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Abstract: The space of possible human cultures is vast, but some cultural configurations are more
consistent with cognitive and social constraints than others. This leads to a “landscape” of possi-
bilities that our species has explored over millennia of cultural evolution. However, what does this
fitness landscape, which constrains and guides cultural evolution, look like? The machine-learning
algorithms that can answer these questions are typically developed for large-scale datasets. Applica-
tions to the sparse, inconsistent, and incomplete data found in the historical record have received
less attention, and standard recommendations can lead to bias against marginalized, under-studied,
or minority cultures. We show how to adapt the minimum probability flow algorithm and the In-
verse Ising model, a physics-inspired workhorse of machine learning, to the challenge. A series
of natural extensions—including dynamical estimation of missing data, and cross-validation with
regularization—enables reliable reconstruction of the underlying constraints. We demonstrate our
methods on a curated subset of the Database of Religious History: records from 407 religious groups
throughout human history, ranging from the Bronze Age to the present day. This reveals a complex,
rugged, landscape, with both sharp, well-defined peaks where state-endorsed religions tend to con-
centrate, and diffuse cultural floodplains where evangelical religions, non-state spiritual practices,
and mystery religions can be found.

Keywords: machine learning; history; archaeology; anthropology; religion; cultural evolution;
inverse Ising model; spin glass; robust statistics

1. Introduction

If we want to understand the powers and potentials of the human species—the
landscape of both what has been, and could be, done—we are driven to make comparisons
across vast ranges of time and culture. In these cases, data is not only missing, but
differentially missing [1]. To analyze, at the same time, a contemporary culture of the digital
age, and one that vanished five thousand years ago, requires careful accounting. There is
both the intellectual challenge of making best use of what information reaches us, and an
ethical imperative to treat long-lost cultures—and marginalized, under-studied, or minority
cultures that survive today—on an equal epistemic footing with the dominant, often
“WEIRD” [2] ones, for whom data is both more abundant and more complete.

Appropriate modeling of small, and potentially biased, data is a challenge. Replacing
missing values with “no” or “not present”, for example, is the fallacy of taking absence
of evidence for evidence of absence. Replacing them with the median answer, or the best
match, from the remainder of the data makes unfamiliar cultures clones of the ones we
know. Replacing them with “a fifty-fifty mixture of present and absent” is not much better:
it attributes the lack of knowledge in the observer to a lack of coherence in the original
culture; because we do not know what they did, we assume they did not, either. All
these challenges are exacerbated in the “small data” limit common in studies of cultural
evolution—archives with hundreds of data points, rather than the millions on which
machine-learning algorithms are usually trained and tested.
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This paper addresses the challenge of inferring cultural landscapes in deep time [3,4].
We show how to extend a commonly used workhorse of machine learning—the Inverse
Ising Problem with minimum probability flow [5]—to the kind of sparse, under-sampled,
and potentially biased samples of the historical record. While standard approaches can
give misleading answers, we show how a set of carefully constructed modifications and
extensions can provide new ways to ask basic questions about the evolution of human
culture. We then demonstrate the power, and potential, of cultural landscape construction
with an analysis of a curated subset of the Database of Religious History (DRH) [4,6].

2. Methods

The goal of our analysis is the construction of a cultural landscape: a general model
of what makes different cultural patterns more or less likely to appear in the course of time.
To be more specific, imagine that we have a set of “characteristics”—aspects of a culture
that we care about, and which can be represented with a binary answer such as YES or NO,
TRUE or FALSE, PRESENT or ABSENT, and so on. A particular setting of all the answers is
called a configuration, and a landscape model says, for any particular configuration, how
likely it is to appear.

Depending on how the experts understand the questions, the landscape derived
from it might characterize, on one extreme, the patterns of behavior that could emerge
in an individual—or, on the other extreme, the kinds of patterns that entire societies
might explore across the span of human history. In the case treated here, we have cross-
cultural data on religious groups in different cultures and time periods from 10,000 BCE
to the present day; one group characteristic we consider, for example, is “Are supernatural
beings believed to mete out punishment?” while another is “does membership in this
group require participation in small-scale (private, household) rituals?” and a third is “does
membership in this religious group require sacrifice of children?”

A landscape model, could it be found, would be a powerful tool for systematic
investigation of how societies compose these different characteristics together to form
the foundation of a stable cultural practice. We might want to know, for example, whether
a “yes” answer to a belief in punishing gods makes it more likely for the religion to rely
on small-scale rituals, all other things being equal, and how this relationship might be
mediated by the presence of extreme practices such as child sacrifice.

