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Simple Summary: Colorectal cancer is a heterogeneous disease. Several efforts have been made to
characterize this heterogeneity but they have no impact in the clinic. In this work, we used a novel
analysis approach based on identifying layers of information using expression data from colorectal
tumors and characterized three different layers of information: one layer related to adhesion with
prognostic value, one related to immune characteristics, and one related to molecular features. The
molecular layer divided colorectal tumors into stem cell, Wnt, metabolic, and extracellular groups.
These molecular groups suggested some possible therapeutic targets for each group. Additionally,
immune characteristics divided tumors into tumors with high expression of immune and viral
mimicry response genes and those with low expression, suggesting immunotherapy and viral
mimicry-related therapies as suitable for these immune-high patients.

Abstract: Colorectal cancer (CRC) is a molecular and clinically heterogeneous disease. In 2015, the
Colorectal Cancer Subtyping Consortium classified CRC into four consensus molecular subtypes
(CMS), but these CMS have had little impact on clinical practice. The purpose of this study is to
deepen the molecular characterization of CRC. A novel approach, based on probabilistic graphi-
cal models (PGM) and sparse k-means–consensus cluster layer analyses, was applied in order to
functionally characterize CRC tumors. First, PGM was used to functionally characterize CRC, and
then sparse k-means–consensus cluster was used to explore layers of biological information and
establish classifications. To this aim, gene expression and clinical data of 805 CRC samples from
three databases were analyzed. Three different layers based on biological features were identified:
adhesion, immune, and molecular. The adhesion layer divided patients into high and low adhesion
groups, with prognostic value. The immune layer divided patients into immune-high and immune-
low groups, according to the expression of immune-related genes. The molecular layer established
four molecular groups related to stem cells, metabolism, the Wnt signaling pathway, and extracel-
lular functions. Immune-high patients, with higher expression of immune-related genes and genes
involved in the viral mimicry response, may benefit from immunotherapy and viral mimicry-related
therapies. Additionally, several possible therapeutic targets have been identified in each molecular
group. Therefore, this improved CRC classification could be useful in searching for new therapeutic
targets and specific therapeutic strategies in CRC disease.
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1. Introduction

Colorectal cancer (CRC) has been identified as the most prevalent tumor type. Ac-
cording to GLOBOCAN, there were 19.3 million new cases and 10 million cancer deaths
worldwide in 2020. CRC ranks third in terms of incidence, representing 10% of new cancer
cases, but the second in terms of mortality, with 940,000 estimated deaths [1]. CRC is a
molecularly heterogenic disease, in which molecular alterations influence the growth and
survival of tumor cells, as well as their differentiation, apoptosis, and distant metastasis [2].
The heterogeneity presented by this cancer has also been related to the anatomical location
of the tumor, since the proximal and distal colon have different embryological origins [3].
In this context, Bufill et al. established the first classification of colorectal cancer, defining
two groups: group I or proximal if the tumor was located on the right side, and group
II or distal when located on the left side [4]. The American Joint Committee (AJCC) on
Cancer Tumor-Node-Metastasis (TNM) staging system is the most common staging system
in clinical settings. However, a detailed analysis of the prognostic significance of the 8th edi-
tion TNM classification for CRC tumors showed that this staging system is not sufficiently
accurate in evaluating the prognosis of CRC in the clinic [5].

Until 2015, different genetic classifications for CRC had been proposed. In that year, the
international CRC Subtyping Consortium (CRCSC) reached a consensus on the molecular
genetic expression subtyping of CRC using a pooled molecular genetic analysis of 4151
colon tumors. Four colon cancer consensus molecular subtypes (CMS) were identified:
CMS1 (microsatellite instability immune, 14%), CMS2 (canonical, 37%), CMS3 (metabolic,
13%), and CMS4 (mesenchymal, 23%). However, 13% of the samples could not be classified
into any of the four described molecular subtypes [6]. These unclassified tumors could
present high intratumor heterogeneity or correspond to an intermediate phenotype, with
characteristics belonging to different molecular subtypes [7]. In non-metastatic disease,
the poor prognostic value of CMS4 and the relatively favorable prognosis of CMS1 and
CMS2 have been established [7]. Moreover, different studies established associations of
CMS with treatment outcomes [8–10], and their potential for clinical use in predicting both
prognosis and response to systemic therapy has been recently evaluated, with encouraging
results [6]. The clinical and therapeutic utility of the different molecular classifications
has been discussed [11], but, despite the increasing knowledge, treatments based on a
molecular subtype are not currently used in clinical decision making [12].

