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Abstract: We study a general setting of gossip networks in which a source node forwards its measure-
ments (in the form of status updates) about some observed physical process to a set of monitoring
nodes according to independent Poisson processes. Furthermore, each monitoring node sends sta-
tus updates about its information status (about the process observed by the source) to the other
monitoring nodes according to independent Poisson processes. We quantify the freshness of the
information available at each monitoring node in terms of Age of Information (AoI). While this
setting has been analyzed in a handful of prior works, the focus has been on characterizing the
average (i.e., marginal first moment) of each age process. In contrast, we aim to develop methods
that allow the characterization of higher-order marginal or joint moments of the age processes in
this setting. In particular, we first use the stochastic hybrid system (SHS) framework to develop
methods that allow the characterization of the stationary marginal and joint moment generating
functions (MGFs) of age processes in the network. These methods are then applied to derive the
stationary marginal and joint MGFs in three different topologies of gossip networks, with which
we derive closed-form expressions for marginal or joint high-order statistics of age processes, such
as the variance of each age process and the correlation coefficients between all possible pairwise
combinations of age processes. Our analytical results demonstrate the importance of incorporating
the higher-order moments of age processes in the implementation and optimization of age-aware
gossip networks rather than just relying on their average values.

Keywords: Age of Information; information freshness; gossip networks; stochastic hybrid systems

1. Introduction

Timely delivery of status updates is crucial for enabling the operation of many emerg-
ing Internet of Things (IoT)-based real-time status updating systems [1]. The concept of
AoI was introduced in [2] to quantify the freshness of information available at some node
about a physical process as a result of status update receptions over time. In particular,
for a single source of information queueing theoretic model in which status updates about
a single physical process are generated randomly at a transmitter node and are then sent to
a destination node through a single server, the AoI at the destination was defined in [2] as
the following random process: x(t) = t− u(t), where u(t) is the generation time instant
of the latest status update received at the destination by a time t. Assuming that the AoI
process is ergodic, in [2], the stationary average value of the AoI under the first-come-first-
serve (FCFS) queueing discipline was derived by leveraging the properties of the AoI’s
sample functions and applying appropriate geometric arguments. Although this geometric
approach has been considered in a series of subsequent prior works [3–13] to analyze the
marginal distributional properties of AoI or peak AoI (an AoI-related metric introduced
in [3] to capture the peak values of AoI over time) for adaptations of the queueing model
studied in [2], it often requires tedious calculations of joint moments that limit its tractability
in analyzing more sophisticated queueing models or disciplines.

Motivated by the above limitations of the geometric approach to AoI analysis, the au-
thors of [14,15] developed an SHS-based framework to allow the analysis of the marginal
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distributional properties of each AoI process (in a network with multiple AoI processes)
through the characterization of its stationary marginal moments and MGF. Furthermore,
by using the notion of tensors, the authors of [16] generalized the analysis in [14,15]
and developed an SHS-based general framework that facilitates the analysis of the joint
distributional properties of an arbitrary set of AoI processes in a network through the
characterization of their stationary joint moments and MGFs. In the piecewise linear SHS
model with linear reset maps considered in the analyses in [14–16], the discrete state of the
system q(t) is modeled as a finite-state, continuous-time Markov chain, and the continuous
state of the system is modeled using the vector x(t), which contains the AoI or age pro-
cesses at different nodes in the network. When a transition l occurs in q(t) (as a result of
status update generation or reception at one of the nodes in the network), the continuous
state is updated according to the following linear mapping of x(t): x′(t) = x(t)Al , where
x′(t) is the updated version of x(t) and Al is the reset mapping matrix associated with
a transition l. Additionally, in the absence of a transition in q(t), the age processes in
x(t) grow at a unit rate with time, which yields piecewise linear age processes over time.
Based on this description of the piecewise linear SHS model with linear reset maps, one
can realize that the frameworks in [14–16] are not applicable to age analysis in classes of
status-updating systems where it is not possible for every transition l in q(t) to express the
updated value of each age process in the network as a linear combination of the age pro-
cesses in x(t). A popular class of such systems is the gossip-based status-updating system,
where each node in the network randomly shares its information status over time with the
other nodes [17,18]. Here, when there is a transition caused by a status update reception at
node j from node i, the updated value of the age process at node j is given by the minimum
between the values of the age processes at nodes i and j. As a result, there have been a
handful of recent efforts for developing new SHS-based methods that are suitable for age
analysis in such gossip networks [19,20]. However, the methods developed thus far have
been limited to the characterization of the stationary marginal first moment (average value)
of each age process in the network. In this paper, we develop new SHS-based methods
that allow the evaluation of the stationary marginal or joint high-order moments of the age
processes in gossip networks through the characterization of their stationary marginal or
joint MGFs.

1.1. Related Work

The literature relevant to this paper can be categorized into the following two cate-
gories: (1) prior analyses of AoI applying the SHS approach with linear reset maps and
(2) prior analyses of AoI in gossip networks. We now discuss the relevant prior work in
these two directions.

Analyses of AoI applying the SHS approach with linear reset maps. The SHS approach with
linear reset maps developed in [14,15] has been applied to characterize the marginal distri-
butional properties of AoI under a variety of system settings or queueing disciplines [21–33].
In particular, the average AoI was characterized for single-source systems in [21,22] and
multi-source systems in [23–27], whereas the MGF of AoI was derived for single-source
systems in [28,29], two-source systems in [30], and multi-source systems in [31–33]. Note
that a multi-source system refers to the set-up where a transmitter has multiple sources
of information generating status updates about multiple physical processes. The authors
of [21] derived the average AoI under the last-come-first-serve (LCFS) with preemption
in service queueing discipline when the transmitter contained multiple parallel servers.
Furthermore, the authors of [22] derived the average AoI under the LCFS with preemption
in service queueing discipline when the transmitter contained multiple servers in series
or there existed a series of nodes between the transmitter and destination nodes. In [23],
the average AoI was characterized under the priority LCFS with preemption in service or
waiting queueing model. The authors of [24] derived the average AoI in the presence of
packet delivery errors under stationary randomized and round-robin scheduling policies.
In [25], the average AoI was characterized under the LCFS with preemption in service
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queueing discipline when the transmitter contained multiple parallel servers. The authors
of [26] analyzed the average AoI for a network in which multiple transmitter-destination
pairs contended for the channel using the carrier sense multiple access scheme. In [27]
(in [30]), the average AoI (the MGF of AoI) was derived under several source-aware packet
management scheduling policies at the transmitter. For the case where the transmitter was
powered by energy harvesting (EH), the authors of [28,31] derived the MGF of AoI under
several queueing disciplines, including the LCFS with and without preemption in service
or waiting strategies. On the other hand, the authors of [16,34] applied their SHS-based
framework (developed to allow the analysis of the joint distributional properties of AoI
processes in networks) to characterize the joint MGF of an arbitrary set of AoI processes in a
multi-source updating system under non-preemptive and source-agnostic or source-aware
preemptive-in-service queueing disciplines.

Analyses of AoI in gossip networks. There are only a handful of recent works focusing
on the analysis or optimization of AoI and its variants in gossip networks [19,20,35–41].
For a general setting of gossip networks, the author of [19,20] first developed SHS-based
methods for the evaluation of the average AoI and the average version age at each node
in the network. Note that the version age is a discrete form of AoI defined as the number
of versions where the current status of information at a node is out of date compared
with the current status of the original source of information. The authors of [35] applied
the results of [20] to derive the average version age at each node in several topologies of
clustered gossip networks and characterized the average version age scaling as a function
of the network size. The authors of [36] extended the SHS-based method developed in [19]
for the evaluation of the average AoI in the setting where a timestomping adversary is
present and then obtained the average AoI scaling for several network topologies. In [37],
each node was assumed to have the ability to estimate the information at the source by
applying the majority rule to the information received from the other nodes, and an error
metric was introduced to quantify the average percentage of nodes that could accurately
obtain the most up-to-date information. The authors of [38–40] developed gossip protocols
with the objective of improving the average version age scaling. In [41], the problem of
optimizing the average version age was formulated as a Markov decision process for a
setting where an energy harvesting (EH)-powered sensor was sending status updates to
an aggregator with caching capabilities (which served the requests of a gossip network),
and the structural properties of the optimal policy were analytically characterized. Different
from the analyses in [19,20,35–41], which were focused on characterizing or optimizing the
stationary marginal first moment of AoI or some other AoI-related metrics, this paper is
the first to develop SHS-based methods that allow the characterization of the stationary
marginal or joint MGFs of AoI processes in gossip networks.

Before delving into more detail about our contributions, it is worth noting that aside
from the above queueing theory-based analyses of AoI, there have been efforts to evaluate
and optimize AoI or some other AoI-related metrics in a variety of communication systems
that deal with time-sensitive information (see [42] for a comprehensive book and [43] for a
recent survey). For instance, AoI has been studied in the context of age-optimal transmission
scheduling policies [44–52], multi-hop networks [53–55], broadcast networks [56,57], ultra-
reliable low-latency vehicular networks [58], unmanned aerial vehicle (UAV)-assisted com-
munication systems [59–61], Internet of Underwater Things networks [62], reconfigurable
intelligent surface (RIS)-assisted communication systems [63,64], EH systems [65–74], large-
scale analysis of IoT networks [75–77], remote estimation [78,79], information-theoretic
analysis [80–83], timely source coding [84,85], cache updating systems [86–88], economic
systems [89], and timely communication in federated learning [90,91].

1.2. Contributions

A general setting of gossip networks is analyzed in this paper, where a source node
forwards its measurements (in the form of status updates) about some observed physical
process to a set of monitoring nodes according to independent Poisson processes. Further-



Entropy 2023, 25, 364 4 of 32

more, each monitoring node sends status updates about its information status (about the
process observed by the source) to the other monitoring nodes according to independent
Poisson processes. We quantify the freshness of the information available at each monitor-
ing node in terms of AoI. The continuous state of the system is then formed by the AoI or
age processes at different monitoring nodes. For this set-up, our main contributions are
listed below.

