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Abstract: Abnormal accumulation of alpha synuclein (α-Syn) in sporadic and familial Parkinson’s
disease (PD) may be a key step in its pathogenesis. In this study, the expression matrix of the GSE95427
dataset after α-Syn overexpression in human glioma cell line H4 was obtained from the GEO database.
We used the Gene Set Enrichment Analysis (GSEA) method to reanalyze this dataset to evaluate the
possible functions of α-Syn. The results showed that the tumor necrosis factor alpha (TNF-α) signal
was significantly activated in α-Syn-overexpressing cells, and oxidative phosphorylation signal,
extracellular matrix signal, cell cycle related signal and fatty acid metabolism signal were significantly
inhibited. Moreover, we employed the α-Syn-expressing transgenic Drosophila model of Parkinson’s
disease and knocked-down eiger, a TNF superfamily ligand homologue, indicating that the TNF-α
pathway plays a role in the common pathogenesis of synucleinopathies. Our analysis based on GSEA
data provides more clues for a better understanding of α-Syn function.
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1. Introduction

The protein α-Synuclein (α-Syn) was discovered in 1988 as a component of cholinergic
synapses in the discharge organ of Torpedo californica [1]. In humans, α-Syn is abundant in
the brain, primarily in synaptic terminals [2,3] at the tips of neurons. Pre-synaptic terminals
transmit signals between neurons by releasing various neurotransmitters from synaptic
vesicles, and are essential for normal brain function [4]. In 1997 and 1998, evidence that
mutations in the α-Syn gene were found in sporadic and familial Parkinson’s disease
(PD) [5,6]. This understanding of the pathogenesis of PD was considered by many scientists
to be at least as important as the description of the toxicity of MPTP (a neurotoxin capable
of destroying dopamine-producing nerve cells in the substantia nigra) 15 years ago [7]. The
gene encoding α-Syn is also called “PARK1”, and its mutations, such as A30P and A53T,
are closely related to PD. PD, the second most common neurodegenerative disorder, is
characterized by a progressive loss of dopaminergic neurons within the substantia nigra
pars compacta of the midbrain [8]. The neuropathological hallmark of the disease is
the presence of intracytoplasmic inclusions called Lewy bodies (LBs) and Lewy neurites
(LNs) [9]. Although it is clear that LB and LN mainly contain α-Syn, the mechanism leading
to the aggregation of α-Syn needs to be clarified [10]. Perhaps α-Syn is a multidimensional
factor that might subtend several neurobiological underpinnings. Thus, the cause of α-Syn
aggregation and its relationship to dopamine neuron loss in PD is the subject of much
current work [11–13]. The main problem in the molecular pathology of PD is not only to
understand the aggregation of α-Syn, but also to know which key signals are associated
with it, to regulate the pathological development of PD. Therefore, it is of great significance
to study the gene networks related to α-Syn. However, many physiological functions
of α-Syn are only partially understood; the exact pathomechanisms of α-Syn underlying
neurodegenerative diseases remain elusive.
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Drosophila melanogaster provides a simple, yet powerful genetic system for studying
PD pathobiology in vivo. To date, various Drosophila models that mimic inherited forms of
PD have been developed [14]. The power of Drosophila has revealed several genetic factors
implicated in the various pathways of PD, and has given us a great understanding of the
molecular mechanisms of dopaminergic (DA) neurodegeneration [14]. Although Drosophila
has no homolog of the human Synuclein Alpha (SNCA) gene, pathogenic SNCA mutations
that cause PD with a dominant inheritance pattern imply a hazardous gain-of-function
mechanism, which leads to appropriate transgenic modeling in flies overexpressing wild-
type or mutant α-Syn [15]. Using the usual Gal4/USA expression strategy, Feany and
Bender first created α-Syn transgenic Drosophila models by overexpressing either wild-type
or familial mutations A53T and A30P of human α-Syn [16]. These models replicate the
key hallmarks of PD including adult-onset loss of DA neurons [15]. The α-Syn transgenic
Drosophila models are widely used to identify novel proteins that cause α-Syn toxicity and
to clarify underlying pathogenic processes [17].

