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Abstract: Progressive accumulation of α-Synuclein (αSyn) in Lewy bodies (LBs) and loss of dopamin-
ergic (DA) neurons are the hallmark pathological features of Parkinson’s disease (PD). Although
currently available in vitro and in vivo models have provided crucial information about PD pathogen-
esis, the mechanistic link between the progressive accumulation of αSyn into LBs and the loss of DA
neurons is still unclear. To address this, it is critical to model LB formation and DA neuron loss, the
two key neuropathological aspects of PD, in a relevant in vitro system. In this study, we developed a
human midbrain-like organoid (hMBO) model of PD. We demonstrated that hMBOs generated from
induced pluripotent stem cells (hiPSCs), derived from a familial PD (fPD) patient carrying αSyn gene
(SNCA) triplication accumulate pathological αSyn over time. These cytoplasmic inclusions spatially
and morphologically resembled diverse stages of LB formation and were composed of key markers
of LBs. Importantly, the progressive accumulation of pathological αSyn was paralleled by the loss
of DA neurons and elevated apoptosis. The model developed in this study will complement the
existing in vitro models of PD and will provide a unique platform to study the spatiotemporal events
governing LB formation and their relation with neurodegeneration. Furthermore, this model will
also be beneficial for in vitro screening and the development of therapeutic compounds.

Keywords: human midbrain-like organoids; Parkinson’s disease; 3D models; Lewy body disease

1. Introduction

Parkinson’s disease (PD) is the most common synucleinopathy and is also considered
to be the second most prevalent neurodegenerative disorder, after Alzheimer’s disease
(AD) [1]. The main pathological features of PD involve the presence of αSyn aggregates in
the form of intracellular inclusions, referred to as Lewy bodies (LBs) and Lewy neurites
(LNs) [2]. The presence of these inclusions has been linked to the loss of DA neurons,
especially in the substantia nigra (SN) of the midbrain [2,3].

Currently, most of the studies of αSyn misfolding, aggregation, propagation and
neurotoxicity employ diverse in vivo models (transgenic, wild-type mice and rats) [4–7].
However, unlike humans, rodents do not develop PD spontaneously and their cellular,
molecular and gene expression profiles are also vastly different [8]. To address this issue,
human-immortalized cell line-based models of PD were developed [9–11]. We and others
recently generated human-induced pluripotent stem cells (hiPSCs)-derived DA neurons to
study αSyn pathology [12,13]. However, these in vitro models lack the three-dimensional
architecture and multicellular heterogeneity of the human brain [14,15], which imposes a
limitation on the translational potential of these models.

hiPSCs-derived 3D brain cell culture models provide a unique opportunity to examine
complex cellular interactions governed by the human genome [16–19]. Specifically, cere-
bral organoids and cortical spheroids [20,21] recapitulate features of pre- and post-natal

Cells 2023, 12, 625. https://doi.org/10.3390/cells12040625 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12040625
https://doi.org/10.3390/cells12040625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-4861-4525
https://orcid.org/0000-0002-7335-3005
https://orcid.org/0000-0002-7138-0907
https://doi.org/10.3390/cells12040625
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12040625?type=check_update&version=3


Cells 2023, 12, 625 2 of 15

human brain in vitro, including the generation, proliferation and differentiation of neural
progenitors into neurons and glial cells, and their maturation, together with their complex
interactions in 3D [21,22]. Importantly, organoids can be generated to mimic different brain
regions, such as the forebrain [23], midbrain [24–26] and hindbrain [27], therefore providing
platforms to study the neuropathology of a specific region [28–30]. Importantly, we and
others have recently modeled key pathological features of neurodegenerative diseases,
including AD and traumatic brain injury in cerebral organoids [29,31–35].

Recently, multiple groups have attempted modeling PD-like pathology in hMBOs
carrying different PD-associated mutations [24–26,30]. However, until now there has been
a lack of a model that reproduces LB formation and DA neuron loss, without the need
of genetic manipulation or exposure to toxin. In this study, using hiPSCs from a fPD
patient with SNCA gene triplication, we have successfully generated hMBOs bearing key
pathological features of PD, including LB-like inclusions and the loss of DA neurons. We
demonstrated that in these PD-hMBOs, αSyn spontaneously accumulated into inclusions
without the need for any genetic manipulation or chemical exposure. These organoids
spatially and morphologically recapitulate critical aspects of LBs and are composed of key
markers of LBs. Our study provides a valuable platform to investigate the pathophysiology
of LBs in a 3D model, composed of a variety of human brain cells, organized in a brain-
like manner.

