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Abstract: The endocannabinoid system (ECS) plays a very important role in numerous physiological
and pharmacological processes, such as those related to the central nervous system (CNS), including
learning, memory, emotional processing, as well pain control, inflammatory and immune response,
and as a biomarker in certain psychiatric disorders. Unfortunately, the half-life of the natural
ligands responsible for these effects is very short. This perspective describes the potential role of the
inhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL),
which are mainly responsible for the degradation of endogenous ligands in psychic disorders and
related pathologies. The examination was carried out considering both the impact that the classical
exogenous ligands such as ∆9-tetrahydrocannabinol (THC) and (−)-trans-cannabidiol (CBD) have on
the ECS and through an analysis focused on the possibility of predicting the potential toxicity of the
inhibitors before they are subjected to clinical studies. In particular, cardiotoxicity (hERG liability),
probably the worst early adverse reaction studied during clinical studies focused on acute toxicity,
was predicted, and some of the most used and robust metrics available were considered to select
which of the analyzed compounds could be repositioned as possible oral antipsychotics.

Keywords: endocannabinoid system; FAAH inhibitors; MGL inhibitors; repositioning; drug-likeness;
hERG; ligand efficiency metrics

1. Introduction

Clinical and social psychologists seldom use an ancient Hindu parable to illustrate
the seductive potential of our perspective on a complex problem—the well-known story
of the blind men and the elephant [Briefly, six wise men were blind and wanted to learn
about an animal that they had never met before—an elephant. They went through an
organoleptic analysis. Depending on the part of the animal body they touched, each of
them produced a different definition (e.g., ‘huge, wrinkled fan,’ said the experimenter
who had touched the elephant ears; ‘a big rope,’ said the wise man who had touched
the elephant swinging tail; and so on) and a vehement disputation originated since each
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wise man suspected the others as dishonest persons. All six were telling the truth, but
each of them had touched only one part of the animal and therefore knew only that part
of the truth] [1]. When a complex problem is concerned, we generally know only a part
of the truth while the whole story remains mostly unknown. Mental illness is a complex
problem since the human brain is a holistic apparatus: our attempt to explain mental
disorders at the synaptic level makes us resemble the wise men who wanted to infer the
elephant by analyzing only a part of its body. Anyway, when looking for new drugs to
treat mental illness, the best rational way still starts from an alleged biochemical defect
occurring at one or several types of synaptic gaps.

The dopamine hypothesis has been the leading theory of most psychotic disorders,
and the currently used typical and atypical antipsychotics share a common mechanism of
action in antagonism of the dopamine D2 receptor [2]. The remarkable case of clozapine, the
only atypical antipsychotic effective in psychoses that are otherwise treatment-resistant [3],
indicates that multipotent antipsychotics acting at many different receptor sites in the brain
may represent a more efficacious treatment than existing drugs [4]. Numerous lines of
evidence have highlighted the possible involvement of diverse neurotransmitter pathways,
including glutamate, serotonin, γ-aminobutyric acid, adenosine, and acetylcholine [5].
Frequently polypharmacy is prescribed to face the most severe psychotic syndromes despite
controversial results about the efficacy of the approach [6,7] and related safety concern [8,9],
obviously higher in older patients [10].