Developing SHS-based methods for the evaluation of the MGF of age of gossip in networks. For the
general setting of gossip networks described above, we use the SHS framework to characterize
(1) the stationary marginal MGF of each age process in the network and (2) the stationary joint
MGF of any two arbitrarily selected age processes in the network. In particular, we first construct
two classes of test functions (functions whose expected values are quantities of interest)
that are suitable for analyzing the marginal or joint MGF. By applying Dynkin’s formula
to each test function, we derive two systems of first-order ordinary differential equations
characterizing the temporal evolution of the marginal and joint MGFs, from which the
stationary marginal and joint MGFs are evaluated. To the best of our knowledge, this paper
makes the first attempt at developing SHS-based methods for the characterization of the
marginal or joint MGF of age of gossip in networks.

Analysis of the stationary marginal or joint MGF of age of gossip in three different network
topologies. We apply our developed SHS-based methods to study the marginal or joint
distributional properties of age processes in the following three network topologies: (1) a
serially-connected topology, (2) a parallelly-connected topology, and (3) a clustered topol-
ogy. For each of these topologies, we derive close-form expressions for (1) the stationary
marginal MGF of the age process at each node and (2) the stationary joint MGFs of all
possible pairwise combinations of the age processes.

System design insights. Using the MGF expressions derived for each network topology
considered in this paper, we obtain closed-form expressions for the following quantities:
(1) the stationary marginal first and second moments of each age process, (2) the variance
of each age process, and (3) the correlation coefficients between all possible pairwise
combinations of the age processes. For these derived quantities, we characterize their
structural properties in terms of their convexity and monotonic nature with respect to the
status updating rates and further provide asymptotic results showing their behaviors when
each of the status updating rates becomes small or large. A key insight drawn from our
analysis is that it is crucial to incorporate the higher-order moments of age processes in the
implementation or optimization of age-aware gossip networks rather than just relying on
the average values of the age processes (as has been performed in the existing literature
thus far). This insight promotes the importance of the SHS-based methods developed in
this paper for the characterization of the marginal or joint MGFs of different age processes
in a general setting of gossip networks.

1.3. Organization

The rest of this paper is organized as follows. Section 2 presents the system model
and the problem statement. Afterward, in Section 3, we develop the SHS-based methods
that allow the evaluation of the stationary marginal or joint high-order moments of the age
processes in gossip networks through the characterization of their stationary marginal or
joint MGFs. Section 4 applies the SHS-based methods developed in Section 3 to derive the
marginal or joint MGFs of age processes at different nodes in three different connected net-
work settings. For each considered connected network setting, we further use the derived
MGF expressions to obtain the marginal or joint high-order statistics of age processes such
as the variance of each age process and the correlation coefficients between all possible
pairwise combinations of the age processes. Finally, Section 5 concludes the paper.

2. System Model and Problem Statement

We consider a general setting of gossip networks where a source node (referred to
as node 0) provides its measurements about some observed physical process for a set of
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nodesN = {1, 2, · · · , N} in the form of status updates. In particular, all the nodes inN are
tracking the age of the process observed by the source, and the status updates sent by node
0 to node j ∈ N are assumed to follow an independent Poisson process with a rate λ0j.
Aside from that, node i ∈ N sends updates about its information status (about the process
observed by the source) to each node j ∈ N \ {i} according to an independent Poisson
process with a rate λij. When λij > 0, we say that nodes i and j are connected to each other.
Since we allow each λij (i ∈ {0} ∪ N and j ∈ N ) to take a value in [0, ∞], we refer to the
above setting as an arbitrarily connected gossip network. Note that this gossip network
setting is of interest in many practical networks, such as low-latency vehicular networks
and UAV-assisted communication networks. The freshness of status of the information
available at each node is quantified in terms of AoI. Let xi(t) denote the AoI process (or
equivalently the age process) at node i ∈ N . Assuming that node 0 always maintains a
fresh status of information about the observed physical process, the age or AoI at node
j ∈ N is reset to zero whenever it receives a status update from node 0. Furthermore, when
node j ∈ N receives a status update from node i ∈ N \ {j} at time t, its age xj(t) is reset to
the age of node i xi(t) only if xi(t) is smaller than xj(t). To summarize, when node j ∈ N
receives a status update from node i ∈ {0} ∪ N , the age at node k ∈ N is updated as
follows:

x′k(t) =


0, if i = 0 and k = j,
min

[
xj(t), xi(t)

]
, if i ∈ N and k = j,

xk(t), otherwise.

(1)

For an arbitrary set S ⊆ N , define xS(t) = min
i∈S

xi(t) as the age or AoI process as-

sociated with S (or simply the age or AoI of S). For the above gossip network setting,
the method developed in [19] has been limited to the characterization of the stationary
marginal first moment of xS(t) (i.e., the stationary average value of xS(t)). In this paper,
our prime objective is to develop a method that allows characterizing (1) the stationary
marginal higher-order moments of xS(t) and (2) the stationary joint high-order moments
of the two age processes associated with two arbitrary sets S1 and S2 (i.e., xS1(t) and xS2(t),
respectively). Note that we do not place any restrictions on the construction of S1 or S2.
For instance, they could even have common elements. Formally, we aim at characterizing
the stationary marginal MGF of xS(t) and the stationary joint MGF of xS1(t) and xS2(t),
which are of the following forms: lim

t→∞
E[exp[nxS(t)]] and lim

t→∞
E
[
exp

[
n1xS1(t) + n2xS2(t)

]]
,

respectively, where n, n1, n2 ∈ R and S, S1, S2 ⊆ N . As will be evident from the technical
sections shortly, the characterization of such MGFs allows one to derive the marginal or
joint high-order statistics of the AoI processes at different nodes in the network, such as the
variance of each AoI process and the correlation coefficients between all possible pairwise
combinations of the AoI processes. Given the generality of the system setting considered in
this paper, the importance of our method lies in the fact that it is applicable to the marginal
or joint analysis of AoI processes for an arbitrary structured gossip network setting.

3. MGF Analysis of Age in Arbitrarily Connected Gossip Networks

In this section, we first formulate the problem at hand as an SHS. We then use the SHS
framework to characterize (1) the stationary marginal MGF of the age process associated
with an arbitrary set S ⊆ N (i.e., xS(t)) and (2) the stationary joint MGF of the two age
processes associated with two arbitrary sets S1 ⊆ N and S2 ⊆ N (i.e., xS1(t) and xS2(t),
respectively) for the arbitrarily connected gossip network setting described in Section 2.

The SHS framework is used to analyze hybrid queueing systems that can be modeled
by a combination of discrete and continuous state parameters. For the gossip network
setting considered in this paper, the continuous state of the system is modeled using the
row vector x(t) = [x1(t) x2(t) · · · xN(t)] containing the AoI or age processes at different
nodes in the network. Furthermore, since the status updates sent by each node in the
network to the other nodes are assumed to follow independent Poisson processes, it is
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sufficient to model the discrete state of the system as a singleton set. To complete the
description of an SHS, one needs to define a set of transitions L along with the continuous
and discrete states of the system. This set L refers to changes in either the continuous state
or the discrete state. Since the discrete state of the SHS under consideration is a singleton
set, the set L corresponds to only the changes in the continuous state of the system. In our
system setting, a change in the continuous state of the system occurs when there is a status
update reception at some node in the network. Furthermore, as long as there is no status
update reception at any of the nodes, the AoI or age at each node grows linearly with time
(which yields piecewise linear age processes over time); in other words, ẋ(t) = 1N , where
1N is the row vector [1 · · · 1] ∈ R1×N . By inspecting the age updating rule in (1), the set L
can be defined as follows:

L = {(0, j) : j ∈ N} ∪ {(i, j) : i, j ∈ N}. (2)

For the above SHS-based formulation, we derive two systems of linear equations for
evaluating the stationary marginal MGF lim

t→∞
E[exp[nxS(t)]] and the stationary joint MGF

lim
t→∞

E
[
exp

[
n1xS1(t) + n2xS2(t)

]]
. The description of these systems of equations and the

presentation of the subsequent results require defining the following quantities:

v(n)S (t) = E[exp[nxS(t)]], v̄(n)S = lim
t→∞

v(n)S , ∀S ⊆ N , (3)

v(n1,n2)
S1,S2

(t) = E
[
exp

[
n1xS1(t) + n2xS2(t)

]]
, v̄(n1,n2)

S1,S2
= lim

t→∞
v(n1,n2)

S1,S2
, ∀S1, S2 ⊆ N , (4)

v(m)
S (t) = E[xm

S (t)], v̄(m)
S = lim

t→∞
v(m)

S , ∀S ⊆ N , (5)

v(m1,m2)
S1,S2

(t) = E
[

xm1
S1
(t)xm2

S2
(t)]
]
, v̄(m1,m2)

S1,S2
= lim

t→∞
v(m1,m2)

S1,S2
, ∀S1, S2 ⊆ N , (6)

where v(m)
S is the marginal mth moment of the age process xS(t) and v(m1,m2)

S1,S2
is the joint

moment of the two age processes xS1(t) and xS2(t). From (3) and (5), v(1)S (t) may generally

refer to v(n)S (t)|n=1 or v(m)
S (t)|m=1. To eliminate this conflict, the convention that v(i)S (t)

for an integer i refers to v(m)
S (t) at m = i is maintained here. The previous argument also

applies to v(n1,n2)
S1,S2

(t) and v(m1,m2)
S1,S2

(t) in (4) and (6), respectively, where v(i,j)S1,S2
(t), for integers

i and j, refers to v(m1,m2)
S1,S2

(t) at m1 = i and m2 = j. Furthermore, following the notations
in [19], we define the update rate of node i into set S and the set of updating neighbors of
S as

λi(S) =

{
∑j∈S λi,j, if i /∈ S,
0, otherwise,

(7)

N(S) = {i ∈ N : λi(S) > 0}. (8)

We are now ready to present the two systems of linear equations for the evaluation
of v̄(n)S and v̄(n1,n2)

S1,S2
in the following two theorems:
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Theorem 1. For an arbitrarily connected gossip network, there exists a threshold δ > 0 such that
for n ∈ [0, δ), the stationary marginal MGF of AoI of set S ⊆ N is given by

v̄(n)S =
λ0(S) + ∑i∈N (S) λi(S)v̄

(n)
S∪{i}

λ0(S) + ∑i∈N (S) λi(S)− n
. (9)

Furthermore, for m ≥ 1, the stationary marginal m-th moment of AoI of set S ⊆ N is given
by

v̄(m)
S =

mv̄(m−1)
S + ∑i∈N (S) λi(S)v̄

(m)
S∪{i}

λ0(S) + ∑i∈N (S) λi(S)
. (10)

Proof of Theorem 1. See Appendix A.