Being able to answer these questions would provide important empirical constraints
to more fundamental models. One model, for example, might understand child sacrifice as
an extreme example of costly signals of devotion in a social context, otherwise disconnected
from the metaphysical account the religion provides about god, while another might see
the practice as something that could only be conceivable against a particular conceptual-
ization of the relationship between humankind, nature, and the transcendent (see, e.g.,
Ref. [7] for discussion). The two models will make different predictions of how the practice
co-varies with other characteristics.

Answers to questions such as these cannot be simply read off from the data, however,
because religions with and without a belief in supernatural punishment generically differ
on a wide range of characteristics, all of which might impact a violent practice such as
child sacrifice. The correct answer requires a comparison to a fiducial culture that differs in
only one characteristic. The space of configurations expands exponentially, and probing
fundamental questions requires knowledge not just of the religions we happen to have
observed, but the larger, law-governed landscape of what combinations—including those
never observed in human history—are more or less likely.

A landscape model allows us to investigate which features of a religion most strongly
couple with others. It provides insight into how different aspects of a religion bundle
together [8], with a small number of distinct patterns of yes/no answers, as might happen
if religions were divided into (for example) Axial and pre-Axial types. It would even
allow to us identify practices that have yet to emerge—unexplored regions of cultural-
evolutionary space. A more prosaic, though no less important, use of a landscape model is
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to predict missing data. For a long-lost culture, for example, whose metaphysical beliefs
are unknown, a landscape model can predict the probabilities of different combinations
of epistemic commitments on the basis of its material culture.

2.1. From Physics to Machine Learning: An Introduction to the Inverse Ising Problem

Inferring such a fitness landscape from data requires us first to specify the structure
of the landscape itself—the spectrum of ways in which it allows one aspect of a pattern
to make other aspects more or less likely. In traditional approaches, such as logistic
regression, one chooses, ahead of time, a small number of possible effects, based on an
explicit model; with a hundred data points, for example, one might try to learn—estimate—
three or four regression coefficients.

When learning a landscape, by contrast, the number of parameters is very large—
often comparable to, or even very much larger than, the number of observations [9].
The particular model we consider in this paper is a very general form of a neural network
known in the machine-learning literature as the “unrestricted Boltzman machine”, and (in
the physics literature) as the “inverse Ising problem” [10].

The inverse Ising model has been applied, with great success, to data ranging from neu-
roscience [11,12], the immune system [13], and the fitness landscapes of HIV [14], to animal
behavior [15,16], political polarization and voting behavior [17,18], and linguistics [19].
It has also been used as a general model of generic complex cultural practices in cul-
tural evolution [20]. In one common notation choice, the inverse Ising model says that
the probability of observing a configuration i is

pi =
exp Ei(~θ)

Z(~θ)
, (1)

where~θ are the parameters (to be estimated); Z(~θ), traditionally called the “partition func-
tion”, is the normalization constant; and the “energy”, Ei(~θ), of a particular configuration
is given by

Ei(~θ) = ∑
a,b;a>b

Jabσaσb + ∑
a

haσa, (2)

where σa is the truth value of the ath entry in configuration i; by convention, YES is +1,
and NO is −1; there are n(n− 1)/2 of the “J” parameters (the “pairwise couplings”), and n
of the “h” parameters (the “local fields”).

In general, physicists take the J and h values (or the probability distributions they are
drawn from) as given, and try to understand the properties of the resulting distribution [21].
The converse problem, which we consider here, is to infer the “best fit” J and h that can
predict the observed frequencies of the occurrence of different configurations in a dataset.

As first noted by E.T. Jaynes [22], the form of Equation (2) means that, properly
estimated, p is the distribution with maximum entropy that, at the same time, matches
the observed means and pairwise correlations; i.e., those found by averaging over all
the observed vectors,~σd, in the dataset D,

∑
i

σa p(i) =
1
|D| ∑

d∈D
σa,d and ∑

i
σaσb p(i) =

1
|D| ∑

d∈D
σa,dσb,d (3)

Such models embody a kind of inverted form of Occam’s Razor: make the model just
sophisticated enough to explain only the least complicated features of the data at hand, leav-
ing everything else maximally undetermined. Surprisingly enough, this works: as has been
repeatedly discovered, higher order correlations often “come along for the ride”, emerging
spontaneously when the pairwise constraints of Equation (3) are satisfied [12,23,24]. De-
spite its simplicity, Equation (2) can capture a great deal of the real variability in complex
systems, and many of the most celebrated successes of machine learning are, at heart,
adaptations of this insight [25].
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2.2. Minimum Probability Flow

Finding the values of J and h that satisfy Equation (3) is exponentially hard, because
it requires averaging over all 2n configurations in the probability distribution, Equation (1).
We can rephrase the problem, however, as trying to find the Ising-model distribution,
pi(Jab, ha), that best fits the true (or “data”) distribution, pi, where the “best fit” is the one
that minimizes the Kullback–Leibler divergence,

K(~θ) = ∑
i∈C

pi log2
pi

pi(~θ)
, (4)

where C is the (exponentially large) set of all 2n configurations. The ~θ that minimizes
Equation (4) produces a pi(~θ) which is minimally distinguishable, in a basic information-
theoretic sense, from the true distribution pi.