In 1997, a “cannabinoid hypothesis of schizophrenia” was also suggested [11], and
the increasing body of evidence supporting this new paradigm has been brilliantly re-
viewed [12]. The endocannabinoid system (ECS) is one of the most relevant neurotrans-
mitter systems in the brain and plays a pivotal role in the regulation of cognitive abilities,
mood, stress, and sleep [13]. Relatively fewer explored targets for antipsychotic treatment
could be found in ECS. Thinking about cannabinoids, our minds run to the well-known
pro-psychotic properties of ∆9-tetrahydrocannabinol (THC, Figure 1), the main psychoac-
tive ingredient of cannabis, which acts as an agonist on cannabinoid (CB) receptors (CBR).
In addition to its pro-psychotic potential, THC causes an undesirable behavioral tetrad, that
is, analgesia, catalepsy, hypothermia, and hypolocomotion. THC synthetic analogs, both
agonists and antagonists [14,15], or recreational drugs—the so-called NPS (new psychoac-
tive substances) [16,17]—are generally tainted with severe side effects. The worst is that the
activation of CBR of type 1 (CB1R) in the central nervous system (CNS) by xenobiotics can
lead to irreversible effects [18]. On the other hand, (−)-trans-cannabidiol (CBD, Figure 1),
one of cannabis’ main secondary metabolites, seems to be endowed with antipsychotic
properties useful to protect against the pro-psychotic effects of THC: depending on its
composition, cannabis would act either as Mister Hyde (i.e., a risk factor for psychosis)
or as Doctor Jekyll (i.e., an antipsychotic). The hypothesis has been formulated that CBD
could be an antipsychotic, with benefits in preventing psychotic disorders, whatever the
cause (endogenous or THC-induced) [19].
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In a randomized, double-blind controlled clinical trial, CBD exerted antipsychotic
properties comparable to the reference drug amisulpride [20,21]. Interestingly, the reduc-
tion of psychotic symptoms was significantly associated with an increase in the serum
concentrations of N-arachidonoylethanolamine (anandamide, AEA, Figure 2), which is the
most important endogenous ligand of CBR, and this outcome was found only in patients
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treated with CBD. The results indicated that, at least in part, the antipsychotic activity of
CBD was due to the inhibition of the enzymes physiologically devoted to the degradation
of AEA [22], thus acting as an indirect agonist. This finding agrees with the observation
that both increased availability of CB1R and upregulation of AEA seem beneficial, although
the underlying mechanisms are mostly elusive. The evidence supporting the possible
protective role of AEA in schizophrenia has been reviewed [23].
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The inhibition of enzymes responsible for the degradation of the ECS endogenous
ligands might overcome the above obstacles to the systemic use of exogenous substances
acting on ECS. EC degradation inhibitors would provide focused action, where and when
necessary, by acting as endogenous CBRs ligand modulators. Since the available clinical
data on EC potentiators as antipsychotics are relatively scarce and essentially limited to
CBD, we conceived this perspective as an attempt to envision which of the EC degradation
most considered inhibitors so far might be repositioned as possible oral antipsychotics
based on their predicted drug-likeness and safety. After a dutiful short survey on the
ECS architecture and functions, we shall review the most studied, clinically relevant
EC metabolizing enzyme inhibitors reporting their corresponding main pharmacological
activities. Then, we shall predict ADMET properties and calculate structure descriptors
generally related to drug-likeness and probability of success as CNS acting agents for each
of them using some of the most robust medicinal chemistry predicting tools today available.

The purpose of this narrative review is to select some of the analyzed compounds as
either candidates for repositioning as orally active antipsychotics or starting compounds for
structural simplification/optimization studies to reduce toxicity and improve selectivity.

The information presented in this perspective was acquired through consultation of
the PubMed®, Reaxys®, and SciFinder® Scholar databases.

2. Endocannabinoid System

The exhaustive description of ECS architecture and functioning is beyond the scope
of this work; more details can be found elsewhere [24,25]. The right functioning of
the ECS is related to the natural balance established between its main components,
which are CBRs, the endogenous ligands binding them, and the enzymes involved in
the synthesis, transport, and degradation of ECs. A disruption of the physiological
activity of this system (i.e., modifications in the expression of receptors or the functions
of enzymes) is associated with various pathologies. This situation, therefore, is the
basis for therapeutic pharmacological opportunities founded on drugs able to interact
naturally with ECS [26–30].

The discovery of CBRs and the main endogenous ligands is relatively recent, as the
first one, CB1R, was identified in the second half of the 1980s [31], while the second
receptor, namely CB2R, was discovered a few years later [32]. The two targets differ in
their corresponding main functions, signaling processes, and structural aspects [33,34].
Their signal neurobiology and tissue distribution are also different, being the CB1R mainly
expressed in the CNS (mostly in the basal ganglia, cerebellum, cortex, and hippocampus),
whereas CB2R is particularly present in the immune system (mostly in B-cells and natural
killers) [35]. Overall, it is demonstrated that CBR, through their activation, performs a
key role in inducing activation or depression of neurotransmission by the inhibition of
adenylate cyclase, which determines a decrease in cyclic adenosine monophosphate levels,
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or, only in the case of CB1R, by the coupling with ion channels [35,36]. A careful analysis of
the above characteristics, in particular those related to the different tissue distribution, is
important when envisioning a pharmacological therapy aiming at a selectivity of action
and the consequent reduction of undesired effects.