Computational analyses applied to high-dimensional omics data allow a deeper
characterization of the molecular and immune features of tumors. Probabilistic graphical
models (PGMs) have been previously used to identify differences in biological processes
among several tumor types [13–18]. Classification methods, such as sparse k-means [19] and
consensus cluster (CC) [20], have previously demonstrated their utility in the establishment
of tumor and immune subtypes for breast and bladder cancers [13,18].

The main objective of this study is to expand the knowledge about the molecular
classification of CRC, according to the different biological realities of the tumor, with the
aim to increase the clinical value of the already established molecular groups.

2. Material and Methods
2.1. Data Search and Curation

Three colorectal tumor gene expression databases (GSE17536, GSE35896, and GSE39582)
were analyzed. The resulting database was processed, removing control and duplicated
probes. For this purpose, the variance of each probe was calculated and the most variable
probe per gene was chosen. In addition, the batch effect due to the combination of indepen-
dent databases was corrected using the limma R package [21]. Information about the CMS
group of each sample was downloaded from the Synapse platform [22]. Finally, clinical
data from the three databases were collected and unified for further analysis.
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2.2. Gene Selection and Probabilistic Graphical Model Analysis

First, those genes with a higher standard deviation in their expression across the
dataset (standard deviation > 2) were selected to build the PGM, as previously described [18].
The analyses were done using the grapHD package [23] and R v3.2.5 [24]. PGMs are undi-
rected acyclic graphs built in two steps: in the first step, the spanning tree that maximizes
the likelihood was established, and then a forward search to add edges to build a graph
that preserved the decomposability while minimizing the Bayesian Information Criterion
(BIC) with the simplest structure was done. The obtained network was split into branches
and the most representative function of each branch was established by gene ontology
analyses using the DAVID 6.8 webtool [25]. “Homo sapiens” was used as a background and
categories Biocarta, GO-FAT, and KEGG were selected.

To make comparisons between groups of samples, functional node activities were cal-
culated as previously described [18]. Briefly, the mean expression of all the genes included
in one branch related to the main function of this branch was calculated. Differences in
functional node activity were assessed by non-parametric tests.

2.3. Biological Layer Analyses

Sparse K-means and the consensus cluster algorithm (CC) were used to explore the
molecular information of CRC samples, as previously described [26]. Sparse K-means
assigns a weight to each gene according to its relevance, explaining the main variability
source in the database. Then, using the genes that were selected by sparse K-means, CC
was applied to define the optimum number of groups for each case. Once genes relevant
to a layer of information were identified, they were removed from the dataset and the
analysis was done again with the remaining genes, allowing the identification of different
layers of information. Once the information layers were generated, gene ontology analyses
were performed for each layer to derive functional information. Sparse K-means was
performed using the sparcl package [19] and CC was performed using the Consensus Cluster
Plus package [20] and R v3.2.5 [24].

Then, we used the biological layer information to establish different classifications
based on different tumor features. Differential expression patterns among groups were
analyzed by Significance Analysis of Microarrays (SAM), defining a false discovery rate
(FDR) below 5% [27]. These analyses were carried out using the TM4 Multiexperiment
Viewer (MeV) 4.9 software [28].