In this study, according to the data published by Pinho et al. in 2019 [18], bioinformatics
was used to reanalyze the related gene sets enriched after α-Syn overexpression to provide
more clues and ideas for the study of α-Syn function. We used an α-Syn-expressing
transgenic Drosophila model of PD to verify that the TNF-α pathway, one of the most
obviously activated pathways shown by gene set enrichment analysis, is involved in the
pathogenic processes of α-Syn.

2. Materials and Methods
2.1. Dataset Acquisition

As described previously by Pinho et al. [18], the GSE95427 dataset was obtained
from GEO data (https://www.ncbi.nlm.nih.gov/geo/, accessed date: 10 May 2021) using
α-Syn overexpression and gene chip analysis in human glioma cell H4. We obtained the
expression matrix file (Series Martix File) with robust multiarray average (RMA) stan-
dardization processing and the corresponding probe platform information file (GPL570
[HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array) [19].

2.2. Differential Expression Matrix Acquisition

We installed and loaded the Bioconductor package (https://bioconductor.org/, ac-
cessed date: 24 December 2018) in R3.5 software. Bioconductor was developed in the R
statistical programming language, which is a popular toolkit for analyzing high-throughput
genomic data [20]. After reading the original expression matrix we found that the platform
information used by the GSE95427 dataset was GPL570, and its corresponding package
file in Bioconductor was hgu133plus2.db. After installing the package, the corresponding
relationship between the gene name information and the probe can be obtained, and then
the probe and gene name can be converted to obtain the final expression matrix. Finally,
the group matrix of the α-Syn overexpression group and control group was constructed
using the limma package [21] in Bioconductor, and the differentially expressed genes were
output after Bayesian test and linear model fitting.

2.3. Acquisition of Heat Map and Volcano Map

All differentially expressed genes were analyzed using the Subset function, and
806 genes with differences greater than twice and p-values less than 0.05 were found.
The 806 differentially expressed genes were mapped using the Pheatmap function, and the
heat map analysis results were obtained. All the obtained differential genes were plotted
using the ggplot2 function to obtain a volcano map, and the names of the genes with a
log2fold ratio change of more than 2 were displayed on the map.

2.4. GO and KEGG Analysis

The ClusterProfiler package [22] in the Bioconductor toolkit was used to obtain a
gene list from 806 genes with a difference of more than twice and a p value of less than

https://www.ncbi.nlm.nih.gov/geo/
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0.05, and the gene names were converted into ENTREZID to represent genes in the NCBI
database. GO analysis of cell components, biological processes, and molecular functions
was performed using the function enrichGO, and KEGG [23] analysis was performed by
the function enrichKEGG, with the partition p-value pvalueCutoff = 0.01 and the estimated
false discovery rate qvalueCutoff = 0.01. Finally, the Barplot function was used to plot.

2.5. Gene set Enrichment Analysis

After loading the clusterProfiler package, regardless of the fold of gene differential
expression, the gene list was obtained from all genes, the gene names were converted to
ENTREZID, and the genes were sorted according to their differential expression values from
high to low. The Hallmark gene set file was obtained from the MSigDB database [24], gene
set enrichment analysis was carried out with GSEA function, and the overall distribution
map was obtained using the dotplot function. After installing the enrichplot package
(https://github.com/GuangchuangYu/enrichplot, accessed date: 24 December 2018), the
gseaplot2 function in the package was used to obtain enrichment information maps of
individual gene sets.

2.6. Drosophila Culture, qRT-PCR Analysis and Immunostaining of Fly Brains

Flies were routinely maintained in standard molasses-cornmeal-yeast food at 25 ◦C and
raised at 29 ◦C for the experiments. w1118 (BS#5905), TH-Gal4 (BS#8848), UAS-αSynA30P
(BS#8147), UAS-eiger-RNAi (BS#55276), and UAS-RFP (BS#32219) were obtained from
Bloomington Drosophila Stock Center.