Minimizing Equation (4) directly, however, still requires multiple sums over C.
The insight of MPF [5] is that, given a collection of observed configurations, D, Equation (4)
can be approximated by minimizing the “probability flow”. When a parameter choice~θ is
a poor match to the data, probability tends to flow “away” from data states to non-data
states. Up to constant factors, we can approximate Equation (4) as

K(θ) = ∑
j∈D

(
∑

i∈N /∈D
Γij(~θ)

)
, (5)

where Γij(~θ) is the rate of flow from state j to state i for parameter choice (~θ), and N is
a set of “neighbouring” non-data configurations. Minimizing Equation (5) is a tractable
task; in contrast to Equation (4), the sums are no longer over C, but a radically smaller set
of observed data, D, and a well-chosen N . MPF is related to a basic method in machine
learning, contrastive divergence [26], with the principle advantage, for our purposes,
of having a well-defined, epistemically principled, objective function.

2.3. Improvements and Extensions to the MPF Algorithm

In this section, we present a series of improvements and extensions to the basic
MPF algorithm. These include both apparently minor, but critical, variations in the basic
algorithm, and a new extension and derivation. We are particularly grateful to the authors
of ConIII [27], whose implementation, and clear discussion, of MPF enabled us to debug
and test our own code.

Sections 2.3.1 and 2.3.2 present a pair of improvements to the basic algorithm; these
provide significant boosts in performance and accuracy on sparse social and cultural
data. Section 2.3.3 shows how to handle inconsistencies between different observers
(or inconsistencies within the same observer), and Section 2.3.4 shows how the same tools
also allow us to account for uneven sampling in time or space. Finally, Section 2.3.5
describes a novel extension to the MPF algorithm, Partial-MPF, which enables us to handle
missing data in a principled fashion.

2.3.1. Nearest-Neighbour Sampling

In the original version of the MPF algorithm, flow is computed from the observed
configurations (“data states”) to a subset of other configurations, explicitly excluding flow
into any other data states. It is equally valid, under the MPF approximation, to allow flow
into states that do appear elsewhere in the data; this can be seen at line A-6 of Ref. [5],
where you can interchange the order of the derivative and the summation. This alternative
choice is the default under ConIII.



Entropy 2023, 25, 264 5 of 29

Our experiments find that the alternative choice provides greatly improved out-of-
sample performance, because the exclusion biases the algorithm against configurations
near a metastable peak. With this change in hand, the function to be minimized is

K(θ) = ∑
j∈D

 ∑
i∈N (j)

Γij(~θ)

, (6)

A natural choice is to setN (j) to include states within a certain Hamming distance of j;
the original MPF paper considered states that differed from the data state at one position,
i.e., N1(j); we also consider a strategy which uses states up to two (N2(j)) Hamming units
away. Since |N (j)| is the same for all j, this provides equal weighting to all data states.
(It is also possible to consider randomly chosen neighbours; however, this tends to give
significantly decreased performance; the MPF algorithm performs best when it is allowed
to focus on reasonably nearby variations from the observations.)

2.3.2. Regularization Constraint

Minimizing Equation (6) is equivalent to (attempting to) maximize the posterior log-
probability of the data given the model. A proper Bayesian analysis, however, should
include not just the posterior, but a prior over the parameters themselves,

K′(θ) = K(θ)− λ|D||N | log P(~θ), (7)

where λ is a constant, and P(~θ) is the probability of a particular choice for J and h.
It is natural to choose P(~θ) so that, all other things being equal, smaller values are

preferred; this is sometimes known as a regularization penalty, which often provides
significant benefits to out-of-sample prediction [28]. Without regularization, models tend
to overfit, producing unreasonably low probabilities for configurations that happen not
to appear in the data.

If we assume that J and h are distributed as a Gaussian—what is sometimes known as
the L2-norm—we have

K′(θ) = K(θ)− λ|D||N |
Np

∑
k=1

θ2
k

2
, (8)

where the value of λ encodes the variance in the Gaussian; a larger λ corresponds to a
smaller variance.

The optimal choice for λ depends on P(~θ), which is, in general, unknown. It can be
estimated, however, by cross-validation: if there are m datapoints, fit the data using m− k
datapoints (the training set), and compute the log-likelihood for the remaining k datapoints
(the test set). In this paper, we take k equal to one, i.e., leave-one-out cross-validation.
Repeating this for all possible choices of the left-out observation, and then averaging
the result, allows us to estimate the performance of the fit as a function of λ.