2.4. Statistical Analyses

GraphPad Prism v6 was used for basic statistical analyses. Network visualization
was done in Cytoscape software [29]. Differences in node activity were evaluated using
the Kruskal–Wallis comparison method and Dunn’s multiple comparison tests. Survival
curves were estimated using the Kaplan–Meier method and compared with the log-rank
test, using disease-free survival (DFS) as the event. DFS was defined as the time elapsed
between surgery and new onset of disease. All p-values were two-sided and considered
statistically significant below 0.05.

3. Results
3.1. Pre-Processing of Gene Expression and Clinical Data

Gene expression datasets (GSE17536, GSE35896, and GSE39582) from the Gene Ex-
pression Omnibus repository [30] were merged, including probes with expression data in
all datasets. After duplicated probes were removed, the batch effect was corrected and a
variability filter was applied, and a dataset with 1700 genes and 805 samples was obtained.
Here, 177 samples were from GSE17536, 62 samples from GSE35896, and 566 samples
from GSE39582.
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3.2. Patient Characteristics

RNA-seq data from eight hundred and five CRC patients were used in this study.
Clinical characteristics of the cohort are summarized in Supplementary Table S1. The
median follow-up time was 37 months and 36 relapses occurred.

In total, 132 samples were assigned to CMS1 (16.3%), 315 samples were assigned to
CMS2 (39%), 97 samples were assigned to CMS3 (12%), and 188 samples were assigned to
CMS4 (23.3%). Thus, 73 samples (9.4%) were not assigned to any CMS.

3.3. Functional Characterization

A PGM was built with the gene expression profiles of the 1700 more variable genes.
Seeking functional structures, 13 functional nodes with an overrepresented biological
function were defined: immune, adhesion, inflammatory response, somatic stem cell,
extracellular matrix, cellular response, extracellular response, nucleus, Wnt signaling
pathway, plasmatic membrane, regulation of cardiac conduction, transport, and metabolism
(Figure 1 and Supplementary Table S2).
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Figure 1. Probabilistic graphical model built using the 1700 more variable genes in the colorectal
cancer cohort. Each box represents one gene. Functional nodes are highlighted in the PGM.

3.4. Biological Layer Analysis

The sparse K-means–CC workflow analyses identified nine biological layers. Each
layer was split into two groups, with the exception of the second one, whose optimal
classification was found to be in three groups. Each layer’s main function was characterized
through gene ontology (Table 1). Layers 1 and 5 were related to adhesion processes, layers
2 and 6 were related to metabolic pathways, and layers 3 and 8 were related to the immune
response. The two adhesion layers and the two immune ones were equivalent, respectively,
dividing CRC patients into similar groups (Supplementary Figure S1). Therefore, three
main biological layers of information were established, an adhesion layer, an immune layer,
and a molecular layer, the last one grouping all the information provided by metabolic,
extracellular, and digestion classifications.

Table 1. Biological molecular layers obtained by the sparse K-means–consensus cluster workflow
analyses and the number of groups into which CRC patients were divided according to each layer.

Layer Genes Number of
Groups Main Gene Ontology

1st 98 2 Cellular adhesion
2nd 53 3 Metabolic pathways
3rd 131 2 Immune response
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Table 1. Cont.

Layer Genes Number of
Groups Main Gene Ontology

4th 32 2 Digestion
5th 148 2 Cellular adhesion
6th 92 2 Metabolic pathways
7th 78 2 Extracellular response
8th 89 2 Inflammatory response
9th 88 2 Ion calcium and cellular transport