Theorem 2. For an arbitrarily connected gossip network, there exists a threshold δ > 0 such that
for 0 ≤ n1 + n2 < δ, the stationary joint MGF of the two AoI processes associated with the two
sets S1 and S2 is given by

v̄(n1,n2)
S1,S2

=
1

λ0(S1 ∪ S2) + ∑i∈N\(S1∩S2) λi(S1 ∩ S2) + ∑i∈N\S1
λi(S1 \ S2) + ∑i∈N\S2

λi(S2 \ S1)− (n1 + n2)
×
[
λ0(S1 ∩ S2)

+ λ0(S1 \ S2)v̄
(n2)
S2

+ λ0(S2 \ S1)v̄
(n1)
S1

+ ∑
i∈N\S1

λi(S1 \ S2)v̄
(n1,n2)
S1∪{i},S2

+ ∑
i∈N\S2

λi(S2 \ S1)v̄
(n1,n2)
S1,S2∪{i}

+ ∑
i∈N\(S1∪S2)

λi(S1 ∩ S2)v̄
(n1,n2)
S1∪{i},S2∪{i} + ∑

i∈S1\S2

λi(S1 ∩ S2)v̄
(n1,n2)
S1,S2∪{i} + ∑

i∈S2\S1

λi(S1 ∩ S2)v̄
(n1,n2)
S1∪{i},S2

]
. (11)

Furthermore, for m1, m2 ≥ 1, the stationary joint (m1, m2)-th moment of the AoI processes
associated with the two sets S1 and S2 is given by

v̄(m1,m2)
S1,S2

=
1

λ0(S1 ∪ S2) + ∑i∈N\(S1∩S2) λi(S1 ∩ S2) + ∑i∈N\S1
λi(S1 \ S2) + ∑i∈N\S2

λi(S2 \ S1)
×
[
m1v̄(m1−1,m2)

S1,S2

+ m2v̄(m1,m2−1)
S1,S2

+ ∑
i∈N\S1

λi(S1 \ S2)v̄
(m1,m2)
S1∪{i},S2

+ ∑
i∈N\S2

λi(S2 \ S1)v̄
(m1,m2)
S1,S2∪{i} + ∑

i∈N\(S1∪S2)

λi(S1 ∩ S2)v̄
(m1,m2)
S1∪{i},S2∪{i}

+ ∑
i∈S1\S2

λi(S1 ∩ S2)v̄
(m1,m2)
S1,S2∪{i} + ∑

i∈S2\S1

λi(S1 ∩ S2)v̄
(m1,m2)
S1∪{i},S2

]
. (12)

Proof of Theorem 2. See Appendix B.

Remark 1. Note that the stationary marginal MGF of S1 or S2 can be obtained from the stationary
joint MGF in (11). In particular, when n2 = 0 and S2 = ∅, v̄(n1,n2)

S1,S2
reduces to

v̄(n1,0)
S1,∅ =

λ0(S1) + ∑i∈N (S1)
λi(S1)v̄

(n)
S1∪{i}

λ0(S1) + ∑i∈N (S1)
λi(S1)− n1

(a)
= v̄(n1)

S1
, (13)

where step (a) follows from (9). Similarly, one can observe that v̄(0,n2)
∅,S2

= v̄(n2)
S2

.
Furthermore, when m = 1, (10) reduces to ([19] Theorem 1) characterizing the stationary

marginal first moment of the AoI of set S ⊆ N .

It is worth highlighting that the generality of Theorems 1 and 2 lies in the fact that
they allow one to investigate the stationary marginal or joint MGFs of the age processes
at different nodes in an arbitrarily connected gossip network. This opens the door for
the application of Theorems 1 and 2 to characterize the marginal or joint high-order
moments of age processes for different configurations or topologies of gossip networks
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studied in the literature, which have only been analyzed in terms of the marginal first mo-
ments of age processes (i.e., average age values) until now. Furthermore, the expressions in
(10) and (12) provide a straightforward way for the numerical evaluation of the stationary
marginal or joint high-order moments.

4. Applications of Theorems 1 and 2

In this section, we first apply Theorems 1 and 2 to understand the distributional
properties of the age processes in the two canonical settings depicted in Figure 1 (i.e., the
the serially and parallelly-connected network settings). We then aim to analyze a more
complicated network setting, which was chosen to be the clustered gossip network topology
depicted in Figure 2. Our choice for the clustered gossip network setting was inspired
by the recent interest in analyzing its different topologies in terms of the marginal first
moment of each age process (average age) in the network [35].

Figure 1. (a) A serially-connected network setting. (b) A parallelly-connected network setting.

Figure 2. A clustered gossip network topology consisting of C clusters such that the status updating
rate from node 0 to the c-th cluster is λc.

4.1. Serially-Connected Networks

Theorem 3. For the serially-connected network in Figure 1a, the stationary marginal MGFs of the
AoI processes at nodes 1 and 2 are respectively given by

v̄(n){1} =
λ0

λ0 − n
, (14)
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v̄(n){2} =
λ0λ

(λ0 − n)(λ− n)
. (15)

Additionally, the stationary joint MGF of the two AoI processes at nodes 1 and 2 is given by

v̄(n1,n2)
{2},{1} =

λ0λ

λ0 + λ− (n1 + n2)

(
λ0

(λ0 − n1)(λ− n1)
+

1
λ0 − (n1 + n2)

)
. (16)

Proof of Theorem 3. See Appendix C.

Proposition 1. For the serially-connected network in Figure 1a, the first moment, second moment,
and variance of the AoI process at each node are given by

v̄(1){1} = λ−1
0 , v̄(2){1} = 2λ−2

0 , var[x1(t)] = λ−2
0 , (17)

v̄(1){2} =
1

λ0
+

1
λ

, v̄(2){2} = 2

(
1

λ2
0
+

1
λ0λ

+
1

λ2

)
, var[x2(t)] =

1
λ2

0
+

1
λ2 . (18)

Furthermore, the correlation coefficient between the AoI processes at nodes 1 and 2 can be
expressed as

cor[x1(t), x2(t)] =
λ2

(λ0 + λ)
√

λ2
0 + λ2

. (19)

Proof of Proposition 1. See Appendix D.

Remark 2. Note that the expressions of the stationary marginal MGFs in Theorem 3 and the
stationary marginal moments in Proposition 1 match their corresponding ones for the preemptive
line networks analyzed in [15].

Remark 3. Note that the stationary moments and variance of the age process at node 1 in (17)
are univariate functions of λ0. This happens because node 1 is directly connected to node 0. This
argument will also apply to: (i) the expressions derived for the age processes at nodes 1 and 2 in the
parallelly-connected network in Figure 1b, and (ii) the expressions derived for the age process at
node 1 inside each cluster of the clustered gossip network in Figure 2.

Remark 4. Note that the stationary moments and variance of the age process at node 2 in (18) are
invariant to exchanging λ and λ0. These quantities are also jointly convex functions in (λ0, λ),
where the minimum value (zero) of each function is achieved at λ0 = λ = ∞. Furthermore, for a
given λ or λ0, each quantity in (18) is a monotonically non-increasing function with respect to λ0
or λ. This can also be observed in Figure 3.

Remark 5. For a given λ, cor[x1(t), x2(t)] in (19) monotonically decreases as a function of λ0
in the form lim

λ0→0
cor[x1(t), x2(t)] = 1 until it approaches lim

λ0→∞
cor[x1(t), x2(t)] = 0. On the

other hand, for a given λ0, cor[x1(t), x2(t)] monotonically increases as a function of λ in the form
lim
λ→0

cor[x1(t), x2(t)] = 0 until it approaches lim
λ→∞

cor[x1(t), x2(t)] = 1. This can also be observed

in Figure 4.
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network settings.

4.2. Parallelly-Connected Networks

Theorem 4. For the parallelly-connected network in Figure 1b, the stationary marginal MGFs of
the AoI processes at nodes 1, 2, and 3 are given by

v̄(n){1} = v̄(n){2} =
λs

λs − n
, (20)

v̄(n){3} =
λs(2λs − n)

[
λ1(λs + λ1 − n) + λ2(λs + λ2 − n)

]
+ 2λsλ1λ2(2λs + λ1 + λ2 − 2n)

(2λs − n)(λ1 + λ2 − n)(λs + λ1 − n)(λs + λ2 − n)
. (21)
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Additionally, the stationary joint MGF of the two AoI processes at nodes 1 and 3 is given by

v̄(n1,n2)
{3},{1} =

∑4
i=1 αi(n1, n2)

[λs + λ1 + λ2 − (n1 + n2)][2λs + λ1 − (n1 + n2)][2λs − (n1 + n2)][λs + λ2 − (n1 + n2)]

× 1
(λs − n2)(λ1 + λ2 − n1)(2λs − n1)(λs + λ2 − n1)(λs + λ1 − n1)

, (22)

where

α1(n1, n2) =λ2
s (λs − n2)[λs + λ2 − (n1 + n2)][2λs + λ1 − (n1 + n2)][2λs − (n1 + n2)]

×
[
(2λ2 − n1)

[
λ1(λs + λ1 − n1) + λ2(λs + λ2 − n1)

]
+ 2λ1λ2(2λs + λ1 + λ2 − 2n1)

]
, (23)

α2(n1, n2) = λ2
s λ2(λ1 + λ2 − n1)(2λs − n1)(λs + λ1 − n1)(λs + λ2 − n1)[2λs + λ1 − (n1 + n2)][λs + λ1 + λ2 − (n1 + n2)], (24)

α3(n1, n2) = λ2
s λ2(λ1 + λ2 − n1)(λs + λ2 − n1)(2λs + 2λ1 − n1)(λs − n2)[λs + λ2 − (n1 + n2)][2λs − (n1 + n2)], (25)

α4(n1, n2) =λsλ1(λs − n2)(λ1 + λ2 − n1)(2λs − n1)(λs + λ2 − n1)(λs + λ1 − n1)

×
[[

2λs + λ1 − (n1 + n2)
][

2λs + λ2 − (n1 + n2)
]
+ λ2

[
λs + λ2 − (n1 + n2)

]]
. (26)

Proof of Theorem 4. See Appendix E.