2. Materials and Methods
2.1. hiPSCs Information

The hiPSCs lines used and the experiments performed with hMBOs were approved
by Stem Cell Research Oversight Committees at UT Health Houston. For this study, we
used hiPSC line Edi044-A, derived from an 80-year-old healthy female subject. This line
was acquired from the Cedars Sinai stem cell bank. We also used a familial PD hiPSC line
(NDS00201) obtained from a 55-year-old female subject with SNCA gene triplication, who
was diagnosed with PD at the age of 52. This line was acquired from the National Institute
of Neurological Disorders and Stroke (NINDS) Human Cell and Data Repository.

2.2. hiPSCs Culture Maintenance

hIPSCs were cultured in 6-wells plates coated with hESC-Qualified Matrix, LDEV-
free, Matrigel® (Corning® 354277, Corning, NY, USA) using mTeSRTM Plus medium
(StemCellTM Technologies 100-0276, Vancouver, BC, Canada). To ensure the stabilization
and homogeneity of the colonies before generating the 3D cultures, both types of cells were
passaged three times. For each passage, the cells were dissociated 1:6 using ReLeSRTM
(StemCellTM Technologies). Mycoplasma tests (Millipore Sigma MP0035-1KT, St. Luis,
MO, USA) were performed monthly for both hiPSCs and hMBOs.

2.3. Brain Sections from LBD Patient

Formalin-fixed/paraffin-embedded midbrain sections from pathologically confirmed
LBD (Lewy body disease) patients were kindly provided by our colleagues at the Mayo
Clinic: Dr. Wolfgang Singer, Dr. Ann Schmeichel and Dr. Phillip Low. Research on human
samples was performed following The Code of Ethics of the World Medical Association
(Declaration of Helsinki). Samples were handled according to the universal precautions
for working with human samples and as directed by the Institutional Review Board of the
University of Texas Health Science Center at Houston.

2.4. Generation of hMBOs

hMBOs were generated as schematically represented in Figure 1, based on a previ-
ously published method [26]. Briefly, hiPSC colonies were dissociated into a single-cell
suspension. A total of 15,000 hiPSCs/well were used to form embryoid bodies (EBs) in
a 96-well plate. The EBs were cultured in a neural induction medium DMEM F-12 and
neurobasal medium, 1:1 respectively N2 1X, B27 1X, Glutamax 1X, MEM NEAA 1X, beta-
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mercaptoethanol 55 µM (12 (Thermoscientific® Waltham, MA, USA), heparin 1µg/mL
(StemCellTM Technologies), SB431542 100 mM, LDN 2 mM, CHIR 10 mM, supplemented
with 10 µM ROCK inhibitor Y-27632 (Tocris® Bristol, UK). The ROCK inhibitor was added
for the first 48 h, and the neuronal induction medium was changed on day 2. On day 4,
the EBs were supplemented with midbrain patterning factors, 100 ng/mL Sonic Hedge-
hog, C25II (SHH-C25II) 25 µg/mL and fibroblast growth factor 8 (FGF8) (R&D Systems,
Minneapolis, MN, USA), for 3 days. Subsequently, the EBs were embedded in 30 µL of
reduced growth factor Matrigel (Corning® Matrigel® 354230, NY, USA) and cultured in
tissue growth and induction medium supplemented with 100 ng/mL SHH-C25II and FGF8
and transferred to ultra-low attachment 6-well plates (Corning, Costar® 3471 NY, USA).
At day 7, neuroectodermal spheroids were embedded in Matrigel® and transferred to
low attachment wells using a medium 1:100 N2 supplement (Invitrogen, Waltham, MA,
USA), 1:50 B27 without vitamin A (Invitrogen), 1% GlutaMAX (Invitrogen), 1% and 0.1%
β-mercaptoethanol (Invitrogen) supplemented with 2.5 mg/mL insulin (Sigma-Aldrich,
St. Luis, MO, USA), 200 ng/mL laminin (Sigma-Aldrich), 100 ng/mL SHH-C25II and
100 ng/mL FGF8 (R&D Systems) for 48 h. Finally, on day 9, hMLOs were transferred into
ultra-low attachment 6-well plates (Costar) by pipetting using a cut 1000 µL tip; the plates
contained organoid differentiation medium which consisted of neurobasal medium 1:100
N2 supplement (Invitrogen), 1% GlutaMAX (Invitrogen), 1% minimum essential media
with non-essential amino acid (Invitrogen) and 0.1% β-mercaptoethanol supplemented
with 10 ng/mL BDNF (R&D 248-GMP NE Minneapolis, MN, USA), 10 ng/mL GDNF
(R&D 21 2-GMP NE Minneapolis, USA), 100 µM ascorbic acid (Millipore- SigmaTM A92902
St. Luis, MO, USA) and 125 µM dybutytil-cAMP (Tocris® 1141, Bristol, UK), antibiotics
(100 U/penicillin G and 100 µg/mL streptomycin), and the medium was consistently
shaken on an orbital shaker at 70 rpm. The medium was replenished every 3–4 days
(Figure 1).