3.5. Adhesion Layer

The first and fifth layers were related to cellular adhesion and divided the samples in
a redundant way across the database, so both layers were merged into the adhesion layer.
Genes included in the adhesion layer are shown in Supplementary Table S3. CC determined
that samples should be divided by their adhesion features into two different groups: adhe-
sion 1, including 454 samples, with lower expression of the adhesion genes, and adhesion
2, including 351 samples, with higher expression of the adhesion genes (Figure 2A). Differ-
entially expressed genes between adhesion groups were identified using SAM and were
mainly codified for proteins located in the extracellular matrix, such as collagens, and were
related with adhesion functions (Figure 2B and Supplementary Table S4). Patients with
low-adhesion tumors had a better prognosis (p = 0.0098, HR = 0.42, 95%CI = (0.21–0.81))
(Figure 3). Additionally, there were differences in DFS combining the information of the
tumor stage and adhesion groups, with adhesion-high stage 3/4 tumors having signifi-
cantly worse prognosis and adhesion-low stage 3/4 tumors being comparable in prognosis
to adhesion-high stage 1/2 tumors (Figure 3B). No differences in the distribution in each
adhesion group according to tumor location and stage were found.
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In order to perform a deeper characterization, differences between high- and low-
adhesion groups were evaluated by functional node activity, as defined by the PGM
(Supplementary Figure S2). The high-adhesion group had higher activity of adhesion,
immune response, inflammatory response, stem cell, and extracellular matrix functional
nodes. Meanwhile, the low-adhesion group presented higher activity of Wnt signaling
pathway, plasmatic membrane, transport, metabolism, and regulation of cardiac conduction
functional nodes.
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3.6. Immune Layer

As for the adhesion layer, the final immune layer was built merging genes from the third
and eighth layers (immune response and inflammatory response) (Supplementary Table S3).
The CC determined that the immune layer should be divided into two groups: immune
1, renamed as the immune-high group, with 364 tumors showing higher expression of
genes related to the immune response, and immune 2, renamed as the immune-low
group, including 441 tumors with lower expression of these genes. Differences in gene
expression between both groups were evaluated using SAM (Figure 4A). Most of the
differential genes belonged to the human leukocyte antigen (HLA) complex gene fam-
ily (Supplementary Table S4). The immune layer had no prognostic value in our series
(p = 0.57, HR = 0.82, 95%CI = (0.42–1.59)) (Supplementary Figure S3). No differences ac-
cording to the distribution of tumor location and stage in each immune group were found.
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Functional node activity analysis showed that tumors in the immune-high group
had higher expression of genes in the immune, inflammatory, cellular adhesion, and ex-
tracellular matrix functional nodes. On the contrary, immune-low tumors had higher
expression of genes located in the transport, Wnt signaling pathway, nucleus, and regu-
lation of cardiac conduction functional nodes (Figure 4, Supplementary Figure S4, and
Supplementary Table S4).

As the viral mimicry response has gained relevance in the last few years in cancer
related to immune response activation [31], we studied the expression of the genes involved
in the viral mimicry response in the two immune groups. These immune groups presented
differential expression of the genes involved in the viral mimicry response, being higher in
the immune-high group (Figure 5).
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3.7. Molecular Layer

The molecular layer resulted from merging the second, fourth, and sixth layers and it
was divided into four groups by CC. Differences between molecular groups were evaluated
using the PGM and the node activities. These analyses showed that molecular group 1 had
higher activity in stem cell, nucleus, regulation of cardiac conduction, and transport nodes;
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molecular group 2 had higher activity of metabolism nodes; molecular group 3 had higher
activity of nucleus and Wnt signaling pathway nodes; and molecular group 4 had higher
activity of cell adhesion, extracellular matrix, and extracellular response nodes. Therefore,
molecular group 1 (221 tumors, 27%), which presented the highest activity for the stem cell
functional node, was designated as the stem cell group. Molecular group 2 (137 tumors,
17%), which had the highest activity of metabolism nodes, was named the metabolic
group. Molecular group 3 (300 tumors, 37%), which had the highest activity of Wnt
signaling pathway nodes, was named the Wnt pathway group. Finally, molecular group 4
(147 tumors, 18%), which had the highest activity of extracellular response and extracellular
matrix nodes, was named the extracellular group (Figure 6A, Supplementary Figure S5).
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The stem cell node contained genes involved in stem cell maintenance, such as
VANGL2 or PBX1. The metabolic node was formed by genes directly involved in metabolism,
such as PHGD or PSAT1, and other genes, such as CTSE or REG4. The Wnt pathway node
contained genes involved in the Wnt signaling pathway: RNF43, DKK4, LRP4, AXIN2,
etc. The extracellular matrix node was mainly formed by collagens. Regarding the asso-
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ciation of the defined molecular groups with clinical parameters, the tumor location was
distributed significantly different between molecular subtypes (p < 0.0001), with the stem
cell and Wnt groups mainly composed of distal tumors and the metabolic and extracellular
groups by proximal tumors. No differences regarding the distribution of tumor stages
across molecular groups were found.