Proposition 2. For the parallelly-connected network in Figure 1b, the first moment, second moment,
and variance of the AoI process at each node are given by

v̄(1){1} = v̄(1){2} = λ−1
s , v̄(2){1} = v̄(2){2} = 2λ−2

s , var[x1(t)] = var[x2(t)] = λ−2
s , (27)

v̄(1){3} =
2λs(λs + λ1)(λs + λ2) + λ1(2λs + λ2)(λs + λ1) + λ2(2λs + λ1)(λs + λ2)

2λs(λs + λ1)(λs + λ2)(λ1 + λ2)
, (28)

v̄(2){3} =
∑6

i=0 γiλ
i
s

2λ2
s (λ1 + λ2)

2(λs + λ1)
2(λs + λ2)

2 , (29)

var[x3(t)] =
∑6

i=0 ηiλ
i
s

4λ2
s (λ1 + λ2)

2(λs + λ1)
2(λs + λ2)

2 , (30)

where

γ6 = 4, γ5 = 12(λ1 + λ2), γ4 = 4
[
4(λ1 + λ2)

2 + λ1λ2

]
, γ3 = 12(λ1 + λ2)

3,

γ2 = (λ1 + λ2)
2
[
4(λ1 + λ2)

2 + λ1λ2

]
, γ1 = 3λ1λ2(λ1 + λ2)

3, γ0 = λ2
1λ2

2(λ1 + λ2)
2,

η6 = 4, η5 = 8(λ1 + λ2), η4 = 8
[
(λ1 + λ2)

2 + λ1λ2

]
, η3 = 4(λ1 + λ2)

(
2λ2

1 + 3λ1λ2 + 2λ2
2

)
,

η2 = 2(λ1 + λ2)
2
(

2λ2
1 + λ1λ2 + 2λ2

2

)
, η1 = 2λ1λ2(λ1 + λ2)

3, η0 = λ2
1λ2

2(λ1 + λ2)
2.
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Furthermore, the correlation coefficient between the AoI processes at nodes 1 and 3 can be
expressed as

cor[x1(t), x3(t)] =
λ1(λ1 + λ2)

2(λs + λ1 + λ2)(2λs + λ1)(λs + λ2)
√

∑6
i=0 δiλ

i
s

×
[
8λ4

s + λ3
s (12λ1 + 7λ2) + 2λ2

s (λ1 + 2λ2)(2λ1 + λ2) + λsλ2

(
3λ2

1 + 5λ1λ2 + λ2
2

)
+ λ1λ2

2(λ1 + λ2)
]
, (31)

where

δ6 = 4, δ5 = 8(λ1 + λ2), δ4 = 8
[
(λ1 + λ2)

2 + λ1λ2

]
, δ3 = 4(λ1 + λ2)

(
2λ2

1 + 3λ1λ2 + 2λ2
2

)
,

δ2 = 2(λ1 + λ2)
2
(

2λ2
1 + λ1λ2 + 2λ2

2

)
, δ1 = 2λ1λ2(λ1 + λ2)

3, δ0 = λ2
1λ2

2(λ1 + λ2)
2.

Proof of Proposition 2. See Appendix F.

Remark 6. When λ1 or λ2 is zero, the parallelly-connected network reduces to a serially-connected
network with a single path from node 0 to node 3. Thus, in this case, the stationary moments
and variance of the age process at node 3 reduce to the corresponding expressions associated with
the age process at node 2 in the serially-connected network such that λ0 and λ are replaced by λs

and λ1 or λ2. On the other hand, when λ1 and λ2 approach ∞, we have lim
λ1→∞,λ2→∞

v̄(1){3} =
1

2λs
,

lim
λ1→∞,λ2→∞

v̄(2){3} =
1

2λ2
s
, and lim

λ1→∞,λ2→∞
var[x3(t)] = 1

4λ2
s
. Note that the stationary moments and

variance of x3(t) reduce to the ones associated with x{1,2}(t).

Remark 7. Note that the stationary moments and variance of the age process at node 3 in (28)–(30)
are invariant to exchanging λ1 and λ2. Furthermore, for a given (λs, λ2), (λs, λ1), or (λ1, λ2),
each quantity in (28)–(30) is a monotonically non-increasing function with respect to λ1, λ2, or λs.
This can also be observed in Figure 3.

Remark 8. For the same status updating rate from node 0 (i.e., λ0 = 2λs) and λ = λ1 = λ2, one
can compare the achievable age performance at node 3 in the parallelly-connected network with the
achievable age performance at node 2 in the serially-connected network using Propositions 1 and 2
as follows:

v̄(1){2} − v̄(1){3} =
λ0

2λ(λ0 + 2λ)
, (32)

v̄(2){2} − v̄(2){3} =
3λ2

0 + 4
(
λ2 + 2λ0λ

)
2λ2(λ0 + 2λ)2 , (33)

var[x2(t)]− var[x3(t)] =
3λ0(λ0 + 4λ)

4λ2(λ0 + 2λ)2 . (34)

By inspecting (32)–(34), one can see that these are positive quantities for any choice of values of
(λ0, λ). This certainly indicates that node 3 in the parallelly-connected network achieved a better age
performance than the one achievable by node 2 in the serially-connected network. The improvement
in the age performance at node 3 resulted from the existence of two status-updating paths from node
0 to node 3, as opposed to only a single path from node 0 to node 2 in the serially-connected network.
Furthermore, each quantity in (32)–(34) is a monotonically decreasing function of λ for a given λ0
such that its value approaches zero as λ→ ∞. This can also be observed in Figure 3.
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Remark 9. Due to the symmetry in the configuration of the parallelly-connected network, note
that the correlation coefficient between x2(t) and x3(t) (i.e., cor[x2(t), x3(t)]) can be obtained by
replacing λ1 and λ2 with λ2 and λ1, respectively, in (31). Furthermore, for a given (λ1, λ2),
cor[x1(t), x3(t)] monotonically decreases as a function of λs from lim

λs→0
cor[x1(t), x3(t)] = 1

2 until

it approaches lim
λs→∞

cor[x1(t), x3(t)] = 0. On the other hand, for a given (λs, λ2), cor[x1(t), x3(t)]

monotonically increases as a function of λ1 from lim
λ1→0

cor[x1(t), x3(t)] = 0 until it approaches

lim
λ1→∞

cor[x1(t), x3(t)] =
4λ2

s+3λsλ2+λ2
2

2(λs+λ2)
√

4λ2
s+2λsλ2+λ2

2
. Finally, for a given (λs, λ1), one can deduce the

following asymptotic results: lim
λ2→0

cor[x1(t), x3(t)] =
λ2

1

(λs+λ1)
√

λ2
s+λ2

1
and lim

λ2→∞
cor[x1(t), x3(t)] =

λ1(λs+λ1)

2(2λs+λ1)
√

4λ2
s+2λsλ1+λ2

1
. Clearly, when λ2 = 0, there will only be a single status-updating path from

node 0 to node 3 (through node 1), and hence we observe that cor[x1(t), x3(t)] reduced to the same
expression as cor[x1(t), x2(t)] in (19) for the serially-connected network after replacing λ0 and λ with
λs and λ1, respectively. Some of the above insights can also be seen in Figure 4.

4.3. Clustered Gossip Networks

Theorem 5. For the clustered gossip network in Figure 2, the stationary marginal MGFs of the
AoI processes at nodes 1, 2, and 3 in the c-th cluster are respectively given by

v̄(n){1} =
λc

λc − n
, (35)

v̄(n){2} =
λcλ

(λc − n)(λ− n)
, (36)

v̄(n){3} =
λcλ2

(λc − n)(λ− n)2 . (37)

Additionally, the stationary joint MGF of each pair of AoI processes at nodes 1, 2, and 3
is given by

v̄(n1,n2)
{1},{2} =

λcλ[(λc + λ− n2)(λc − n2)− λcn1]

(λc − n2)(λ− n2)[λc + λ− (n1 + n2)][λc − (n1 + n2)]
, (38)

v̄(n1,n2)
{1},{3} =

λcλ2[λc + 2λ− (n1 + n2)]
3
[
λc[λc − (n1 + n2)][λc + 2λ− n1 − 2n2] + (λc − n2)(λ− n2)

2
]

(λc − n2)(λ− n2)
2[λc − (n1 + n2)][λc + λ− (n1 + n2)]

2[λc + 2λ− (n1 + n2)]
3 , (39)

v̄(n1,n2)
{2},{3} =

λcλ2 ∑4
i=1 βi(n1, n2)

(λc − n2)(λ− n2)
2[λc − (n1 + n2)][λ− (n1 + n2)][2λ− (n1 + n2)][λc + λ− (n1 + n2)]

2[λc + 2λ− (n1 + n2)]
2 , (40)

where

β1(n1, n2) = (λc − n2)(λ− n2)
2[λc + λ− (n1 + n2)]

2[λc + 2λ− (n1 + n2)]
2, (41)

β2(n1, n2) = λ2(λc − n2)(λ− n2)
2[λ− (n1 + n2)][3λc + 4λ− 3(n1 + n2)], (42)

β3(n1, n2) = λ(λc − n2)(λ− n2)
2[λ− (n1 + n2)][λc − (n1 + n2)][λc + λ− (n1 + n2)], (43)
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β4(n1, n2) = λλc[λ− (n1 + n2)][λc − (n1 + n2)]
[
[λc + 2λ− (n1 + n2)]

2[λc + λ− (n1 + n2)] + (λ− n2)[λc + λ− (n1 + n2)]
2

+ λ(λ− n2)[2λc + 3λ− 2(n1 + n2)]
]
. (44)

Proof of Theorem 5. See Appendix G.

Proposition 3. For the clustered gossip network in Figure 2, the first moment, second moment,
and variance of the AoI process at each node in the c-th cluster are given by

v̄(1){1} = λ−1
c , v̄(2){1} = 2λ−2

c , var[x1(t)] = λ−2
c , (45)

v̄(1){2} = λ−1
c + λ−1, v̄(2){2} = 2

(
λ−2

c + λ−1
c λ−1 + λ−2

)
, var[x2(t)] = λ−2

c + λ−2, (46)

v̄(1){3} = λ−1
c + 2λ−1, v̄(2){3} = 2

(
λ−2

c + 2λ−1
c λ−1 + 3λ−2

)
, var[x3(t)] = λ−2

c + 2λ−2. (47)

Furthermore, the correlation coefficient between each pair of nodes can be expressed as

cor[x1(t), x2(t)] =
λ2

(λc + λ)
√

λ2
c + λ2

, (48)

cor[x1(t), x3(t)] =
λ3

(λc + λ)2√2λ2
c + λ2

, (49)

cor[x2(t), x3(t)] =
λ4

c + 2λ3
c λ + 2λ2

c λ2 + 2λcλ3 + 2λ4

2(λc + λ)2√(λ2
c + λ2)(2λ2

c + λ2)
. (50)

Proof of Proposition 3. See Appendix H.