Head RNA from 25–30 days old flies (w1118, TH-Gal4 > UAS-RFP, TH-Gal4 > UAS-
αSynA30P) was extracted using TRIGene (GenStar, P118-05). HiScript III RT SuperMix
was used to generate the cDNA (Vazyme, R323). qPCR was carried out on a Roche
LightCycler 96 using a RealStar Green Fast Mixture (GenStar, A301). The following mRNAs
were quantified using primers designed using FlyPrimerBank (https://www.flyrnai.org/
flyprimerbank, accessed date: 5 January 2023): actin5c-f: AGGCCAACCGTGAGAAGATG;
actin5c-r: GGGGAAGGGCATAACCCTC; eiger-f: TATGACTGCCGAGACCCTCA; eiger-
r: AAAACCAGGGGGATCAGCTG; Grnd-f: ATGGAGAGAGTAGGGATTGCC; Grnd-f:
TGGGTTTGATTATTGCAGACCTC; Wgn-f: ACCATCTGCGGTTCCATATACG; Wgn-r:
GTGCTCATACTCGGAGGACTT. The fold-change in expression relative to the control was
calculated using the 2−∆∆CT method. Actin5c was used as an internal control.

Thirty days old flies (TH-Gal4 > w1118, TH-Gal4 > UAS-αSynA30P, TH-Gal4 > UAS-
αSynA30P + UAS-eiger-RNAi) were fixed in 4% formaldehyde (Merck, Darmstadt, Germany,
8775) at 25 ◦C for 2 h. Brains were then dissected, washed in PBS with 0.2% Triton X-100
(PBST), and blocked in 5% goat serum in PBST for 1 h at room temperature. Primary rabbit
anti-TH antibody (Merck, Darmstadt, Germany, AB152, 1:1000) was added and the samples
were incubated overnight at 4 ◦C. Samples were washed three times with PBST, Alexa Fluor
488-labeled goat anti-rabbit secondary antibody (ThermoFisher, Waltham, MA, UAS, R37116,
1:50) was added, and the samples were incubated for 2 h at 25 ◦C. After washing with PBST
and mounting, images were taken using a Leica TCS SP5 confocal microscope.

3. Results
3.1. Differentially Expressed Genes

To analyze differentially expressed genes in response to α-Syn overexpression it is
necessary to construct a linear model, which is a common method for experimental data
analysis. The limma package allows the construction of linear models and differential
expression analysis. This package allows for simultaneously comparison of multiple
experimental groups [21]. First, a linear model was fitted for each gene expression, and
then Empirical Bayes was used to analyze the residuals to obtain the appropriate t-statistic,
which was optimized for the variance estimation of the experiment to make the analysis
results more reliable [21]. After constructing the matrix of the α-Syn overexpression group
and control group using the limma program package, 20,186 of all differentially expressed

https://github.com/GuangchuangYu/enrichplot
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genes were output after the steps of the Bayesian test and linear model fitting (Figure 1).
Further, a total of 806 genes with a difference of more than twice and a p value of less than
0.05 were screened (Figure 1).
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3.2. Clustering of Differential Expression Profiles

Clustering analysis was performed on 806 genes with a difference of more than twice
and a p-value of less than 0.05. By observing the dendrogram (cluster analysis of rows and
columns), it is evident that the expression patterns of the two samples belonging to the
α-Syn overexpression group were similar, as were the two samples belonging to the control
group (Figure 2). Compared to the control group, 332 genes were upregulated and 474 genes
were downregulated in the α-Syn overexpression group (Figure 2). This indicates that both
the control group and the α-Syn overexpression group had good reproducibility of their
respective samples, which proves that there is no significant problem in the experimental
treatment and that the data are reliable for further analysis.
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3.3. Interaction Network of Differentially Expressed Genes

The STRING database (https://string-db.org/cgi/input.pl, accessed date: 10 May
2021) is a database for searching protein interaction on line [25]; it was searched, and the
names of 806 genes with a difference of more than twice and a p-value less than 0.05 were
used as inputs. Finally, the network view was used to show the direct or predicted associ-
ation network of a specific protein. We found that 707 of the 806 differentially expressed
genes could be densely located in a network through protein interactions, accounting for
87.7% of the total differentially expressed genes (Figure 3) and indicating that the genes
with differences after α-Syn overexpression were very closely linked.
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3.4. GO and KEGG Enrichment Analysis