Differentially expressed genes between these molecular groups were identified using
SAM (Figure 6B and Supplementary Table S4). The stem cell group showed also the
overexpression of genes related to fatty acid metabolism, such as UGT1A1 or UGT1A5, and
mucins. The metabolic group showed the overexpression of genes involved in metabolic
pathways, including cholesterol or tryptophan metabolism. The Wnt group showed also
the overexpression of genes involved in retinol metabolism or epidermal growth factor
receptor binding, among others. The extracellular group showed the overexpression of
plasma membrane genes.

The survival analysis of these four groups showed no significant differences; however,
the extracellular group had a better prognosis than the other three groups (p = 0.0086,
HR = 0.41 95%CI: (0.13–0.73)) (Supplementary Figure S6).

3.8. Comparison between Layer Classification and CMS

Once we obtained three independent classifications, we compared them with the
CMS. Patients belonging to CMS1 and CMS4 were mostly immune-high, whereas CMS2
and CMS3 patients were mostly immune-low. The adhesion layer divided the CMS1 pa-
tients by half and most of the CMS4 patients were included in the high-adhesion group,
whereas CMS2 and CMS3 were included in the low-adhesion group. According to the
molecular layer, most of the CMS1 patients belonged to the extracellular molecular sub-
type, the CMS2 to the Wnt pathway, and the CMS3 to the metabolic group (Figure 7,
Supplementary Table S5).
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4. Discussion

Colorectal cancer is a molecularly and clinically heterogeneous disease with high rates
of incidence and mortality [1]. Both CRC incidence and mortality are expected to increase
in the coming years [32]. Therefore, it is essential to explore new molecular markers and
therapeutic applications to improve the prognosis and clinical management of this type
of tumor. In order to solve the problems derived from the heterogeneity of colorectal
cancer, the international Colorectal Cancer Subtyping Consortium (CRCSC) was created,
where colon cancer was classified into four consensus molecular subtypes (CMS) [7]. The
prognostic value of CMS classification has been proven in metastatic CRC [33–35] and
recent meta-analysis studies found that the prognostic and predictive value of the CMS
is robust [6], but, at the present time, CMS classification has no direct impact on clinical
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decision making [12]. Many studies have tried to improve the CMS classification for
more refined prognosis predictions [36–39]. However, the discovery of new CRC patient
stratification methods is still necessary for the enhanced diagnosis of CRC, screening for
novel therapeutic targets, and improved prognostic tools for CRC.

PGMs have demonstrated their utility in the analysis of tumor omics data, being able
to structure molecular information from a functional point of view [13,14,40]. Addition-
ally, in other tumor types, such as bladder cancer, sparse K-means–CC analysis provides
independent layers of information from the molecular characteristics of the tumor—for
instance, immune information [13,18,26]. Therefore, the generation of a classification using
this novel approach based on the existence of different informative layers could help to
translate into clinical practice the molecular information generated in the context of CRCSC.
This approach allows the identification of three different levels of information: the adhesion
layer, the immune layer, and the molecular layer.