Proposition 4. Let Nc denote the set of nodes inside cluster c. For i, j ∈ {1, 2, · · · , C}, the two
age processes xNi (t) and xNj(t) are not correlated.

Proof of Proposition 4. See Appendix I.

Remark 10. From Proposition 3, one can deduce that v̄(1){1} ≤ v̄(1){2} ≤ v̄(1){3}, v̄(2){1} ≤ v̄(2){2} ≤ v̄(2){3},
and var[x1(t)] ≤ var[x2(t)] ≤ var[x3(t)] for any choice of values of λc and λ. This follows from
the fact that the configuration of each cluster in the clustered gossip network under consideration
is a uni-directional ring, where each node has a single status-updating path from node 0 passing
through its preceding node in the cluster.

Remark 11. Similar to Remark 4, note that the quantities in (46) and (47) associated with the age
processes at nodes 2 and 3 are jointly convex functions in (λc, λ), where the minimum value (zero)
of each function is achieved at λc = λ = ∞. Furthermore, for a given λ or λc, each quantity in
(46) and (47) is a monotonically non-increasing function with respect to λc or λ. This can also be
observed in Figure 5.

Remark 12. Note that the correlation coefficients in (48)–(50) are monotonically non-increasing
functions of λc for a given λ, whereas they are monotonically non-decreasing functions of λ
for a given λc. In particular, cor[x1(t), x2(t)] and cor[x1(t), x3(t)] monotonically increase
as functions of λ from lim

λ→0
cor[x1(t), x2(t)] = lim

λ→0
cor[x1(t), x3(t)] = 0 until they approach
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lim
λ→∞

cor[x1(t), x2(t)] = lim
λ→∞

cor[x1(t), x3(t)] = 1 and monotonically decrease as functions of

λc from lim
λc→0

cor[x1(t), x2(t)] = lim
λc→0

cor[x1(t), x3(t)] = 1 until they approach lim
λc→∞

cor[x1(t),

x2(t)] = lim
λc→∞

cor[x1(t), x3(t)] = 0. Additionally, cor[x2(t), x3(t)] monotonically increases as

a function of λ from lim
λ→0

cor[x2(t), x3(t)] = 1
2
√

2
until it approaches lim

λ→∞
cor[x2(t), x3(t)] = 1

and monotonically decreases as a function of λc from lim
λc→0

cor[x2(t), x3(t)] = 1 until it approaches

lim
λc→∞

cor[x2(t), x3(t)] = 1
2
√

2
. These insights can also be seen in Figure 6.
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Figure 5. Stationary first and second moments of age processes at the nodes inside the cth cluster
of the clustered gossip network topology. The simulated curves were obtained from the numerical
evaluation of the stationary marginal moments using (10) in Theorem 1.
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Figure 6. Correlation coefficients between age processes in the clustered gossip network topology.

Remark 13. Note that the result of Proposition 4 agrees with the intuition. In particular, since the
nodes in each cluster are disconnected from the nodes in the other clusters, the two age processes
associated with any two arbitrary clusters in the network are uncorrelated.
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Remark 14. From Propositions 1–3, one can see that the standard deviation of x1(t) (i.e.,
√

var[x1(t)])
was equal to its average value v̄(1){1}. Additionally, the standard deviations of the age processes at the other
nodes were relatively large with respect to their average values (which is also demonstrated numerically
in Figures 7–10). This key insight promotes the importance of incorporating the higher-order moments of
age processes in the implementation or optimization of age-aware gossip networks rather than just relying
on the average values of the age processes (as has been performed in the existing literature thus far). This
insight also demonstrates the need for the development of Theorems 1 and 2 in this paper, which allow the
characterization of the marginal or joint MGFs of different age processes in the network that can then be
used to evaluate the marginal or joint higher-order moments.
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Figure 7. Variance of x2(t) in the serially-connected network setting. We denote the standard
deviation of x2(t) as σ2.

0.5 1 1.5 2 2.5 3 3.5 4

1
 = 

2

0

1

2

3

4

5

6

7

S
ta

ti
o

n
a

ry
 f

ir
s
t 

m
o

m
e

n
t

2
s
 = 0.5

2
s
 = 0.7

2
s
 = 0.9

+
3

-
3

+
3

+
3

-
3 -

3

Figure 8. Variance of x3(t) in the parallelly-connected network setting. We denote the standard
deviation of x3(t) as σ3.



Entropy 2023, 25, 364 17 of 32

0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

S
ta

ti
o

n
a

ry
 f

ir
s
t 

m
o

m
e

n
t

c
 = 0.2

c
 = 0.5

c
 = 0.9

+
2

-
2

+
2

-
2 -

2

+
2

Figure 9. Variance of x2(t) in the clustered gossip network topology. We denote the standard
deviation of x2(t) as σ2.
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Figure 10. Variance of x3(t) in the clustered gossip network topology. We denote the standard
deviation of x3(t) as σ3.

5. Conclusions

In this paper, we developed SHS-based methods that allow the characterization of the
stationary marginal and joint MGFs of age processes in a general setting of gossip networks.
In particular, we used the SHS framework to derive two systems of first-order ordinary
differential equations characterizing the temporal evolution of the marginal and joint
MGFs, from which the stationary marginal and joint MGFs were evaluated. Afterward,
these methods were applied to derive the stationary marginal and joint MGFs in the
following three network topologies: (1) a serially-connected topology, (2) a parallelly-
connected topology, and (3) a clustered topology. Using the MGF expressions derived for
each network topology, we obtained closed-form expressions for the following quantities:
(1) the stationary marginal first and second moments of each age process, (2) the variance
of each age process, and (3) the correlation coefficients between all possible pairwise
combinations of the age processes. We further characterized the structural properties of
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these quantities in terms of their convexity and monotonic nature with respect to the status
updating rates and provided asymptotic results showing their behaviors when each of
the status updating rates became small or large. Our analytical findings demonstrated
that the standard deviations of the age processes in each network topology considered
in this paper were relatively large with respect to their average values. This key insight
promotes the importance of incorporating the higher-order moments of age processes in
the implementation and optimization of age-aware gossip networks rather than just relying
on the average values of the age processes (as has been performed in the existing literature
thus far).

Given the generality of the setting of gossip networks analyzed in this paper, our
developed methods can be applied to understand the marginal or joint distributional
properties of age processes in any arbitrary gossip network topology. This opens the door
for the use of these methods in the future to characterize the stationary marginal or joint
moments and MGFs of the age processes in gossip network topologies that have only
been analyzed in terms of the stationary first moment of each age process in the network
until now. It would also be interesting to investigate how the stationary marginal or joint
moments scale as functions of the network size.
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Appendix A. Proof of Theorem 1

We derive this result by first using the SHS framework to obtain a system of differential
equations characterizing the temporal evolution of the marginal MGFs of the age processes
associated with all sets S ⊆ N . We then obtain the stationary marginal MGFs as the fixed
point of this system of equations (i.e., when t → ∞). To derive the system of differential
equations, we follow a similar approach to that in [15,92], where the idea is to define the test
functions {ψ(x(t))} whose expected values {E[ψ(x(t))]} are quantities of interest. Since
we are interested here in the characterization of the marginal MGFs, we define the following
class of test functions that is appropriate for this analysis:

ψ
(n)
S (x(t)) = exp[nxS(t)], ∀S ⊆ N , (A1)

where the expected value E
[
ψ
(n)
S (x(t))

]
is v(n)S (t). We apply the SHS mapping ψ(x(t))→

Lψ(x(t)) (known as the extended generator) to every test function in (A1). Since the test
functions defined above are time-invariant, it follows from [92] Theorem 1 that the extended
generator of a test function ψ(x(t)) under the considered piecewise linear SHS is given by

Lψ(x(t)) =
dψ(x(t))

dx(t)
1T

N + ∑
l=(i,j)∈L

λij
[
ψ
(
x′(t)

)
− ψ(x(t))

]
, (A2)

where x′(t) =
[
x′1(t) x′2(t) · · · x′N(t)

]
such that the updated age at node k, x′k(t) resulting

from the transition (i, j) is given by (1). In addition, note that x′S(t) = min
i∈S

x′i(t). Now, we
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proceed to evaluate Lψ
(n)
S (x(t)). From the age updating rule in (1), the set of transitions L

in (2), and the structure of ψ
(n)
S (x(t)) in (A1), we have

dψ
(n)
S (x(t))
dx(t)

1T
N = nψ

(n)
S (x(t)), (A3)

ψ
(n)
S
(
x′(t)

)
= exp

[
nx′S(t)

]
=


exp[n× 0] = 1, l = (0, j), j ∈ S,

exp
[
nxS∪{i}(t)

]
= ψ

(n)
S∪{i}(x(t)), l = (i, j), j ∈ S, i ∈ N \ S,

exp[nxS(t)] = ψ
(n)
S (x(t)), otherwise.