2.5. Fixation and Immunohistochemistry (IHC)

hMBOs were fixed in 4% paraformaldehyde for 48 h. The dehydration process was
performed using graded ethanol and xylenes followed by final embedding in paraffin.
Paraffin blocks were cut using a microtome at a thickness of 12 µm. For antigen retrieval,
the slides were rehydrated and exposed to citrate buffer (ab93678 Abcam, Cambridge,
MA, USA). Endogenous peroxidase activity was blocked via incubation in 3% H2O2/10%
methanol in PBS for 20 min on a rocking platform. Non-specific binding was blocked in
3% donkey serum/PBS containing 0.3% TritonX-100 for 30 min, followed by incubation
overnight in a humidity chamber with the primary antibodies, anti-phospho-Ser129-α-
synuclein (pS129) (1:200, Cat. Ab51253, Abcam, Cambridge, MA, USA) and anti p62
antibody (1:200, Cat ab280086C, Abcam, Cambridge, MA, USA), prepared in 3% donkey
serum/PBS-0.3% TritonX-100 at room temperature. The next day, the sections were washed
in PBS and then incubated for 1.5 h with an HRP-linked secondary sheep anti-rabbit (1:1000
Cat. A0545 anti-rabbit peroxidase, Sigma Aldrich, St. Luis, MO, USA) and anti-mouse
antibodies (1:1000 Cat. A5906 anti-mouse peroxidase, Sigma Aldrich, St Luis MO USA)
at room temperature. After washing with PBS, the peroxidase reaction was visualized
using 3, 3′-diaminobenzidine (DAB) as a chromogen (Vector Laboratories, Burlingame,
CA, USA) following the manufacturer’s instructions. Sections were then counterstained
with hematoxylin for 40 s at room temperature and washed in water. Finally, sections
were dehydrated in graded ethanol, cleared in xylene, and mounted using DPX Mounting
Medium (Electron Microscopy Sciences, Hatfield, PA, USA). LBD midbrain sections were
treated similarly and immunostained with the same antibodies. IHC Images were taken
using the color camera of the Leica Stellaris® confocal microscope (Leica Microsystems,
Buffalo Grove, IL, USA); the photographs were acquired using LAS-X software (Leica
Microsystems, Buffalo Grove, IL, USA).
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Figure 1. Schematic description of the protocol to generate hMBOs. Schematic diagram illustrating
the protocol to generate hMBOs and representative brightfield images of hMBOs at different stages
of differentiation. The scale bar for image DIV 0 is 100µm, DIV4 and DIV7 is 260 µm and for images,
DIV 11 and DIV30 is 520 µm.

2.6. Immunofluorescence (IF)

After deparaffinization and hydration, sections were blocked with 3% donkey serum/
PBS containing 0.3% TritonX-100 for 1 h at room temperature. Sections were then incubated
with primary antibodies overnight (see antibodies list, Table S1) at room temperature.
Respective secondary Anti-Mouse Alexa Fluor-594 (1:1000, Invitrogen™ A32744, Waltham,
MA, USA) or Anti-Rabbit Alexa Fluor-488 (1:1000 Invitrogen™ A32790 Waltham, MA,
USA) antibodies were incubated for one hour at room temperature. All sections were
counterstained with (4′,6-diamidino-2-phenylindole) DAPI (Millipore Sigma 10236276001,
St. Luis, MO, USA) and mounted with FluorSaveTM (Millipore- Sigma 345789, St. Luis, MO,
USA), protected from the light. Images were taken using a confocal and epifluorescence
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microscope, Leica Stellaris® (Leica Microsystems, Buffalo Grove, IL); photographs were
digitalized using LAS-X software (Leica Microsystems, Buffalo Grove, IL) and imported
into ImageJ 1.45 s software (NIH) for analysis. ROI for analysis was defined via the presence
of MAP2 (1:400, BD Pharmingen™ 556320, Franklin Lakes, NJ, USA)-immunoreactive areas
of the organoid. Immunostainings for cleaved Caspase 3 (c-Casp3) (1:500 Abcam™ ab2302)
were evaluated in 20X microphotographs, and the ratio of cCasp3-positive cells to DAPI-
positive cells was quantified. Areas immunoreactive for TH and pS129 were quantified
and expressed relative to the DAPI area and total αSyn area, respectively. Images were
analyzed blindly.