The differentially expressed genes were analyzed by traditional Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. GO
enrichment analysis can be divided into three categories: cellular component, molecular
function and biological process. According to the 806 differentially expressed genes selected
above, the hypergeometric distribution relationship between these differentially expressed
genes and some specific branches in the known GO classification was calculated. GO
analysis will return a p-value for each GO with differential genes, and a small p-value
indicates that the differential genes are enriched in GO. The results showed that extracellular
matrix signals were significantly enriched in cellular components, molecular functions and
biological processes after α-Syn overexpression (Figure 4A–C). In addition, KEGG pathway
enrichment analysis revealed that only a few signals, such as TNF-α signaling pathway,
was enriched after α-Syn overexpression (Figure 4D).
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3.5. Gene Set Enrichment Analysis

Given the limited amount of information obtained from the GO and KEGG enrichment
analysis, gene set enrichment analysis (GSEA), a method that can examine the enrichment
signal, was utilized to further analyze the data [24,26]. The GSEA method defines a
specific gene set related to a particular biological process in advance based on existing
research results, and then uses statistical methods to evaluate the distribution trend of
all genes obtained in a specific experiment (regardless of the gene differential expression
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fold) corresponding to the predetermined gene set. Its input data consist of two parts:
one is the preset known gene sets (which can be GO annotation, KEGG annotation, or
other custom gene set conforming to the format), and the other is the expression matrix
obtained by the experiment according to the change in gene expression value from large
to small, and then judge whether the genes under each annotation in the gene set are
enriched in a certain position of the expression matrix. GSEA analysis did not consider
the fold of differential expression of genes, and the input variable was the differential
expression of all genes in the two comparison groups, while the traditional GO and KEGG
analysis methods artificially set the false discovery rate (FDR) to screen out a certain
proportion of differentially expressed genes, and the input variable was a specific gene
list. Therefore, compared with traditional GO and KEGG analysis, the results of GESA
are more scientific. Here, GSEA was used to reanalyze the gene set enriched after α-Syn
overexpression. The results showed that in the Hallmark gene set, overexpression of α-
Syn activated 9 sub-gene sets and inhibited 18 sub-gene sets. The most obvious set of
activating genes was the set associated with TNF-α signaling (NFKB-dependent TNF-α
signaling) (Figure 5 and Table 1). However, oxidative phosphorylation-related signals
(oxidative phosphorylation), extracellular matrix-related signals (epithelial-mesenchymal
transition), and cell cycle-related signals (E2F targets) were significantly inhibited (Figure 5
and Table 1). The details of the genes involved in the top four enriched gene sets are shown
in Table 1. Simultaneously, we found that the genes involved in the top four enriched
gene sets appeared to different degrees in the protein interaction networks (Figure 3),
especially for the TNF-α signal-related gene set and extracellular matrix-related signal:
TNF-α signal-related gene set (39/88), oxidative phosphorylation-related signals (3/112),
extracellular matrix-related signals (41/92), and cell cycle-related signals (4/89).
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Table 1. The gene lists for the top four enrichment gene sets.

Gene Sets Gene Symbol of Enrichment Genes in NCBI Database

TNF-α_SIGNALING_VIA_NFKB

AREG/ATF3/BCL2A1/BIRC3/BMP2/BTG1/CCL20/CD69/CD83/CEBPB/
CEBPD/CSF2/CXCL10/CXC/CXCL2/CXCL3/DENND5A/DRAM1/DUSP1/
DUSP4/DUSP5/EDN1/EIF1/FJX1/FOSL1/GADD45A/GCH/HBEGF/IER3/
IFIH1/IFIT2/IL15RA/IL1A/IL6/IL6ST/INHBA/IRF1/IRS2/KDM6B/KLF4/