The main and most studied CBR endogenous ligands are AEA [37] and 2-arachidonoylglycerol
(2-AG) [38,39] (Figure 2).

Both ligands are produced on demand from membrane phospholipids to satisfy con-
tingent physiological needs due to intense neuronal activation [40,41]. AEA and 2-AG act
through a retrograde or non-retrograde signaling pathway. Their half-life is short (a few
minutes) as a rapid carrier-mediated diffusion occurs in the cells where they are metab-
olized [40,41]. It is very interesting to consider that ECs-mediated retrograde signaling
is involved in the excitatory or inhibitory processes related to the modulation of neuro-
transmitters, such as glutamate or γ-aminobutyric acid [41–44], through short-term and
long-term neuroplasticity (taking some seconds and some minutes, respectively) physio-
logical processes [45,46]. The first is involved in processes such as depolarization-induced
suppression of inhibition and depolarization-induced suppression of excitation through
the inhibition of voltage-gated Ca2+ channels, whereas the second one leads to the long-
term depression phenomenon through a CB1R repeated stimulation of these brain circuits.
Consequently, CBR has to be considered a potential drug target for the prevention and
treatment of neurologic pathologies, in particular, in the case of CNS involvement [47].

AEA is biosynthesized by the N-acyl phosphatidylethanol-selective phospholi-
pase D [48]. It acts as a total or partial agonist of the CB1R and has low activity to-
ward CB2R [49]. AEA comes up against rapid degradation due to its capture by a
transporter [50,51], as occurs in the extracellular space of brain neurons and astro-
cytes [29], which is followed by the degradative action mainly carried out by fatty acid
amide hydrolase (FAAH) [52–55], a homodimer integral membrane protein. The func-
tional component of the enzyme consists of a catalytic triad formed by the amino acids
Lys142-Ser217-Ser241, with the latter determining the nucleophilic attack on the elec-
trophilic carbonyl group of AEA through the hydroxy group [56].

The biosynthesis of 2-AG begins with diacylglycerols and hydrolysis operated by
the diacylglycerol lipase isoform α or β [57,58]. It acts as a full agonist of both CB1R
and CB2R [59]. In addition, in the case of 2-AG, therefore, the molecule is captured
by a transporter with characteristics identical or similar to those shown by AEA [60],
which causes internalization and subsequent hydrolysis mainly by monoacylglycerol
lipase (MGL) [61–63], an enzyme belonging to the α/β hydrolase superfamily. The
mechanism involves the participation of various amino acids, which contribute to the
initial preparatory phase aimed at catalytic activity by the Ser122-Asp239-His269 triad,
where the serine residue is responsible for the nucleophilic action towards the carbonyl
group of the substrate [64,65].

Taken together, the ECS certainly constitutes a reference model for drug discovery
endeavors aimed at finding ideal molecules without the undesirable effects caused by the
direct activation of CBRs [66]. With this goal, a fundamental role is played by compounds
able to inhibit the enzymes that degrade natural ligands.

3. FAAH and MGL Inhibitors

Of particular interest is the discovery of the first FAAH enzyme inhibitors dates back
just over twenty years ago, while those of MGL appeared a few years later. Since then,
there have been numerous studies that have made it possible to expand the panorama of
molecules available to the scientific community. The compounds that have emerged over
time have the common need to be excellent substrates for enzymes. Therefore, all contain a
reactive group able to favor the nucleophilic reaction. However, they differ from each other
not only for the type of inhibition expressed (reversible vs. irreversible) but, above all, for
the structural characteristics, which allow the opportunity to have various classes, and for
potential therapeutic applications. A distinct description of the classes of FAAH and MGL
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inhibitors will be made here, in particular on those owing a therapeutic potential related to
pathologies that may have a direct or indirect influence on psyche disorders. For anything
not covered here, please refer to some excellent previously reported reviews [29,66–70].