The adhesion layer has been divided into two groups, high and low adhesion, and has
prognostic value, with the group of patients with low adhesion having the best prognosis.
Distant CRC metastatic tumor formation is considered to be strongly influenced by the
stable adhesion of cancer cells to the small blood vessel walls [41]. In recent years, several
studies have shown that adhesion molecules are responsible for tumor progression and
metastasis in colorectal cancer; however, the prognostic significance of these markers
remains controversial [42]. Moreover, other adhesion proteins, such as FLRT2 and AMIGO2,
overexpressed in the high-adhesion group and located in the adhesion and extracellular
matrix nodes, respectively, have been suggested to be useful biomarkers for the long-term
prognosis of CRC patients [43,44]. As adhesion genes, extracellular matrix genes were
also overexpressed in the high-adhesion group. One of these genes was collagen triple
helix repeat containing 1 (CTHRC1), related to an increase in cell migration, motility, and
invasion. CTHRC1 overexpression was related to poor prognosis in CRC patients and
has been defined as a potential diagnostic and prognostic biomarker for patients with
CRC [45,46].

Immunotherapy relies on harnessing the body’s immune system to kill cancer cells [47]
and it has revolutionized the treatment of several cancers. Immunotherapy has also
shown impressive results in the context of CRC. Patients with mismatch repair (dMMR)/
microsatellite-instability-high (MSI-H) metastatic CRC have been observed to obtain a
prolonged benefit from immune checkpoint inhibitors. Consequently, pembrolizumab and
nivolumab +/− ipilimumab have obtained Food and Drug Administration approval for
MSI-H/dMMR metastatic CRC [48–50]. The immune layer divides CRC tumors into two
groups, immune-high and immune-low. A classification capable of identifying immune-
related differences, independent of molecular subtype, may identify tumors that will be
good responders to immunotherapy. HLA complex genes were overexpressed in the
immune-high group. Tumor cells may escape T cell attack through HLA downregula-
tion [51], so the overexpression of HLA complex genes matches with the consideration of
this group of patients as optimal candidates for immunotherapy.

The immune-high group had also overexpression of genes involved in the viral
mimicry response. The viral mimicry response is a cellular state of active viral response
triggered by endogenous stimuli instead of viral infection, in the case of cancer, triggered
by retrotransposons [31]. Viral mimicry interprets these retrotransposons as a viral in-
fection and activates the interferon response. The viral mimicry response also increases
the adaptive immune response through the increased expression of antigen-processing
components and increased expression of retrotransposon-derived peptides [52]. Several
of the immune genes on which the immune classification was based were involved in the
antigen-processing and presentation process, and they may be the cause of the activation of
the viral mimicry response. Moreover, cytidine analogues, azacytidine or decitabine, at low
doses, have demonstrated anti-tumor efficacy in colorectal cancer cells by inducing viral
mimicry [53], and also it has been demonstrated that they enhance the response to immune
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checkpoint inhibitors [54]. Therefore, a combination of viral mimicry-related drugs and
immunotherapy could be an option for immune-high patients.

The molecular layer has been divided into four groups: stem cells, Wnt pathway,
metabolic, and extracellular. Cancer stem cells (CSCs) can regulate cancer invasion, distant
metastases, and therapy resistance in CRC, as well as contribute to cancer recurrence in
patients [55]. The stem cell subtype presented high expression of genes such as VANGL2
or PBX1, whose function is related to stem cell maintenance. Therefore, these biomarkers
could be a possible avenue of study, since colorectal cancer stem cells differ from normal
stem cells in their tumorigenic potential and susceptibility to chemotherapeutic drugs [56],
which would explain the high percentage of relapses in patients with this type of cancer.