2.7. Statistical Analysis

Analysis was performed using 3 images from 3 sections of each organoid per time
point in each group. Data were analyzed using a two-way ANOVA to evaluate the effect of
two variables [donors’ SNCA copy number (normal and triplication) and the time in culture
(120 and 180 days in vitro) for the following analyses: αphosphorylation, as assessed using
the pS129/αSyn ratio, cleaved caspase 3 levels, and TH/DAPI ratio. We used Tukey’s test
for pairwise post hoc comparisons. Significant differences were considered with p < 0.05.

2.8. Ethical Approvals

Experiments conducted with human iPSCs and employing human brain sections for
staining were approved by the Institution Stem Cell Committee and Institutional Review
Board of the University of Texas Health Science Center at Houston.

3. Results
3.1. Generation hMBOs from Healthy and fPD hiPSC Lines

DA neurons of the substantia nigra pars compacta in the midbrain are the primary
cells affected in PD [2]. In order to generate and characterize hMBOs containing DA
neurons, we used an hiPSC line from an 80-year-old healthy female and a 55-year-old
female patient with fPD carrying SNCA gene triplication. The hiPSCs colonies displayed
compact morphology with defined borders and expressed typical pluripotency markers
(Figure 1 and Figure S1). We generated hMBOs from these lines based on a previously
published method [26] (Figure 1). Next, we characterized the hMBOs derived from the
healthy donor using immunofluorescence (IF) (Figure 2) to confirm the midbrain identity
via the presence of midbrain progenitor cells. After 30 days in vitro (DIV), the hMBOs
expressed the neuroepithelial markers SOX2 and Nestin (Figure 2A), which are essential for
the proliferation and maturation of neural progenitors, as well as Mash 1, which promotes
the neuronal commitment of multipotent progenitors [36,37]; the transcription factors
associated with patterning of dorsal midbrain (En-1 and Otx2) [38,39]; and midbrain DA
(mDA) neuron progenitor markers (Lmx1a and Nurr1) [40,41] (Figure 2A). We detected
the immunoreactivity of microtubule-associated protein 2 (MAP2), a postmitotic neuronal
marker, and thyroxine hydroxylase (TH), a marker of DA neurons, in the outermost layers
of the hMBOs (Figure 2B).

3.2. αSyn Pathology in hMBOs Derived from the fPD Patient

To evaluate the spontaneous appearance and progressive accumulation of αSyn in
organoids, we generated hMBOs from the fPD-hiPSC line with SNCA triplication (hence-
forth fPD-hMBO) and healthy hiPSC line (henceforth healthy hMBO). hMBO were kept in
culture for 120 and 180 days. Phosphorylation of αSyn at the residue serine 129 (pS129) is a
well-established marker of αSyn accumulated in LBs [42,43]. Pathological αSyn accumula-
tion was analyzed in hMBOs using immunostaining with anti-pS129 antibody (Figure 3A
[120 DIV] and B [180 DIV], top panel in green). pS129-immunostaining was barely de-
tectable in the healthy hMBOs, both at 120 and 180 DIV. In contrast, pS129 immunostaining
began to appear at 120 DIV (Figure 3A) and became more abundant as perinuclear puncta
in the fPD-hMBOs at 180 DIV (Figure 3B). We also co-immunostained the sections with
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anti-αSyn antibody (Figure 3A [120 DIV] and B [180 DIV]). Most of the pS129 reactivity
colocalized with αSyn immunostaining, indicating that these are indeed αSyn deposits
positive for the LB marker pS129. Image analysis indicated that fPD-hMBOs have higher
levels of pS129 immunostaining compared to the healthy-hMBOs at 120 DIV (Figure 3C).
However, the difference did not reach statistical significance. Nevertheless, this difference
became even more pronounced and significant at 180 DIV (Figure 3C). These results in-
dicate that fPD-hMBOs spontaneously accumulated pathological αSyn, which tends to
progressively increase in quantity.
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Figure 2. Generation and characterization of hMBOs from hiPSCs. (A). Representative immunos-
taining images of hMBOs characterization at 30 DIV using neuroepithelial markers (SOX2, Nestin),
dorsal midbrain and DA progenitor markers (Otx2, En-1, LMX-1A, NURR1 and MASH1). (B). Repre-
sentative immunostaining images using DA neuron marker TH with a pan-neuronal marker Tuj1
and postmitotic neuronal marker MAP2. All slides were counterstained with DAPI (blue) to mark
nucleus. Dotted squares represent the magnified areas shown on the right side of the main image.
The scale bar is 50 µm.