The first study on the topic was published about twenty years ago, when covalent
and irreversible carbamate FAAH inhibitors, such as the pharmacological tool URB597
(Figure 3), showed relevant anxiolytic-like and antidepressant-like properties related to
the indirect activation of CB1R [71]. This discovery then opened the way to numerous
further related opportunities, such as the possibility of using molecules of the URB series
for new experimental models for depression [72,73], but also to test compounds belonging
to different classes. The covalent and slow reversible piperazine-urea-based inhibitor
JNJ-42165279 (Figure 3) [74] has been characterized and tested in clinical trials for the
treatment of social anxiety disorders [75,76] and major depression. On the other hand, the
covalent and irreversible piperidine-urea-based inhibitor PF-04457845 (Figure 3) [77] was
able to attenuate the anxiety-inducing effect and entered clinical trials [78]. Finally, the
reversible carbamate SSR411298 (Figure 3) exerts anxiolytic-like and antidepressant-like
effects [79], but it fails clinical studies on major depression disorders [65].
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FAAH inhibitors could be considered to face nicotine or cannabis withdrawal syn-
dromes. With regard to tobacco and cannabis disorders, URB597 has proved useful in
reducing nicotine reward, preventing the reinstatement of nicotine use [80], and regulating
acute and protracted nicotine withdrawal [81]. PF-04457845 was tested in the treatment of
cannabis withdrawal and dependence in men [82].

Potential applications for neuropathic and inflammatory pain have been demon-
strated with URB597 [83], which had also passed Phase I clinical trials several years ago
(data not available), and URB937 (Figure 3) [84–86], which showed peripheral FAAH inhi-
bition without the involvement of CNS. On the other hand, PF-04457845 produced potent
CBR-dependent antinociceptive effects in both inflammatory and non-inflammatory
arthritic pain models [87], but in related phase II clinical trials, it was not effective [88].
Moreover, JNJ-42165279 showed analgesic properties in a neuropathic pain model [74].
The piperidine-carbamate ASP8477 [89] and the azetidine-urea V158866 derivatives
(Figure 3) [90] demonstrated significant analgesic effects in animal models of pain, but
even in this case, the phase II clinical trials did not give the expected results [65]. For an
overview of the influence of ECS in pain regulation, see [91], while for a FAAH inhibitor
clinical perspective, see [92].
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The study of MGL inhibitors has also led to the discovery of molecules with interesting
profiles. Firstly, concerning anxiety and related disorders, it was observed that the cova-
lent and irreversible piperidine-carbamate JZL184 (Figure 4) [93] attenuates anxiety-like
behavior [94–96] and exerts an antidepressant-like effect [97].
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The first results on the potential of 2-AG in the field of pain were obtained in CB1R-
dependent stress-induced analgesia employing the covalent and partial reversible carba-
mate inhibitor URB602 (Figure 4) [42], a molecule with the functional portion reversed in
comparison to that present in FAAH inhibitors of the URB series. In the following years,
other pharmacological tools have contributed to confirming the importance of inhibition of
the MGL enzyme as a therapeutically relevant strategy. It was demonstrated that JZL184 in-
duces a CB1R-mediated antinociceptive effect [93,98], whereas the covalent and irreversible
piperazine-carbamate MJN110 (Figure 4) [99] alleviates mechanical allodynia [100] and
exerts an antihyperalgesic effect through the increase in 2-AG levels [101], as well as the
covalent and irreversible piperidine-carbamate KML29 (Figure 4) [102], which produces an
antinociceptive activity in pain models [103]. Lastly, experiments carried out with covalent
and irreversible pyridazine-carbamate SAR127303 (Figure 4) confirmed not only the ability
to produce an analgesic effect in inflammation and pain models but also attenuate the
symptoms of epilepsy [104]. The covalent and irreversible piperazine-carbamate ABX-1431
(Figure 4) [105] is effective in pain and neurological diseases and other disorders, such as
Tourette syndrome [106], for which phase I clinical studies have been efficacious [65].

Other important results obtained by MGL inhibitors are related to the role of ECS in
neuroprotection, which was demonstrated by using URB602 [107] and confirmed some
years later through other drugs (for example, see [108]). A similar action is exerted by
the covalent and irreversible inhibitor pyrrolidine-carbamate PF-06795071 (Figure 4) in
reducing neuroinflammation markers in animal models [109].