KLF9/KYNU/LDLR/LIF/MAFF/MCL1/MSC/MXD1/MYC/NAMPT/
NFIL3/NFKB1/NFKB2/NFKBIA/NFKBIE/NR4A2/OLR1/PHLDA1/

PNRC1/PPP1R15A/PTGS2/PTX3/RCAN1/REL/RELA/RELB/RIGI/RIPK2/
SAT1/SERPINB2/SERPINB8/SIK1/SLC16A6/SLC2A3/SOCS3/SOD2/

SQSTM1/TGIF1/TIPARP/TNFAIP3/TNFAIP6/TNFRSF9/TNIP1/TRIB1/
TSC22D1/VEGFA/YRDC/ZBTB10

OXIDATIVE_PHOSPHORYLATION

ACAA1/ACAA2/ACADM/ACADSB/ACADVL/ATP1B1/ATP5F1B/
ATP5F1C/ATP5F1D/ATP5F1E

/ATP5MC1/ATP5MC3/ATP5ME/ATP5MG/ATP5PB/ATP5PD/ATP5PF/
ATP5PO/ATP6AP1/ATP6V0B/ATP6V0C/ATP6V0E1/ATP6V1D/

ATP6V1E1/ATP6V1F/ATP6V1H/BAX/BDH2/CASP7/COX4I1/COX5A/
COX5B/COX6A1/COX6B1/COX6C/COX7A2/COX7B/COX8A/CS/CYB5A/
CYB5R3/DECR1/DLAT/ECH1/ECHS1/ETFA/ETFB/ETFDH/FDX1/FXN/

GPI/GPX4/HSD17B10/HTRA2/IDH2/IDH3A/IDH3G
ISCA1/LDHA/MDH1/MGST3/MPC1/MRPL15/MRPL34/MRPL35/MRPS11/

MRPS12/MTRF1/NDUFA2/NDUFA3/NDUFA4/NDUFA5/NDUFA6/
NDUFA7/NDUFA8/NDUFB1/NDUFB2/NDUFB3/NDUFB5/NDUFB6/

NDUFB7/NDUFB8/NDUFS3/NDUFS6/NNT/OAT/OGDH/PDHB/PHYH/
POLR2F/PRDX3/RETSAT/SDHB/SDHD/SLC25A11/SLC25A12/SLC25A20/

SUCLA2/SUCLG1/TCIRG1/TIMM10/TIMM13/TIMM8B/TOMM22/
UQCR10/UQCR11/UQCRB/UQCRC1/UQCRFS1/UQCRQ/VDAC1/VDAC3

EPITHELIAL_MESENCHYMAL_TRANSTION

ACTA2/ANPEP/APLP1/BASP1/BMP1/CALD1/CALU/CAP2/CAPG/
CD59/CDH11/CDH6/COL11A1/COL12A1/COL16A1/COL1A1/COL3A1/
COL4A1/COL4A2/COL5A1/COL7A1/CRLF1/CTHRC1/DCN/DPYSL3/

ECM1/EDIL3/EMP3/FAP/FAS/FBLN5/FBN1/FBN2/FLNA/FN1/FSTL3/
FUCA1/GAS1/GEM/GLIPR1/GPC1/HTRA1/ID2/IGFBP2/ITGA5/ITGAV/
ITGB3/ITGB5/LAMA1/LAMA2/LAMC1/LGALS1/LOXL1/LRRC15/LUM/
MATN2/MATN3/MGP/MMP2/MYLK/NID2/P3H1/PCOLCE/PDGFRB/

PDLIM4/PLOD1/PLOD2/PLOD3/PMEPA1/PMP22/POSTN/PTHLH/
RHOB/SDC1/SERPINE1/SFRP1/SGCB/SNAI2/SPARC/SPOCK1/SPP1/

TAGLN/TGFB1/TGFBI/TGM2/THBS1/THY1/TIMP1/
TNFRSF11B/TPM1/TPM4/VCAN

E2F_TARGETS

ASF1B/ATAD2/AURKA/BIRC5/BRMS1L/BUB1B/CBX5/CCNB2/CCNE1/
CCP110/CDCA3/CDCA8/CDK1/CDK4/CDKN1A/CDKN2C/CDKN3/

CENPE/CENPM/CKS2/DCLRE1B/DCTPP1/DLGAP5/DNMT1/DONSON/
DSCC1/DUT/E2F8/EED/ESPL1/GINS1/GINS4/H2AX/HELLS/HMMR/

JPT1/KIF22/KIF4A/KPNA2/LIG1/LMNB1/MAD2L1/MCM3/MCM4/
MKI67/MSH2/MXD3/MYBL2/NCAPD2/NME1/PAICS/PCNA/PDS5B/
PLK1/PLK4/PNN/POLA2/POLD1/POLD2/PPM1D/PRIM2/PRKDC/