3.3. LB-Like Pathology in fPD-hMBOs

Given the significant and progressive accumulation of pathological αSyn in fPD-
hMBOs, we further investigated their morphological, spatial and compositional similarities
with LBs. As a positive control, we used human brain sections from a subject with patholog-
ically confirmed LBD. Excitingly, in fPD-hMBO sections at DIV 180, pS129 immunostained
structures accumulated and were juxtaposed to the nucleus with spherical morphology
and smooth edges (Figure 4A). Although not abundant, this immunostaining pattern was
spatially and morphologically similar to that observed in the LBD brain section (Figure 4A.
right column). Co-immunostaining with pS129 and αSyn further validated that these
pS129 immunoreactive deposits are indeed composed of αSyn (Figure 4B). Nevertheless,
it is important to note that we also frequently observed granular pS129 immunostaining
distributed in the cytoplasm, likely resembling pale bodies observed in the early stages
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of LB formation [44,45]. Ubiquitin-binding protein p62 is often found in LBs and used
as a LB marker [44,46]. In order to further evaluate the composition of LB-like deposits,
we immunostained fPD-hMBO sections with anti-p62 antibody. LBD brain sections were
used as a positive control. In both the LBD brain tissue and fPD-hMBOs, p62 immunos-
taining showed perinuclear inclusions of different sizes (Figure 4C). To further confirm,
we also performed IHC for p62 with hematoxylin as a counterstaining. The pattern of p62
immunostaining observed in fPD-hMBOs (Figure 4D, left column) was remarkably similar
to that observed in LBD brain sections (Figure 4D, right column) and consistent with the
pS129 immunostaining pattern. Taken together, these data indicate that fPD-hMBOs can
spontaneously develop αSyn deposits, which are spatially, and morphologically similar to
different stages of LB formation and contain typical LB markers.
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Figure 3. Accumulation of pathological αSyn in fPD-hMBOs. Representative images from healthy
hMBOs and fPD-hMBOs, immunostained for pS129 (green) and αSyn (red), at 120 DIV (A) and
180 DIV (B). Nuclei were stained with DAPI (blue). Dotted squares represent the magnified areas
shown on the right side of the main image to highlight the juxtanuclear accumulation of phosphory-
lated αSyn. The scale bar is 50 µm. (C). Immunostaining quantification at 120 and 180 DIV of pS129
normalized with total αSyn area. Values represent mean +/− standard error of mean (SEM) from
n = 3 hMBOs per group. Three sections were analyzed from each hMBO. The results were analyzed
using two-way ANOVA [SNCA copy number: F (1, 8) = 16.96, p = 0.0034; time: F (1, 8) = 3.308,
p = 0.5318; SNCA copy number x time: F (1, 8) = 1.734, p = 0.2243)] followed by the Tukey post hoc
multiple comparisons test. * p < 0.05.
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Figure 4. Morphology and composition of LB-like αSyn accumulates in fPD-hMBOs. (A). Rep-
resentative immunohistochemistry (IHC) images for pS129 counterstained with hematoxylin.
(B). Representative IF images for pS129/αSyn and DAPI. (C). Representative IF images for p62
and DAPI. (D). Representative IHC images for p62 counterstained with hematoxylin. In all panels,
the left shows the results with hMBOs, and the right shows the brain of patient affected by LBD as
positive control. Arrows show the LB-like deposits in fPD-hMBOs and LBs in LBD brain sections.
Scale bar 5 µm.
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3.4. Increased Neurodegeneration in fPD-hMBOs