Finally, it is interesting to consider some exemplary compounds reported as inhibitors
of both enzymes. Indeed, covalent piperazine-carbamate-based inhibitors JZL195 [110] and
SA-57 [111] (Figure 5) reduce inflammation-induced allodynia at a dose that does not cause
side effects [112,113].
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4. Primum Non Nocere

Some of the compounds reviewed in the previous sections entered clinical trials
and were generally well tolerated being; the only adverse events the lack of efficacy or
the appearance of fewer adverse reactions [66,67]. Thus, they might be expected to be
relatively safe as antipsychotics. However, FAAH and MGL inhibitors should be carefully
designed and go through accurate biochemical profiling and preclinical investigation before
entering further clinical trials. The tragic outcome in the phase I clinical trial on the alleged
FAAH inhibitor BIA10-2474 (Figure 6) (one dead volunteer and four others showing severe
adverse reactions) does reinforce the caveat [68], but the relative negative outcomes may be
puzzling [114]; however, in this specific scenario the misconduct of the trial must certainly
be considered [115]. In any case, even where the inhibitors are still in the pipeline, we cannot
let our guard down if those inhibitors are candidates for repositioning towards new clinical
aims. Some of the FAAH and MGL inhibitors are under clinical evaluation for peripheral
clinical activities targeting the peripheral tissues and the spinal cord; higher active doses
might be expected for purported inhibitors acting on the brain. In view of the above, human
toxicity may be unpredictable from a non-clinical toxicological perspective [116].
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Despite what was reported above, medicinal chemists must, to the best of their
ability, predict possible toxic liabilities. Several chemoinformatic tools are available
to run a preliminary analysis for drug toxicity prediction and usually refer to numer-
ous safety-related properties [117]. To have an overview of the safety of the clinically
relevant compounds chosen as candidates for repositioning, we started our analysis
with cardiotoxicity (hERG liability), probably the worst early adverse reaction studied
during clinical trials focused on acute toxicity [118,119]. To this aim, we employed a
recently published ligand-based classifier based on the application of different machine
learning algorithms and proved to outperform many predictors commonly used in the
literature [120]. More specifically, the model has been developed by using an IC50 value
equal to 10 µM as the threshold for discerning blockers from non-blockers and applies
a consensus strategy based on two different algorithms, namely SVM (Support Vector
Machine) and BRF (Balanced Random Forest), to provide the requested predictions.
Importantly, all the compounds under investigation fall within the applicability domain
of the model [121], hence supporting the reliability of the performed calculations. Table 1
shows the obtained results. Interestingly, none of the considered FAAH inhibitors was
predicted as hERG blockers. Noteworthy, these data are in full agreement with the
experimental literature available for URB597 [122], JNJ42165279 [74], PF-04457845 [109],
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and V158866 [90]. As far as the MGL and FAAH/MGL inhibitors are concerned, only
three of them were predicted as able to induce hERG-related cardiotoxicity, namely
JZL184, ABX-1431, and JZL195. Importantly, these data are again in agreement with the
available literature as Grice et al. recently showed that ABX1431 is responsible for a
significant hERG activity (IC50 = 7 µM) in vitro [105] while McAllister et al. provided
experimental evidence that PF-06795071 is not a hERG blocker [109]. To the best of
our knowledge, no data are instead available for JZL184 and JZL195. In summary, this
preliminary investigation focused on the prediction of hERG-mediated cardiotoxicity
indicates that it would be wise not to consider it an ideal candidate for repurposing
JZL184, ABX-1431, and JZL195.

Table 1. Results returned by the ligand-based classifier recently published by Delre et al. [120]. Notice
that an IC50 = 10 µM was used as the threshold.