The Wnt signaling pathway plays an important role in the pathogenesis of CRC [57].
Tumors of the Wnt molecular subtype presented high expression of genes such as RNF43,
related to alterations in the Wnt signaling pathway [58]. RNF43 encodes an E3 ubiquitin
ligase that negatively regulates Wnt signaling, and it is mutated in more than 18% of
colorectal adenocarcinomas and endometrial carcinomas. Mutations in RNF43 have clinical
relevance because they implicate novel therapeutic options in CRC. Preclinical studies have
shown that mutations in RNF43 make Wnt-induced cancer cells susceptible to the pharma-
cological inhibition of Wnt signaling by porcupine. Porcupine is an O-acetyltransferase
that is part of the Wnt pathway, and could be postulated as a possible therapy in this type
of Wnt-induced tumor [59–61]. To date, five porcupine inhibitors have entered phase I/II
clinical trials in patients with advanced solid tumors and showed promising preliminary
clinical data [62,63]. Porcupine inhibitors were also well tolerated when they were used in
combination with anti-PD-1 therapy [64]

In tumors of the metabolic molecular group, the high expression of genes that play
an essential role in cancer-specific metabolic reprogramming, such as PHGDH, has been
observed [65]. PHGDH is a metabolic enzyme involved in the serine synthetic pathway
and it appears to play a central role in supporting cancer growth and proliferation, so
it is a promising drug target for cancer therapy. Different PHGDH inhibitors have been
reported, but currently they have not yet led to the development of compounds that can be
therapeutically used [65]. Another gene overexpressed in the metabolic group was phos-
phoserine aminotransferase 1 (PSAT1), a gene related to serine biosynthesis. Certain studies
concluded that the overexpression of PSAT1 is significantly associated with resistance to
chemotherapy with irinotecan, 5-fluorouracil, and leucovorin, so the inhibition of this gene
could prevent patients of this group from developing resistance to chemotherapy [66].
Other genes involved in metabolism, such as REG4 and CTSE, were also overexpressed
in the metabolic subtype and they have been previously related to CRC prognosis. Re-
generating islet-derived type 4 (REG4) is a member of the calcium-dependent lectin gene
superfamily and it was associated with a relatively unfavorable prognosis in various can-
cers, including CRC [67,68]. Cathepsin E (CTSE) is an adverse prognostic factor for survival
among rectal cancer patients receiving chemo-radiotherapy [69]. Cathepsins have been
implicated to play a role in the invasion and metastasis of colorectal cancer. Inhibitors
targeting some cathepsins, such as S and K, are already in clinical evaluation [70], and
inhibition of the Reg4-CD44/CD44ICD pathway has been proposed as a future therapeutic
target for colon cancer patients [71]. The use of REG4 and CTSE inhibitors could be a
targeted treatment for patients of this molecular group. The overexpression of proteins
involved in the tricarboxylic acid cycle and mitochondrial metabolism has been previously
associated with resistance to oxaliplatin in colorectal cancer organoids [72], highlighting
the relevance of metabolism in these tumors.

The extracellular molecular group was characterized by the high expression of col-
lagens, which could be one of the reasons that it is the subtype with the worst prognosis.
Among the extracellular matrix adhesive components, type I collagen is one of the most
important factors regulating cancer-related events at different tumorigenesis stages [73]
The COL1A1 gene encodes a pro-α1 chain of type I collagen, and it has been demonstrated
that is overexpressed in colon cancer and it may be a driving gene for colon cancer progres-



Cancers 2023, 15, 1104 13 of 18

sion [74,75]. Different inhibitors and drugs that regulate collagen-biosynthesized processes
and collagen distribution arrangement have been described, and preclinical studies on
collagen-related therapy have demonstrated encouraging outcomes [76]. Patients of this
molecular subtype could be candidates for collagen inhibitor therapies.

We compared our three classifications of CRC tumors with the classification through
CMS groups. The CMS classification mixed immunological, histological, and molecular
information. The present study has been able to corroborate some of the molecular charac-
teristics defined in the CMS, but it has also been possible to identify two layers of informa-
tion that are independent of the molecular features of the CRC tumors related to adhesion
and the immune status. These different levels of information complemented the molecular
characteristics exposed in the CMS, and it has also been possible to add new information
that allows patients with different CMS to benefit from the same therapeutic strategy.