(A4)

Substituting (A3) and (A4) into (A2) gives

Lψ
(n)
S (x(t)) = nψ

(n)
S (x(t)) + ∑

j∈S
λ0j

[
1− ψ

(n)
S (x(t))

]
+ ∑

i∈N\S
∑
j∈S

λij

[
ψ
(n)
S∪{i}(x(t))− ψ

(n)
S (x(t))

]
, (A5)

The system of differential equations characterizing the temporal evolution of the
marginal MGFs {v(n)S (t)}S⊆N can be derived by applying Dynkin’s formula [92] to each
test function and its associated extended generator. In particular, for a test function ψ(x(t)),
the Dynkin’s formula can be expressed as

dE[ψ(x(t))]
dt

= E[Lψ(x(t))]. (A6)

Plugging ψ
(n)
S (x(t)) and Lψ

(n)
S (x(t)) into (A6) gives

v̇(n)S (t) = nv(n)S (t) + ∑
j∈S

λ0j

[
1− v(n)S (t)

]
+ ∑

i∈N\S
∑
j∈S

λij

[
v(n)S∪{i}(t)− v(n)S (t)

]
(a)
= λ0(S) + v(n)S (t)

n− λ0(S)− ∑
i∈N(S)

λi(S)

+ ∑
i∈N(S)

λi(S)v
(n)
S∪{i}(t), (A7)

where step (a) directly follows from the definitions of λi(S) and N(S) in (7) and (8), respec-
tively. Note that there exists a range of n values for which the differential equation in (A7) is
asymptotically stable for any arbitrary set S ⊆ N . To see this, let us first express v̇(n)N (t) using
(A7) as follows:

v̇(n)N (t) = λ0(N ) + v(n)N (t)[n− λ0(N )]. (A8)

For 0 ≤ n < λ0(N ), (A8) is asymptotically stable, and the stationary marginal MGF
v̄(n)N can be obtained by setting v̇(n)N (t) to zero and replacing v(n)N (t) with v̄(n)N . Now, when
S = N \ {k}, (A7) is given by

v̇(n)S (t) = λ0(S) + v(n)S (t)[n− λ0(S)− λk(S)] + λk(S)v
(n)
N (t). (A9)

For 0 ≤ n < min[λ0(S) + λk(S), λ0(N )] and S = N \ {k}, v(n)N (t) converges as t→ ∞,
and the differential equation in (A9) is asymptotically stable. The stationary marginal MGF
v̄(n)N\{k} is then the fixed point of (A9), which can be obtained after setting the derivative to
zero. Afterward, when S = N \ {k1, k2}, one can follow the above procedure to obtain the
range of n values under which (A7) is asymptotically stable. Generally, for an arbitrary set
S, there exists a threshold δ such that for n ∈ [0, δ), the stationary marginal MGF v̄(n)S is the
fixed point of (A7).
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Finally, the stationary marginal mth moment v̄(m)
S in (10) can be obtained by substi-

tuting ψ(x(t)) in (A2) with ψ
(m)
S (x(t)) = xm

S (t) and following similar steps to those in
(A2)–(A9). This completes the proof.

Appendix B. Proof of Theorem 2

The flow of this proof is similar to that for Theorem 1 in Appendix A. In particular,
we start by constructing a class of test functions that is appropriate for the joint MGF
analysis. We then use (A2) to derive the extended generator for each test function, which is
then plugged into Dynkin’s formula in (A6) to obtain the system of differential equations
characterizing the temporal evolution of the joint MGFs {v(n1,n2)

S1,S2
}S1,S2⊆N . The class of test

functions we define here for the joint MGF analysis is given by

ψ
(n1,n2)
S1,S2

(x(t)) = exp
[
n1xS1(t) + n2xS2(t)

]
, ∀S1, S2 ⊆ N , (A10)

such that the expected value E
[
ψ
(n1,n2)
S1,S2

(x(t))
]

is v(n1,n2)
S1,S2

(t). For such a structure of test
functions, we have

dψ
(n1,n2)
S1,S2

(x(t))

dx(t)
1T

N = (n1 + n2)ψ
(n1,n2)
S1,S2

(x(t)). (A11)

Compared with the proof for Theorem 1 in Appendix A, a key challenge in the
derivation of the extended generator here is to carefully identify all the possible transitions
in L that result in having ψ

(n1,n2)
S1,S2

(x′(t)) 6= ψ
(n1,n2)
S1,S2

(x(t)). We provide Figure A1 to help
one easily visualize the following arguments. For the first subset of transitions {(0, j) : j ∈
N} ⊂ L, we have

ψ
(n1,n2)
S1,S2

(
x′(t)

)
= exp

[
n1x′S1

(t) + n2x′S2
(t)
]
=


ψ
(n2)
S2

(x(t)), l = (0, j), j ∈ S1 \ S2,

ψ
(n1)
S1

(x(t)), l = (0, j), j ∈ S2 \ S1,

1, l = (0, j), j ∈ S1 ∩ S2,

ψ
(n1,n2)
S1,S2

(x(t)), otherwise.

(A12)

To help one easily grasp the different cases in (A12), we elaborate more on the construction
of the first case, and the other cases can be interpreted similarly. In particular, when j ∈ S1 \ S2,
the transition (0, j) results in resetting the age of S1 to zero, whereas the age of S2 will not

change. As a result, ψ
(n1,n2)
S1,S2

(x′(t)) = exp
[
n1 × 0 + n2 × xS2(t)

] (a)
= ψ

(n2)
S2

(x(t)), where step
(a) follows from (A1).
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Figure A1. A Venn diagram representation.

For the second subset of transitions {(i, j) : i, j ∈ N} ⊂ L, we have

ψ
(n1,n2)
S1,S2

(
x′(t)

)
= exp

[
n1x′S1

(t) + n2x′S2
(t)
]
=



ψ
(n1,n2)
S1∪{i},S2

(x(t)), l = (i, j), j ∈ S1 \ S2, i ∈ N \ S1,

ψ
(n1,n2)
S1,S2∪{i}

(x(t)), l = (i, j), j ∈ S2 \ S1, i ∈ N \ S2,

ψ
(n1,n2)
S1∪{i},S2∪{i}

(x(t)), l = (i, j), j ∈ S1 ∩ S2, i ∈ N \ S1 ∪ S2,

ψ
(n1,n2)
S1,S2∪{i}

(x(t)), l = (i, j), j ∈ S1 ∩ S2, i ∈ S1 \ S2,

ψ
(n1,n2)
S1∪{i},S2

(x(t)), l = (i, j), j ∈ S1 ∩ S2, i ∈ S2 \ S1,

ψ
(n1,n2)
S1,S2

(x(t)), otherwise.

(A13)

Plugging (A11)–(A13) into (A2) gives

Lψ
(n1,n2)
S1,S2

(x(t)) = (n1 + n2)ψ
(n1,n2)
S1,S2

(x(t)) + ∑
j∈S1\S2

λ0j

[
ψ
(n2)
S2

(x(t))− ψ
(n1,n2)
S1,S2

(x(t))
]
+ ∑

j∈S2\S1

λ0j

[
ψ
(n1)
S1

(x(t))− ψ
(n1,n2)
S1,S2

(x(t))
]

+ ∑
j∈S1∩S2

λ0j

[
1− ψ

(n1,n2)
S1,S2

(x(t))
]
+ ∑

i∈N\S1

∑
j∈S1\S2

λij

[
ψ
(n1,n2)
S1∪{i},S2

(x(t))− ψ
(n1,n2)
S1,S2

(x(t))
]

+ ∑
i∈N\S2

∑
j∈S2\S1

λij

[
ψ
(n1,n2)
S1,S2∪{i}(x(t))− ψ

(n1,n2)
S1,S2

(x(t))
]
+ ∑

i∈N\S1∪S2

∑
j∈S1∩S1

λij

[
ψ
(n1,n2)
S1∪{i},S2∪{i}(x(t))− ψ

(n1,n2)
S1,S2

(x(t))
]

+ ∑
i∈S1\S2

∑
j∈S1∩S2

λij

[
ψ
(n1,n2)
S1,S2∪{i}(x(t))− ψ

(n1,n2)
S1,S2

(x(t))
]
+ ∑

i∈S2\S1

∑
j∈S1∩S2

λij

[
ψ
(n1,n2)
S1∪{i},S2

(x(t))− ψ
(n1,n2)
S1,S2

(x(t))
]
. (A14)

By applying Dynkin’s formula in (A6) to ψ
(n1,n2)
S1,S2

(x(t)) and Lψ
(n1,n2)
S1,S2

(x(t)), we have
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v̇(n1,n2)
S1,S2

(t) = (n1 + n2)v
(n1,n2)
S1,S2

(t) + ∑
j∈S1\S2

λ0j

[
v(n2)

S2
(t)− v(n1,n2)

S1,S2
(t)
]
+ ∑

j∈S2\S1

λ0j

[
v(n1)

S1
(t)− v(n1,n2)

S1,S2
(t)
]

+ ∑
j∈S1∩S2

λ0j

[
1− v(n1,n2)

S1,S2
(t)
]
+ ∑

i∈N\S1

∑
j∈S1\S2

λij

[
v(n1,n2)

S1∪{i},S2
(t)− v(n1,n2)

S1,S2
(t)
]

+ ∑
i∈N\S2

∑
j∈S2\S1

λij

[
v(n1,n2)

S1,S2∪{i}(t)− v(n1,n2)
S1,S2

(t)
]
+ ∑

i∈N\S1∪S2

∑
j∈S1∩S1

λij

[
v(n1,n2)

S1∪{i},S2∪{i}(t)− v(n1,n2)
S1,S2

(t)
]

+ ∑
i∈S1\S2

∑
j∈S1∩S2

λij

[
v(n1,n2)

S1,S2∪{i}(t)− v(n1,n2)
S1,S2

(t)
]
+ ∑

i∈S2\S1

∑
j∈S1∩S2

λij

[
v(n1,n2)

S1∪{i},S2
(t)− v(n1,n2)

S1,S2
(t)
]

(a)
= v(n1,n2)

S1,S2
(t)

(n1 + n2)− λ0(S1 ∪ S2)− ∑
i∈N\(S1∩S2)

λi(S1 ∩ S2)− ∑
i∈N\S1

λi(S1 \ S2)− ∑
i∈N\S2

λi(S2 \ S1)


+ λ0(S1 ∩ S2) + λ0(S1 \ S2)v

(n2)
S2

(t) + λ0(S2 \ S1)v
(n1)
S1

(t) + ∑
i∈N\S1

λi(S1 \ S2)v
(n1,n2)
S1∪{i},S2

(t)

+ ∑
i∈N\S2

λi(S2 \ S1)v
(n1,n2)
S1,S2∪{i}(t) + ∑

i∈N\(S1∪S2)

λi(S1 ∩ S2)v
(n1,n2)
S1∪{i},S2∪{i}(t) + ∑

i∈S1\S2

λi(S1 ∩ S2)v
(n1,n2)
S1,S2∪{i}(t)

+ ∑
i∈S2\S1

λi(S1 ∩ S2)v
(n1,n2)
S1∪{i},S2

(t), (A15)

where step (a) follows from applying the definition of λi(S) in (7), followed by some algebraic
simplifications. Now, following a similar procedure to that in (A8) and (A9) in Appendix A,
one can show that for any two arbitrary sets S1 and S2, there exists a threshold δ (such that
0 ≤ n1 + n2 < δ) under which the differential equation in (A15) is asymptotically stable. Thus,
the final expression of the stationary joint MGF v̄(n1,n2)

S1,S2
in (11) can be obtained by taking the

limit as t→ ∞ in (A15) (i.e., setting v̇(n1,n2)
S1,S2

(t) to zero and replacing v(n1,n2)
S1,S2

(t) with v̄(n1,n2)
S1,S2

).