Target Enzyme Inhibitor Predicted hERG Blocking Ability

FAAH

URB597 (5) Non-blocker

URB937 (6) Non-blocker

JNJ-42165279 (7) Non-blocker

PF-04457845 (8) Non-blocker

SSR411298 (9) Non-blocker

ASP8477 (10) Non-blocker

V158866 (11) Non-blocker

MGL

JZL184 (12) Blocker

KML29 (13) Non-blocker

URB602 (14) Non-blocker

MJN110 (15) Non-blocker

SAR127303 (16) Non-blocker

ABX-1431 (17) Blocker

PF-06795071(18) Non-blocker

FAAH/MGL
JZL195 (19) Blocker

SA-57 (20) Non-blocker

5. Molecular ‘Beauty’ and ‘Ugly’ Compounds

Medicinal chemists look at their designed and synthesized compounds just like loving
moms staring at their kids and generally do not resist the temptation to anthropomorphize
their products. When speaking about the drug structural features that may be related to a
higher probability of success, they refer to chemical ‘beauty’ (generally linked to a relatively
high number of sp3 hybridized carbon atoms, Csp3), while ‘ugly’ molecules are tainted
with some structural defect mostly related to ‘obesity’ (that is, high lipophilicity) that
generally reduces that chance. Anthropomorphized jargon in drug design and discovery,
while probably oversimplifying concepts, may be useful to make them easily appreciated,
reinforce issues, and surrogate long periphrases. At worst, anthropomorphizing drug
design is only a bit cryptic for non-aficionados. This is why the above esthetic evaluations
have been somewhat codified in dozens of alternative or complementary metrics [123]
that, through back-of-the-envelope-calculations allow both naïf and expert scholars to
have a rapid outlook of favorable predicted pharmacokinetic (i.e., oral bioavailability) and
pharmacodynamic (i.e., efficiency) properties of the designed compound [124,125].

As a first step, we computed the Quantitative Estimate of Drug-likeness (QED),
which is an integrative score widely used to estimate the drug-likeness of a given small
molecule [126]. In particular, good drug candidates are expected to return a QED > 0.6. The
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obtained data are reported in Table 2. As expected, most of the known inhibitors exceed
this threshold. Few exceptions are represented by one FAAH inhibitor (PF-04457845), three
MGL inhibitors (JZL184, KML29, and ABX-1431), and one dual FAAH/MGL inhibitor
(JZL195). Noteworthy, all the compounds already predicted as hERG blockers returned
low (< 0.6) QED values, thus supporting the idea whereby these inhibitors are not the best
candidates as antipsychotics.

Table 2. Drug-likeness and ADME properties were computed for the compounds under investigation.
Notice that the QED values were obtained by using an in-house script based on the paper by
Bickerton et al. [126], while the software program QikProp, available from the Schrodinger suite
2022-4 [127], was employed to compute all the other relevant ADME properties. QED values > 0.6
are highlighted in bold.

Compound QED CNS QPP
Caco * QPlogBB **

Human
Oral

Absorption

Human
Percent

Oral Absorption

Rule
of Three

FAAH Inhibitors

URB597 (5) 0.89 −2 142.196 −1.755 3 79.101 0

URB937 (6) 0.78 −2 331.772 −1.286 3 89.452 0

JNJ-42165279 (7) 0.84 2 373.210 0.496 3 87.382 0

PF-04457845 (8) 0.57 0 509.513 −0.661 1 100.000 1

SSR-411298 (9) 0.66 −2 65.327 −1.995 3 68.495 0

ASP8477 (10) 0.94 0 1139.010 −0.644 3 100.000 0

V158866 (11) 0.78 −1 964.142 −0.878 3 100.000 0

MGL
Inhibitors

JZL184 (12) 0.39 −2 374.020 −1.335 2 72.038 1

KML29 (13) 0.55 1 3100.818 0.221 1 100.000 1

URB602 (14) 0.84 0 3551.379 −0.089 3 100.000 1

MJN110 (15) 0.65 1 130.559 −0.400 3 85.779 0

SAR127303 (16) 0.64 0 549.445 −0.372 3 100.000 0

ABX-1431 (17) 0.53 2 1125.247 1.180 1 89.621 1

PF-06795071 (18) 0.80 0 1152.477 −0.297 1 100.000 1

FAAH/
MGL

Inhibitors

JZL195 (19) 0.41 0 131.320 −0.842 3 88.922 0

SA-57 (20) 0.90 −1 538.896 −0.741 3 96.006 0

BIA10-2474 (21) 0.63 0 854.649 −0.429 3 94.821 0

CBD (2) 0.51 0 2405.636 −0.496 3 100.000 2

* QPPCaco: Predicted apparent Caco-2 cell permeability in nm/sec. ** QPlogBB: Logarithm of BBB predicted
partition coefficient.