PRPS1/RACGAP1/RAD51AP1/RANBP1/RBBP7/RFC2/RFC3/RNASEH2A/
RPA3/RRM2/SMC1A/SPAG5/SPC24/SPC25/STMN1/TACC3/TCF19/

TIMELESS/TK1/TOP2A/TRIP13/TUBB/TUBG1/UBE2T/UBR7/UNG/WEE1

3.6. Reliability Analysis of Gene Enrichment

To further evaluate the reliability of the results of the gene enrichment analysis, the
gseaplot2 function was used to obtain the enrichment information map of a single gene
set. We selected 6 gene sets to view detailed enrichment information. From the density
distribution and enrichment scores of the ranking association matrix in the gene list it can
be seen that both activated and repressed gene sets show relatively reliable enrichment,
indicating that these gene sets are indeed significantly enriched (Figure 6).
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Figure 6. Details of single gene set enrichment. (A) Genes regulated by NF-kB in response to TNF-α.
(B) Genes encoding the proteins involved in oxidative phosphorylation. (C) Genes defining epithelial-
mesenchymal transition, such as in wound healing, fibrosis and metastasis. (D) Genes encoding
proteins involved in fatty acids metabolism. (E) Genes encoding cell cycle-related targets of E2F
transcription factors. (F) Genes involved in the G2/M checkpoint, as in progression through the cell
division cycle. In the GSEA enrichment graphs, the curves represent the running sum of enrichment
scores, the middle part of the graph shows the position of genes associated with specific pathways,
and the bottom part of the graph shows how the fold change is distributed along with the gene list.
The normalized enrichment score (NES) and the adjusted p-values were shown in the graphs.

3.7. Knockdown of TNF-α Pathway Partially Rescues the DA Neurons Degeneration Caused by
α-Syn Overexpression

To further confirm the results obtained from GSEA we employed the α-Syn-expressing
transgenic Drosophila model of PD for the in vivo experiment. The TNF-α pathway was
chosen for further investigation because it was strongly activated in the top four enriched
genes following α-Syn overexpression. We performed qRT-PCR detection of the Drosophila
TNF-α homologue eiger [27] and its two receptors, Grindelwald (Grnd) [28] and Wengen
(Wgn) [29]. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for catecholamine syn-
thesis, catalyzes the hydroxylation of tyrosine to dopamine [30], and is widely used to
immunolabel DA neurons in Drosophila [31–36]. We found that α-Syn.A30P overexpression
with a tyrosine hydroxylase promoter driver (TH-Gal4) [37] in dopamine neurons signifi-
cantly increased the levels of eiger and Grnd in the head (Figure 7A). In Drosophila, we and
other studies have shown that age-dependent specific loss of lateral protocerebral posterior
1 (PPL1) neurons was detected in several models of PD, including mutants for PINK1 [35],
parkin [36], and α-Syn or Lrrk2 overexpression models [34,37]. When α-Syn.A30P was
introduced into the DA neurons with TH-Gal4 driver, significant suppression of PPL1 DA
neuronal loss was detected in the aged flies (Figure 7B,C). Interestingly, when the eiger
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was knocked down, it partially prevented PPL1 DA neurons degeneration in α-Syn.A30P
overexpression flies (Figure 7B,C). Thus, we demonstrate that the TNF-α pathway is a
physiological ligand in the α-Syn-mediated PD model.
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sion. (A) Expression levels of eiger, Grnd and Wgn. (B) Images showing PPL1 neurons stained with
anti-TH. (C) Quantification of PPL1 neurons number. One-way ANOVA analysis with Tukey’s multiple
comparisons test was performed. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns no significance.