For instance, although the CRCSC determined that all CMS1 patients were immune-
positive [7], our results suggested that 80% of CMS1 patients were immune-high, while 20%
of patients in the CMS1 group had low expression of immune response-related genes. This
would mean that these patients are not optimal candidates for immunotherapy. Moreover,
most CMS2 and CMS3 tumors share the characteristic of having low expression of immune
genes (82% and 81% of patients, respectively), being considered cold tumors that do not
respond to immunotherapy [77]. However, our molecular classification showed that 18%
of CMS2 patients and 19% of CMS3 patients had a high immune status, so they could be
candidates for immunotherapy. Therefore, an analysis based on different biological layers
allows the more accurate classification of CRC patients according to their immune status,
independently of the CMS group to which they belong. The molecular characterization
obtained using the described analysis tools provided complementary information to that
of the CMS group classification, which may have important implications for the choice of
treatment for each patient, such as immunotherapy.

As for the CMS2 group, CRCSC showed that this group presents close similarity to
the classical model of CRC carcinogenesis with activation of the WNT and MYC signaling
pathways [7]. Although our molecular classification divided CMS2 patients into the Wnt
molecular subtype and the stem cell molecular subtype, both subtypes presented high
functional activity of the Wnt signaling pathway-related node and both could benefit from
porcupine Wnt pathway inhibition therapy.

As for the CMS3 group, the CRCSC established that only patients in this group could
benefit from possible therapies with PHGHD and PSAT1 or other metabolism-related
molecules. Overall, 24.7% of CMS3 patients do not correspond to the metabolic molecular
subtype, so other therapeutic options should be explored for these patients, since, as seen in
this study, they are not characterized by the high expression of genes related to metabolism,
even though they have been included in CMS3.

Regarding the CMS4 group, our analysis determined that 74% of CMS4 patients were
immune-high. This fact is consistent with the CRCSC classification, which described the
relationship between CMS4 patients with the presence of high infiltration of cytotoxic T
cells [78] and high expression of immune genes [7,37], so, as with CMS1, these patients
could be candidates for immunotherapy [79]. However, in this study, it has been possible
to determine that 26% of CMS4 patients are immune-low and therefore would not be good
candidates for immunotherapy.

On the other hand, CMS4 is the subtype with the worst prognosis [7]. Regarding the
adhesion subtype, 98% of CMS4 patients belong to the high-adhesion group, and this is
consistent with the survival analysis that determined that the adhesion layer had prognostic
value, showing worse prognosis in high-adhesion tumors.

To summarize, this study allows us to minimize the percentage of patients without a
specific treatment, since the layer classification allows the inclusion of information about
the immune and adhesion status. Thus, patients of the stem cell molecular subtype and
the Wnt molecular subtype could benefit from porcupine inhibition therapy, patients of
the metabolic molecular subtype from possible therapies related to REG4 and CTSE, and
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patients of the extracellular molecular subtype from possible therapies related to COL1A1.
On the other hand, the classification of patients by immune subtype, independently of
CMS, provides valuable information to select the most suitable patients for immunotherapy
treatment and viral mimicry therapies.

The study has some limitations. First, validation of all the obtained classifications in
an independent CRC cohort is needed. In addition, validation of the proposed therapeutic
strategies for each group in cell cultures, organoids, or murine models should be performed.
Moreover, only 12% of the tumors were stage IV, so these were underrepresented, as
happened in the CMS study. However, this is the group in which possible molecular
targets are most interesting because of their potential therapeutic utility. The study used a
retrospective cohort, performed prior to immunotherapy administration, which may have
changed the prognosis of some patients, especially those with microsatellite instability.
Finally, these groups should be studied in the context of other clinical biomarkers, such as
RAS/RAF or microsatellite instability.

5. Conclusions

In conclusion, the generation of a classification of colorectal cancer according to the
different biological realities of the tumor using probabilistic graphic models and layer
analysis allowed the identification of four molecular subtypes of colorectal cancer and
established two extra independent classifications based on adhesion and immune features,
respectively. These classifications may help researchers and clinicians to search for new
therapeutic targets and more specific treatments.
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