Obviously, to have an antipsychotic activity, a given drug must be able to act in the
CNS. Furthermore, oral administration is highly desirable. Keeping this in mind, we also
computed several descriptors related to the CNS activity as well as oral adsorption in
humans using QikProp [125] as a software program, namely: (i) CNS, able to provide an
estimation of the CNS activity on a−2 (inactive) to +2 (active) scale; (ii) QPPCaco, providing
an estimation of the Caco-2 cell permeability in nm/sec (i.e., ability to cross the gut-blood
barrier; <25 poor, >500 great); (iii) QPlogBB, providing an estimation of the brain/blood par-
tition coefficient; (iv) HumanOralAbsorption, providing a score indicating a low (1), medium
(2) and high (3) qualitative human oral absorption; (v) PercentHumanOralAbsorption, pro-
viding a score based on multiple linear regression on 0 to 100% scale (>80% is high; <25% is
poor) and (vi) RuleOfThree; which is the number of violations of the so-called Jorgensen’s
rule of three [128]. In particular, compounds responsible for no violations are expected to
be orally available. The picture that emerged from data reported in Table 2 puts forward
JNJ-42165279 (7) as the best candidate for oral antipsychotics. Remarkably, this FAAH
inhibitor is predicted to have: (i) a high CNS activity (CNS = 2); (ii) good Caco-2 cell
(QPPCaco = 373.210) and blood-brain barrier (QPlogBB = 0.496) permeabilities and
(iii) very high oral adsorption in humans (HumanOralAdsorption = 3, PercentHumanOral-
Absorption = 87.382 and RuleOfThree = 0). Noteworthy, JNJ42165279 is also responsible for
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a QED > 0.6 (Table 2) and has been predicted as not able to induce cardiotoxicity (Table 1).
Although proven to block hERG [128], worth mentioning is herein also ABX1431 (17), which
is the only compound [together with JNJ-42165279 (7)] predicted as responsible for a high CNS
activity (CNS = 2). Finally, interesting data were also provided by MJN110 (15), predicted to be
responsible for significant CNS activity (CNS = 1) and high oral availability (Table 2).

Finally, we predicted whether the compounds object of the present investigation reacts
with one (or more) cytochrome P450 isoforms (among the most important ones, namely
CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4).
The prediction was performed using as software program CypReact, recently published by
Tian et al. [129] and available in the recently published web platform for de novo design
DeLA-Drug [130]. The obtained results are shown in Table 3.

Table 3. Metabolic liability is predicted for all the investigated compounds. The prediction is
performed using as software program CypReact.

Compound P450 Isoforms Predicted to React
with the Ligand

FAAH Inhibitors

URB597 (5) 1A2 2C8 2C9 2C19 2D6 3A4

URB937 (6) 1A2 2B6 2C8 2C9 2C19 2D6 3A4

JNJ-42165279 (7) 01A2 2C8 2C9 2C19 2D6 3A4

PF-04457845 (8) 1A2 2D6 3A4

SSR-411298 (9) 1A2 2B6 2C8 2C9 2C19 2D6 3A4

ASP8477 (10) 1A2 2B6 2C8 2C9 2C19 2D6 3A4

V158866 (11) 2C8 2D6 3A4

MGL
Inhibitors

JZL184 (12) 1A2 2C8 2C19 2D6 3A4

KML29 (13) 1A2 2B6 2C9 2C19 2D6 3A4

URB602 (14) 1A2 2B6 2C8 2C9 2C19 2D6 3A4

MJN110 (15) 1A2 2B6 2C8 2C9 2C19 2D6 3A4

SAR127303 (16) 1A2 2C8 2C9 2C19 2D6 3A4

ABX-1431 (17) 1A2 2C8 2C9 2C19 2D6 3A4

PF-06795071 (18) 1A2 2B6 2C8 2C9 2C19 2D6 2|E1 3A4

FAAH/
MGL

Inhibitors

JZL195 (19) None

SA-57 (20) None

BIA10-2474 (21) 1A2 2C8 2C9 2C19 2D6 3A4

CBD (2) 1A2 2B6 2C9 2C19 2D6 3A4

All FAAH and MGL selective inhibitors should be substrates of several cytochrome
P450 isoforms and thus possibly act as metabolic auto-/heteroinducers. Possible adverse
events due to drug-drug metabolic interactions should be considered. Interestingly, both
FAAH/MGL inhibitors 19 and 20 were predicted as poor substrates of all cytochrome P450
isoforms, thus performing as the best candidate for repositioning when metabolic liability
is concerned.

A complementary analysis may be obtained using three of the most used and robust
metrics to classify the selected inhibitors.