Finally, the stationary joint (m1, m2)th moment v̄(m1,m2)
S1,S2

in (12) can be obtained by

substituting ψ(x(t)) in (A2) with ψ
(m1,m2)
S1,S2

(x(t)) = xm1
S1
(t)xm2

S2
(t) and following similar steps

to those in (A11)–(A15). This completes the proof.

Appendix C. Proof of Theorem 3

We start the proof by showing how one can use Theorem 1 to obtain the stationary
marginal MGF of the AoI or age process at each node in the network. In particular,
by observing the set of transitions in Figure 1a, repeated application of (9) gives

v̄(n){1} =
λ0

λ0 − n
, (A16)

v̄(n){2} =
λv̄(n){1,2}
λ− n

, (A17)

v̄(n){1,2} =
λ0

λ0 − n
. (A18)

By substituting (A18) into (A17), we obtain

v̄(n){2} =
λ0λ

(λ0 − n)(λ− n)
. (A19)
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Now, we proceed to the evaluation of the stationary joint MGF v̄(n1,n2)
{2},{1} using Theorem 2.

In particular, by applying (11) twice (the first time for S1 = {2} and S2 = {1} and the second
time for S1 = {1, 2} and S2 = {1}), we obtain

v̄(n1,n2)
{2},{1}[λ0 + λ− (n1 + n2)] = λ0v̄(n1)

{2} + λv̄(n1,n2)
{1,2},{1}, (A20)

v̄(n1,n2)
{1,2},{1}[λ0 − (n1 + n2)] = λ0. (A21)

The final expression of v̄(n1,n2)
{2},{1} in (16) can be obtained by substituting v̄(n1)

{2} and

v̄(n1,n2)
{1,2},{1} from (A17) and (A21), respectively, into (A20).

Appendix D. Proof of Proposition 1

The stationary marginal mth moment of the age process at node i ∈ N = {1, 2}
(i.e., v̄(m)

{i} ) is given by

v̄(m)
{i} =

dm
[
v̄(n){i}

]
dnm

∣∣∣∣∣
n=0

. (A22)

Furthermore, for i, j ∈ N , the stationary joint moment v̄(m1,m2)
{i},{j} of the two age processes

at nodes i and j is given by

v̄(m1,m2)
{i},{j} =

∂m1+m2
[
v̄(n1,n2)
{i},{j}

]
∂nm1

1 ∂nm2
2

∣∣∣∣∣
n1=0,n2=0

. (A23)

The marginal first and second moments of the age process at each node in the serially-
connected network (in (A22) and (A23)) can be obtained by plugging the marginal MGF
expressions derived in Theorem 3 into (A22). Furthermore, the variance of the age process
at node i is given by

var[xi(t)] = v̄(2){i} −
(

v̄(1){i}
)2

. (A24)

Finally, for nodes i, j ∈ N , the correlation coefficient can be evaluated as follows:

cor
[
xi(t), xj(t)

]
=

v̄(1,1)
{i},{j} − v̄(1){i}v̄

(1)
{j}√

var[xi(t)]
√

var
[
xj(t)

] , (A25)

In order to obtain cor[x1(t), x2(t)], what remains is only to evaluate v̄(1,1)
{2},{1} from (A23)

(using the joint MGF expression in (16)) as

v̄(1,1)
{2},{1} =

λ2
0 + 2λ0λ + 2λ2

λλ2
0(λ0 + λ)

. (A26)

By noting that

v̄(1,1)
{2},{1} − v̄(1){2}v̄

(1)
{1} =

λ2
0 + 2λ0λ + 2λ2

λλ2
0(λ0 + λ)

− λ0 + λ

λ2
0λ

=
λ

λ2
0(λ0 + λ)

, (A27)

then the final expression of cor[x1(t), x2(t)] in (19) can be obtained, which completes
the proof.
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Appendix E. Proof of Theorem 4

For the parallelly-connected network in Figure 1b, the stationary marginal MGF of the
age process at each node i ∈ N = {1, 2, 3} can be derived by repeatedly applying (9) as
follows:

v̄(n){3} =
λ1v̄(n){1,3} + λ2v̄(n){2,3}

λ1 + λ2 − n
, (A28)

v̄(n){1,3} =
λs + λ2v̄(n){1,2,3}

λs + λ2 − n
, (A29)

v̄(n){2,3} =
λs + λ1v̄(n){1,2,3}

λs + λ1 − n
, (A30)

v̄(n){1,2,3} =
2λs

2λs − n
, (A31)

v̄(n){1} = v̄(n){2} =
λs

λs − n
, . (A32)

The final expression of v̄(n){3} in (21) can be obtained by substituting v̄(n){1,3} and v̄(n){2,3}
from (A29)–(A31) into (A28).

We now derive the stationary joint MGF v̄(n1,n2)
{3},{1} by repeatedly applying (11) as follows:

v̄(n1,n2)
{3},{1}[λs + λ1 + λ2 − (n1 + n2)] = λsv̄(n1)

{3} + λ1v̄(n1,n2)
{1,3},{1} + λ2v̄(n1,n2)

{2,3},{1}, (A33)

v̄(n1,n2)
{1,3},{1}[λs + λ2 − (n1 + n2)] = λs + λ2v̄(n1,n2)

{1,2,3},{1}, (A34)

v̄(n1,n2)
{2,3},{1}[2λs + λ1 − (n1 + n2)] = λs

(
v̄(n2)
{1} + v̄(n1)

{2,3}

)
+ λ1v̄(n1,n2)

{1,2,3},{1}, (A35)

v̄(n1,n2)
{1,2,3},{1}[2λs − (n1 + n2)] = λs + λsv̄(n2)

{1} . (A36)

By substituting (A34)–(A36) into (A33), v̄(n1,n2)
{3},{1} can expressed as

v̄(n1,n2)
{3},{1} =

1
[λs + λ1 + λ2 − (n1 + n2)][2λs + λ1 − (n1 + n2)][2λs − (n1 + n2)][λs + λ2 − (n1 + n2)]

×[
λs[2λs + λ1 − (n1 + n2)][2λs − (n1 + n2)][λs + λ2 − (n1 + n2)]v̄

(n1)
{3} + λsλ2[2λs + λ1 − (n1 + n2)]

× [λs + λ1 + λ2 − (n1 + n2)]v̄
(n2)
{1} + λsλ2[λs + λ2 − (n1 + n2)][2λs − (n1 + n2)]v̄

(n1)
{2,3} + λsλ1λ2

× [λs + λ2 − (n1 + n2)] + λsλ1[2λs + λ1 − (n1 + n2)][2λs + λ2 − (n1 + n2)]
]
. (A37)

The final expression of v̄(n1,n2)
{3},{1} in (22) can be obtained by substituting v̄(n1)

{3} , v̄(n2)
{1} and

v̄(n1)
{2,3} from (21), (A32) and (A30), respectively, into (A37).
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Appendix F. Proof of Proposition 2

The expressions in (27)–(30) of the first moment, second moment, and variance of the
age process at each node i ∈ N = {1, 2, 3} can be derived by plugging the marginal MGF
expressions in Theorem 2 into (A22). Furthermore, by plugging the joint MGF v̄(n1,n2)

{3},{1} in

(22) into (A23), one can obtain v̄(1,1)
{3},{1} as follows:

v̄(1,1)
{3},{1} =

1

4λ2
s (λs + λ1 + λ2)(λs + λ2)

2(2λs + λ1)(λ1 + λ2)(λs + λ1)
×
[
8λ6

s + 4λ5
s (7λ1 + 8λ2) + 4λ4

s

(
11λ2

1 + 24λ1λ2 + 12λ2
2

)
+ λ3

s (λ1 + λ2)
(

32λ2
1 + 75λ1λ2 + 32λ2

2

)
+ 4λ2

s (λ1 + λ2)
2
(

2λ2
1 + 9λ1λ2 + 2λ2

2

)
+ 3λsλ1λ2

(
3λ2

1 + 7λ1λ2 + 3λ2
2

)
× (λ1 + λ2) + 3λ2

1λ2
2(λ1 + λ2)

2
]
, (A38)

The final expression of cor[x1(t), x3(t)] in (31) can be obtained from (A25) while noting that
we have

v̄(1,1)
{3},{1} − v̄(1){3}v̄

(1)
{1} =

λ1
[
8λ4

s + λ3
s (12λ1 + 7λ2) + 2λ2

s (λ1 + 2λ2)(λ2 + 2λ1) + λsλ2
(
3λ2

1 + 5λ1λ2 + λ2
2
)
+ λ1λ2

2(λ1 + λ2)
]

4λ2
s (λs + λ1 + λ2)(λs + λ2)

2(2λs + λ1)(λs + λ1)
,

This completes the proof.

Appendix G. Proof of Theorem 5

Repeated application of (9) gives

v̄(n){1} =
λc + λv̄(n){1,3}
λc + λ− n

, (A39)

v̄(n){1,3} =
λc + λv̄(n){1,2,3}

λc + λ− n
(a)
=

λc

λc − n
, (A40)

v̄(n){1,2,3} =
λc

λc − n
, (A41)

v̄(n){2} =
λv̄(n){1,2}
λ− n

, (A42)

v̄(n){1,2} =
λc + λv̄(n){1,2,3}

λc + λ− n
(a)
=

λc

λc − n
, (A43)

v̄(n){3} =
λv̄(n){2,3}
λ− n

, (A44)

v̄(n){2,3} =
λv̄(n){1,2,3}

λ− n
(a)
=

λcλ

(λc − n)(λ− n)
, (A45)
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where step (a) in (A40), (A43), and (A45) follows from substituting v̄(n){1,2,3} from (A41).