Next, we investigated the degenerative consequences of αSyn accumulation. Selective
loss of DA neurons is a hallmark feature of PD pathology [2,3,47]. We immunostained
hMBO sections with the DA neuron marker tyrosine hydroxylase (TH) [48] (Figure 5A
[120 DIV] and B [180 DIV]). Image analysis indicated that fPD-hMBOs have significantly
reduced TH-positive neurons compared to healthy hMBOs, both at 120 and 180 DIV
(Figure 5C). These results suggested a loss of DA neurons in hMBOs derived from fPD
iPSCs.
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were stained with DAPI. Scale bar is 25 µm. (C). Quantification of TH immunostaining at 120 and
180 DIV. Values represent mean +/− standard error of mean (SEM) from n = 3 hMBOs per group.
Three sections were analyzed from each hMBO. The results were analyzed using two-way ANOVA
[SNCA copy number: F (1, 8) = 29.15, p = 0.0006; time: F (1, 8) = 0.4270, p = 0.5318; SNCA copy
number × time: F (1, 8) = 0.001276, p = 0.9724)] followed by the Tukey post hoc multiple comparisons
test. * p < 0.05.
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To further investigate this, we immunostained the tissue sections with an antibody
against cleaved caspase 3 (c-Casp3), a marker of cellular apoptosis (Figure 6A [120 DIV]
and B [180 DIV]). The presence of apoptotic areas has been previously reported in the
brain organoid model [49]. In agreement, we noted a basal level of apoptosis in the
healthy hMBOs, both at 120 and 180 DIV (Figure 6A,B). However, the level of c-Casp3
immunostaining was higher in the fPD-hMBOs at both time points (Figure 6A,B). Image
analysis confirmed that there is indeed a significant increase in c-Casp3 immunostaining in
the fPD-hMBOs compared with the healthy-hMBOs at 180 DIV (Figure 6C).
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were stained with DAPI. The scale bar is 25 µm. (C). Quantification of c-Casp3 immunostaining at 120
and 180 DIV. Values represent mean +/− standard error of mean (SEM) from n = 3 hMBOs per group.
Three sections were analyzed from each hMBO. The results were analyzed using two-way ANOVA [SNCA
copy number: F (1, 8) = 20.13, p = 0.0020; Time: F (1, 8) = 12.65, p = 0.0074); SNCA copy number× time:
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4. Discussion

In this study, we aimed to model key histopathological features of PD, including the
formation of LB-like αSyn inclusions and loss of DA neurons in the hMBOs without any
genetic alteration. Recently, multiple groups attempted modeling PD-like pathology in
hMBOs carrying different PD-associated mutations. Smits et al. used midbrain-specific
organoids generated from PD patients carrying the LRRK2-G2019S mutation and demon-
strated a reduction in the function and number of DA neurons in LRRK2-G2019S com-
pared to the control organoids [29]. Likewise, Kim et al. generated isogenic 3D midbrain
organoids with or without a PD-associated LRRK2 G2019S mutation. They reported an
increase in the levels of phosphorylated αSyn (pS129) and deterioration of DA neurons,
as well as decreased neurite length, indicating that the organoid model system did reca-
pitulate some aspects of PD pathology [50]. On the other hand, Nickels et al., 2020, used
PD-inducing toxins and observed alterations at the cellular level, such as neurotoxicity
in hMBOs [25]. Nevertheless, these studies did not report LB morphogenesis, a cardinal
histopathological characteristic of PD pathophysiology. It is crucial to model this hallmark
feature of PD pathology for a comprehensive understanding of disease mechanisms and
the development of therapeutic interventions. Recently, Jo et al., 2021, have been able to
generate LB-like inclusions in hMBOs by knocking out glucocerebrosidase (GBA1) and
overexpressing αSyn [51]. In the current study, we investigated the spontaneous appear-
ance of LB-like pathology in hMBOs derived from PD patient-iPSCs without any genetic
manipulation. Duplications and triplications of the SNCA gene have been found in familial
forms of PD [52–54]. While duplications are associated with a phenotype resembling spo-
radic PD, triplications are associated with a more aggressive phenotype, including earlier
age of disease onset and more severe motor symptoms [55]. In this study, we generated
hMBOs from PD patient hiPSCs carrying SNCA triplication. These fPD-hMBOs displayed a
gradual increase in pathological αSyn, which accumulated into LB-like inclusions and the
associated neurodegenerative alterations typical of PD, including apoptosis and the loss of
DA neurons. Although we observed spontaneous appearances of LB-like αSyn deposits,
we were unable to identify Lewy neurites.