(1) As an indicator of promiscuity liability (i.e., the propensity to target not only
enzymes but also receptors), the property forecast index has been proposed [131]. This
index may be easily obtained as the sum of clogP and number of aromatic rings for each
stated compound; as a rule of thumb, property forecast index should be kept below five to
reduce possible promiscuity.
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(2) CNS penetration may be forecasted from the CNS multiparameter optimization
descriptor obtained by a linear combination of six parameters, each weighted one if in
the desirable range, 0 when in the undesirable range, and scaled when falling between
the targeted values (CNS multiparameter optimization desirability ≥ score, using a scale
of 0–6) [132].

(3) As a ligand efficiency evaluator, the lipophilic efficient index is generally con-
sidered the most robust descriptor and represents a measure that correlates potency and
lipophilicity. It is obtained from the difference between a measure of the potency of the
ligand and its clogP and, therefore, can be considered as a measure of the gain in potency
net of the (non-specific) entropic contribution due to the mere increase in lipophilicity [133].
An efficient inhibitor should locate its lipophilic efficient index between 5 and 7.

In Figure 7, the result of the above analysis is graphically summarized. The most
efficient inhibitors endowed with the highest CNS tropism are represented by points in the
colored parallelepiped. The highest-ranking compound was BIA10-2474 (21). Thus, com-
pounds ASP8477 (10), V158866 (11), and SA-57 (20), while displaying high efficiency and
good CNS penetration, should be considered carefully for possible toxicity issues stemming
from their profiles that seem close to the one of BIA10-2474 (21). Interestingly, compounds
JNJ-42165279 (7) and MJN110 (15) are located near the high efficiency/selectivity/CNS
permeation volume and may be considered a good compromise between efficiency and
safety requirements. It is worth noting that CBD (2) is the less efficient inhibitor, highly
promiscuous, and presents acceptable CNS permeation properties. This outcome agrees
with what has been reported so far on CBD pharmacology.
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6. Discussion

A relatively lower incidence of psychosis is found in Spain and Italy than in Northern
Europe [134]. This evidence parallels the higher risk of developing schizophrenia among
those born and brought up in cities than in rural settings [135]. The question is open if the
green color itself may condition mental health [136]. It is perceived to be associated with life
itself, and green color perception may boost the placebo effect when administering drugs
acting on the CNS, such as tranquilizing medicines. It has been suggested that patients with
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schizophrenia should have more contact with green [137]. Ironically, it has been insinuated
that a certain kind of ‘contact’ with ‘green’ would be mostly deleterious to our mind, with
a clear winking to cannabis abuse in western cities as a triggering agent of psychosis [138].
Cannabis seems to have also deleterious long-term effects [139], thus dooming both adoles-
cents and adults to the use of antipsychotics with related cardiometabolic liabilities due
to adverse drug effects [140]. However, the ambiguity of cannabis makes it potentially
both harmful to the heart [141] and beneficial in cardiovascular diseases [142]. The drug
may have clinical applications for the treatment of autism spectrum disorder [143], and
CBD showed antipsychotic potential. Since the intervention on ECS degrading enzymes
is generally considered more suitable for ECS physiological balance restoration than the
use of agents directly acting on CBR, we have tried to infer the possibility of repositioning
some known endocannabinoid degradation enzyme inhibitors as potential antipsychotics,
as considered by Navarrete et al. [144].

Based on the performed predictions focused on CNS activity, oral adsorption, and
ligand efficiency, the FAAH inhibitor JNJ-42165279 (7, Figure 3) seems to be the best
candidate for this purpose, followed by the MGL inhibitor MJN110 (15, Figure 4). Other
interesting inhibitors [e.g., ASP8477 (10), V158866 (11), ABX-1431 (17), and SA-57 (20)]
may be considered as starting points for structural simplification/optimization endeavors
to reduce possible hERG liability (17) and selectively favoring FAAH/MGL over other
targets. None of the stated compounds is chiral, while chirality has been related to clinical
success [145] and toxicity reduction [146]. Chiral analogs of the stated compounds could be
easily designed and prepared to take advantage of chirality in the quest for safe and efficient
inhibitors of FAAH and/or MGL as orally effective antipsychotics. Given the predicted
favorable metabolic profile of SA-57 (20), lactamide (R = Me, Figure 8) and mandelamide
(R = Ph, Figure 8) pyridyl carbamates could be considered as suitable starting points.
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