The expressions of {v̄(n){i}}i∈{1,2,3} in (35)–(37) are obtained from substituting (1) v̄(n){1,3} from

(A40) into (A39), (2) v̄(n){1,2} from (A43) into (A42), and (3) v̄(n){2,3} from (A45) into (A44).
Regarding the evaluation of the stationary joint MGF expressions, we start by deriving

v̄(n1,n2)
{1},{2}. Repeated application of (11) gives

v̄(n1,n2)
{1},{2}[λc + 2λ− (n1 + n2)] = λcv̄(n2)

{2} + λv̄(n1,n2)
{1,3},{2} + λv̄(n1,n2)

{1},{1,2}, (A46)

v̄(n1,n2)
{1,3},{2}[λc + 2λ− (n1 + n2)] = λcv̄(n2)

{2} + λv̄(n1,n2)
{1,2,3},{2} + λv̄(n1,n2)

{1,3},{1,2}, (A47)

v̄(n1,n2)
{1},{1,2}[λc + λ− (n1 + n2)] = λc + λv̄(n1,n2)

{1,3},{1,2}, (A48)

v̄(n1,n2)
{1,2,3},{2}[λc + λ− (n1 + n2)] = λcv̄(n2)

{2} + λv̄(n1,n2)
{1,2,3},{1,2}, (A49)

v̄(n1,n2)
{1,3},{1,2}[λc + 2λ− (n1 + n2)] = λc + λv̄(n1,n2)

{1,2,3},{1,2} + λv̄(n1,n2)
{1,3},{1,2,3}, (A50)

v̄(n1,n2)
{1,2,3},{1,2}[λc + λ− (n1 + n2)] = λc + λv̄(n1,n2)

{1,2,3},{1,2,3}, (A51)

v̄(n1,n2)
{1,3},{1,2,3}[λc + λ− (n1 + n2)] = λc + λv̄(n1,n2)

{1,2,3},{1,2,3}, (A52)

v̄(n1,n2)
{1,2,3},{1,2,3} =

λc

λc − (n1 + n2)
. (A53)

By substituting v̄(n1,n2)
{1,2,3},{1,2,3} from (A53) into (A48) and (A50)–(A52), we obtain

v̄(n1,n2)
{1,2,3},{1,2} = v̄(n1,n2)

{1,3},{1,2,3} = v̄(n1,n2)
{1,3},{1,2} = v̄(n1,n2)

{1},{1,2} =
λc

λc − (n1 + n2)
, (A54)

Furthermore, from (A47), (A49), (A50) and (A54), v̄(n1.n2)
{1,3},{2} can be expressed as

v̄(n1,n2)
{1,3},{2} =

λc[λc − (n1 + n2)]v̄
(n2)
{2} + λλc

[λc + λ− (n1 + n2)][λc − (n1 + n2)]
. (A55)

The final expression of v̄(n1,n2)
{1},{2} in (38) can be obtained by substituting v̄(n1,n2)

{1,3},{2}, v̄(n1,n2)
{1},{1,2},

and v̄(n2)
{2} from (A55), (A54) and (36), respectively, into (A46). Now, we proceed with the

evaluation of v̄(n1,n2)
{1},{3}. Repeated application of (11) gives

v̄(n1,n2)
{1},{3}[λc + 2λ− (n1 + n2)] = λcv̄(n2)

{3} + λv̄(n1,n2)
{1,3},{3} + λv̄(n1,n2)

{1},{2,3}, (A56)

v̄(n1,n2)
{1,3},{3}[λc + λ− (n1 + n2)] = λcv̄(n2)

{3} + λv̄(n1,n2)
{1,2,3},{2,3}, (A57)
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v̄(n1,n2)
{1},{2,3}[λc + 2λ− (n1 + n2)] = λcv̄(n2)

{2,3} + λv̄(n1,n2)
{1,3},{2,3} + λv̄(n1,n2)

{1},{1,2,3}, (A58)

v̄(n1,n2)
{1,2,3},{2,3}[λc + λ− (n1 + n2)] = λcv̄(n2)

{2,3} + λv̄(n1,n2)
{1,2,3},{1,2,3}, (A59)

v̄(n1,n2)
{1,3},{2,3}[λc + 2λ− (n1 + n2)] = λcv̄(n2)

{2,3} + λv̄(n1,n2)
{1,3},{1,2,3} + λv̄(n1,n2)

{1,2,3},{2,3}, (A60)

v̄(n1,n2)
{1},{1,2,3}[λc + λ− (n1 + n2)] = λc + λv̄(n1,n2)

{1,3},{1,2,3}, (A61)

where v̄(n1,n2)
{1,3},{1,2,3} = v̄(n1,n2)

{1,2,3},{1,2,3} =
λc

λc−(n1+n2)
. By substituting v̄(n1,n2)

{1,3},{1,2,3} into (A61), we
obtain

v̄(n1,n2)
{1},{1,2,3} =

λc

λc − (n1 + n2)
. (A62)

Furthermore, from (A57)–(A62), v̄(n1,n2)
{1,3},{3} and v̄(n1,n2)

{1},{2,3} can be respectively expressed as

v̄(n1,n2)
{1,3},{3} =

λc[λc + λ− (n1 + n2)]v̄
(n2)
{3} + λ

(
λcv̄(n2)
{2,3} + λv̄(n1,n2)

{1,2,3},{1,2,3}

)
[λc + λ− (n1 + n2)]

2 , (A63)

v̄(n1,n2)
{1},{2,3} =

λcv̄(n2)
{2,3} + λv̄(n1,n2)

{1},{1,2,3}
λc + λ− (n1 + n2)

. (A64)

The final expression of v̄(n1,n2)
{1},{3} in (39) can be obtained from substituting (A63) and

(A64) into (A56), followed by some algebraic simplifications. Finally, to derive v̄(n1,n2)
{2},{3}, we

first repeatedly use (11) as follows:

v̄(n1,n2)
{2},{3}[2λ− (n1 + n2)] = λv̄(n1,n2)

{1,2},{3} + λv̄(n1,n2)
{2},{2,3}, (A65)

v̄(n1,n2)
{1,2},{3}[λc + 2λ− (n1 + n2)] = λcv̄(n2)

{3} + λv̄(n1,n2)
{1,2,3},{3} + λv̄(n1,n2)

{1,2},{2,3}, (A66)

v̄(n1,n2)
{2},{2,3}[λ− (n1 + n2)] = λv̄(n1,n2)

{1,2},{1,2,3}, (A67)

v̄(n1,n2)
{1,2,3},{3}[λc + λ− (n1 + n2)] = λcv̄(n2)

{3} + λv̄(n1,n2)
{1,2,3},{2,3}, (A68)

v̄(n1,n2)
{1,2},{2,3}[λc + 2λ− (n1 + n2)] = λcv̄(n2)

{2,3} + λv̄(n1,n2)
{1,2,3},{2,3} + λv̄(n1,n2)

{1,2},{1,2,3}. (A69)

From (A66)–(A69), v̄(n1,n2)
{1,2},{3} and v̄(n1,n2)

{2},{2,3} can be respectively expressed as

v̄(n1,n2)
{1,2},{3} =

1

[λc + λ− (n1 + n2)][λc + 2λ− (n1 + n2)]
2 ×

[
λc[λc + 2λ− (n1 + n2)]

2v̄(n2)
{3}

+ λ[λc + λ− (n1 + n2)]
(

λcv̄(n2)
{2,3} + λv̄(n1,n2)

{1,2},{1,2,3}

)
+ λ2[2λc + 3λ− 2(n1 + n2)]v̄

(n1,n2)
{1,2,3},{2,3}

]
, (A70)
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v̄(n1,n2)
{2},{2,3} =

λcλ

[λc − (n1 + n2)][λ− (n1 + n2)]
. (A71)

The final expression of v̄(n1,n2)
{2},{3} in (40) can be obtained from plugging (A70) and (A71) into (A65),

followed by substituting (1) v̄(n2)
{3} from (37), (2) v̄(n2)

{2,3} from (A45), (3) v̄(n1,n2)
{1,2,3},{2,3} from (A59),

and (4) v̄(n1,n2)
{1,2},{1,2,3} as λc

λc−(n1+n2)
.

Appendix H. Proof of Proposition 3

The results of this proposition can be derived by following similar steps to those
in Appendices D and F while noting that

v̄(1,1)
{1},{2} =

λ2 + (λc + λ)2

λλ2
c (λc + λ)

, (A72)

v̄(1,1)
{1},{2} − v̄(1){1}v̄

(1)
{2} =

λ

λ2
c (λc + λ)

, (A73)

v̄(1,1)
{1},{3} =

2λ3
c + 5λ2

c λ + 4λcλ2 + 2λ3

λλ2
c (λc + λ)2 , (A74)

v̄(1,1)
{1},{3} − v̄(1){1}v̄

(1)
{3} =

λ2

λ2
c (λc + λ)2 , (A75)

v̄(1,1)
{2},{3} =

5λ4
c + 16λ3

c λ + 20λ2
c λ2 + 12λcλ3 + 4λ4

2λ2
c λ2(λc + λ)2 , (A76)

v̄(1,1)
{2},{3} − v̄(1){2}v̄

(1)
{3} =

λ4
c + 2λ3

c λ + 2λ2
c λ2 + 2λcλ3 + 2λ4

2λ2
c λ2(λc + λ)2 . (A77)

Appendix I. Proof of Proposition 4

We first apply (11) to obtain v̄(n1,n2)
Ni ,Nj

as

v̄(n1,n2)
Ni ,Nj

=
λi v̄

(n2)
Nj

+ λjv̄
(n1)
Ni

λi + λj − (n1 + n2)

(a)
=

λiλj

(λi − n1)
(
λj − n2

) , (A78)

where step (a) follows from substituting v̄(n1)
Ni

and v̄(n2)
Nj

from (A41) as
λi

λi − n1
and

λj

λj − n2
,

respectively. We then obtain
∂2v̄(n1,n2)
Ni ,Nj

∂n2∂n1
as

∂2v̄(n1,n2)
Ni ,Nj

∂n2∂n1
=

λiλj

(λi − n1)
2(λj − n2

)2 . (A79)
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Thus, from (A79), we have

v̄(1,1)
Ni ,Nj

=
1

λiλj
. (A80)

The conclusion that the two age processes xNi (t) and xNj(t) are uncorrelated follows

from noting that v̄(1,1)
Ni ,Nj

− v̄(1)Ni
v̄(1)Nj

= 0, and hence the correlation coefficient between xNi (t)

and xNj(t) is zero.
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