In PD and other synucleinopathies, more than 90% of αSyn in the LBs are phosphory-
lated [56]. The abundance of pS129-positive αSyn inclusions significantly correlates with
neurodegeneration and clinical phenotypes in PD; therefore, phosphorylation at serine 129
is used to distinguish normal αSyn from abnormal αSyn, particularly αSyn in proteinaceous
inclusions [57]. In this study, we noted increased pS129-positive αSyn immunoreactivity
over time in the fPD-hMBOs. However, we were unable to detect pS129-positive αSyn
immunoreactivity and insoluble αSyn in the hMBO homogenates using biochemical assays.
This is most likely due to a low abundance of cells containing αSyn deposits (Figure 3B) and
the small size of the organoids compared with the human brain. Furthermore, LB-like αSyn
deposits were not consistently observed in all the batches of fPD-hMBOs. Nevertheless, we
have noted a consistent and progressive increase in pS129 immunostaining over time, a
key feature of PD pathology (Figure 3). It is possible to culture brain organoids for 300–600
days [22,58]. Long-time hMBO culture may help generate more extensive LB-like pathology
and help us estimate the levels of insoluble and phosphorylated αSyn via biochemical
techniques. In addition, multiple PD-associated mutations can be introduced to generate a
more aggressive phenotype in a shorter time frame [51].

Classic, fully mature LBs are spherical cytoplasmic inclusions with smooth edges,
characterized by hyaline eosinophilic cores, concentric lamellar bands, and peripheral
halos, as well as immunoreactivity for αSyn and pS129-αSyn [44,45,59]. Histopathological
studies suggested that LB formation may involve different stages [44]. We compared the
αSyn deposits observed in the fPD-hMBOs with the LBs present in LBD patient brain
sections. αSyn inclusions in fPD-hMBOs were remarkably similar to the brain resident LBs
with respect to morphology, intracellular localization and marker composition (Figure 4).
However, the core and pS129-positive lamellar band were not apparent. This internal
organization may require further maturation. On the other hand, we noted pale body



Cells 2023, 12, 625 12 of 15

(PB)-like immunostaining in the hMBOs (Figures 3B and 4B). PBs are present in the early
stages of LB formation [45]. These are more intracytoplasmic and irregular in shape, with
some glassy areas intensely immunolabeled with anti-pS129 [44]. p62 is another well-
established marker of LBs [44,46]. The p62/sequestosome 1 is a selective cargo receptor
for autophagy in the degradation of misfolded proteins. The pink1/parkin mediated
mitophagy pathway is also dependent on the p62/sequestosome [60]. Importantly, p62-
induced autophagy failure significantly accelerates misfolded protein aggregation [61].
p62 immunostaining in fPD-hMBOs and human LBD brains revealed similar patterns
of perikaryal p62 accumulation. Furthermore, we also detected small intranuclear p62
inclusions in fDP-hMBOs (Figure 4C), similar to the findings of Kuusisto et al. from LBD
brains [44].

Finally, to investigate the PD-like degeneration of DA neurons in hMBOs, we im-
munostained the section for TH and cleaved caspase-3 (c-Casp3) (Figures 5 and 6). TH
immunostaining was significantly decreased in fPD-hMBOs (Figure 5) and they displayed
elevated levels of c-Casp3 levels (Figure 6), indicating increased apoptosis, as observed in
the PD patients’ brains [62].

One of the limitations of our study is that the age in which iPSCs were collected in
the fPD patient is younger than the healthy subject. Also, the reprogramming methods for
these two lines were not identical. However, we were unable to find any evidence from
the literature that donors’ age or reprogramming method might influence αSyn pathology
or any neurodegenerative disease pathology per se in iPSC-derived model systems. In
conclusion, our work provides an hMBO-based model of PD, which recapitulates the key
pathological features of the disease, including the accumulation of pS129-positive αSyn
over time, the formation of LB-like inclusions and DA neuron loss. We believe this model
will complement the existing experimental models of PD and significantly contribute to
biomarkers and therapeutic development.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cells12040625/s1, Figure S1: characterization of the hiPSCs;
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