4. Discussion

TNF-α is increasingly being recognized as a key pro-inflammatory cytokine involved
in chronic inflammation and PD neurodegeneration. Microglial release and recombinant
TNF-α have been shown to disrupt α-Syn degradation and lead to its accumulation in PC12
cells and midbrain neurons [38]. TNF-α can affect the autophagy pathway and regulate
lysosomal acidification in dopaminergic cells, leading to the α-Syn accumulation. This may
represent a novel mechanism for TNF-α-induced degeneration of dopaminergic neurons
in PD. Another study also observed an increase in TNF-α expression after injecting α-Syn
into the striatum of mice [39]. Both KEGG signaling pathway enrichment and gene set
enrichment analyses showed that TNF-α-related signals or gene sets were significantly
activated in cells overexpressing α-Syn, which is consistent with previous studies. Our
study found that both eiger and Grnd were up-regulated in the α-Syn overexpression
Drosophila heads. A recent study showed that Grnd and Wgn have different affinities
for Eiger [40]. Ectopic Eiger expression leads to high-affinity interactions of Eiger: Grnd
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complexes in vesicles, which is a prerequisite for Eiger-induced apoptosis [40]. They also
found that Wgn binds to Eiger with a much lower affinity in intracellular vesicles.

Studies have shown that the α-Syn protein can enter neurons and localize in mitochon-
dria, interact with ATP synthase α subunit, and regulate the ATP synthase function [41].
However, this regulation appears to be opposite to that we found in the GSEA analysis.
They found that low monomeric α-Syn had the ability to increase ATP synthase efficiency.
As a physiological regulator of mitochondrial bioenergy, the α-Syn protein improves the
efficiency of energy production through its interaction with ATP synthase. This may be
particularly important when stress or PD mutations lead to energy depletion or neurotox-
icity. In contrast, another study found that the highly neurotoxic α-Syn protein induces
mitochondrial damage and mitochondrial autophagy [42], which is the site of oxidative
phosphorylation. Gene set enrichment analysis revealed that oxidative phosphorylation
was significantly inhibited. Therefore, how oxidative phosphorylation affects the aggrega-
tion of α-Syn protein and the pathological process of PD remains to be further studied.

Studies have also explored the role of cell cycle changes in neurodegenerative diseases
such as Alzheimer’s disease. In one study, the authors examined the effect of α-Syn protein
expression levels on the cell cycle index of PC12 cells and found that overexpression of
α-Syn protein resulted in an increased rate of cell division, and a large number of cells
appeared enriched in the S phase [43]. The α-Syn accelerates cell cycle and promotes
neurotoxicity [44]. In addition, the research team from which the dataset was derived in
this study also found that α-Syn causes severe transcriptional dysregulation, including
downregulation of important cell cycle-related genes [18]. Gene set enrichment analysis
revealed that several cell cycle-related gene sets were inhibited, such as E2F_TARGETS and
G2M_CHECKPOINT, which provides more possibilities for future research on cell cycle
changes, α-Syn protein aggregation and the impact on the pathological process of PD.

In addition to the above enriched gene sets, extracellular matrix signaling, DNA
damage repair signaling, misfolded protein response, peroxisome-related signaling, in-
flammation, and immune signaling were significantly affected by α-Syn overexpression.
Moreover, H4 cells are rather glial cells than neurons. The data obtained using H4 cells may
be more specific to glial cells than to neurons. Multiple system atrophy (MSA) is another
representative synucleinopathy [45]. It is well known that in MSA the α-Syn deposition
is mainly observed in glia cells [46]. If the results using H4 cells are further examined in
MSA models, more substantial conclusions may be obtained. Furthermore, lund human
mesencephalic (LUHMES) cells can differentiate into neuronal cells with a robust dopamin-
ergic phenotype [18]. In PD, major degeneration occurs in the dopaminergic neurons [47].
Analysis of the LUHMES-cell dataset may be more feasible for the study of PD. From
the original point of view, the new factors found in the present study (Table 1) should be
examined in vivo in future studies. If these new factors are validated in the future and
translated into human medicine, they may be used as potential biomarkers or treatment
targets for PD. In conclusion, the results of the gene set enrichment analysis provide more
clues and ideas for future studies on α-Syn function.
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