease)
Generating Algorithm Begin
     Step 1: Train the entire dataset on n-base learners
     Step 2: Feed output of base learners to meta learner
        Base learners used: extra tree classifier, random forest, and xgboost
     Step 3: Train meta learner on-base learner output
        Meta learner used: logistic regression
     Step 4: Testing
            Step 4.1: Pass each record through base learners
            Step 4.2: Feed output of base learners to meta learner
            Step 4.3: Meta-learner output gives final prediction
End