2.3.3. Inconsistent Data

In some case—for example, in about 17% of religious groups in the DRH data
used below—we have inconsistent coding, where multiple, incompatible answers exist
for the same configuration. This can emerge when different observers interpret a question,
or evidence, in different ways, or have different examples in mind. In the DRH, it most
commonly appears when the same observer flags a feature as less straightforward than
it appears; for example, “Iban traditional religion” is inconsistently coded for whether
the religion had scriptures, with the coder citing it as a “borderline case” and answering
both “yes”, and “no”. Another example is “Unitarian Universalism” (UU), where the same
observer coded belief in afterlife as both “yes”, and “no”, noting that some UUs do, and
some do not, believe in an afterlife. A proper accounting of the landscape ought to allow
for both.
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To make explicit use of inconsistent data requires an error model, and there are two
natural choices. Consider, as an example, two observers who provide inconsistent answers,
for the same system, to three binary questions: j1 gives {1, 1, 0}, while j2 gives {1, 0, 1}. If
we assume that, for each observer, their best answer to one question is dependent upon
all the others, we can include both records, with a weighting term, wj, which captures
the epistemic uncertainty

K(θ) = ∑
j∈D

 ∑
i∈N (j)

wjΓij

, (9)

where wj1 = wj2 = 1/2. Alternatively, one can take inconsistencies as evidence of uncer-
tainty question by question—the “independent” model. Then we interpret the observations
j1 and j2 as indicating that observers are, in general, uncertain about the answers to ques-
tions two and three, with independent probabilities of “yes” for each 1/2. In this case, one
includes not only the observed records (r1 = {1, 1, 0}, r2 = {1, 0, 1}) but also the unreported
combinations r3 = {1, 1, 1} and r4 = {1, 0, 0}, each with weight 1/4.

Both choices imply that differences between observers trace back, not to uncertainty
about a fixed reality, but rather to fluidity in the practices themselves, where both an-
swers are equally valid depending on the details of time and place. The examples pre-
sented above are the most common form of inconsistency, and this argues in favor of the
independent model.

2.3.4. Correcting for Non-Uniform Weighting across Time and Space

Cultural data is often unevenly sampled. We have more examples from the present
than the distant past; more from high-GDP countries than from low-GDP countries; more
from dominant cultures in a region than from marginalized or minority ones.

This can lead to bias in our landscape estimation. If we have, for example, 20 ob-
servations from cultures of Type A (the “contemporary developed world” sample), and
only 10 observations from cultures of Type B (the “understudied”, or “minority”, sample),
then a naive use of the data would tend to lead to landscapes that made Type-A cultures
look more stable than Type-B cultures, and would produce accounts of the interlocking
constraints that made Type-A cultures look more natural than Type-B cultures.

Often, however, we will know from archival records or field reports that groups ex-
ist, even if we know nothing about them, which allows us to estimate the sampling bias.
With such an estimate in hand, Equation (9) allows us to re-weight observations to compensate.

2.3.5. Partial-MPF: Accounting for Missing Data

Handling missing data is a challenge. Consider an observation such as the following,

j = {1, 0, X, X}, (10)

where answers to the last two questions are not provided. The function that MPF minimizes,
Equation (5), can only be calculated for fully specified data, and so a natural response
is to perform data imputation: for example, replacing missing answers with the most
common responses for that question in the remainder of the data.

While naive imputation methods are often suggested in machine-learning tutorials,
they are, in the final analysis, an epistemic fallacy: they replace what is unknown by what
is known, and assume that what has not been seen looks like what has. In qualitative work,
such a fallacy would be obvious. An archaeologist would not suggest, for example, that
the metaphysical beliefs of a long-vanished civilization should match the median beliefs
of civilizations today.

A better way to solve this problem, which we refer to as “Partial-MPF”, is to dynami-
cally infer the missing data from the best estimates of the parameters~θ; i.e., to work not with
a particular completion for j, but a distribution over, in this case, the four possible values,
j1, {1, 0, 0, 0}, j2, {1, 0, 0, 1}, j3, {1, 0, 1, 0}, and j4, {1, 0, 1, 1}, found using Equation (1).
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When the amount of missing data is small (in practice, fewer than 10 missing values per
configuration, independent of the total number of questions), the distribution can be com-
puted exactly. For an observation with m missing values, we expand the observation into
the 2m different combinations; compute the weights, wj(~θ), for each combination; and com-
bine them together as in Equation (9). This is somewhat like the “expectation-maximization”
step suggested by Ref. [29] for missing data, but with probabilistic weightings that preserve
continuity in the derivative.

Performing this correctly requires care, and there are three alterations we have to make
to the basic algorithm. First, we must update the weights wj(~θ) as we move through param-
eter space. Second, because the weights depend on~θ, this changes the form of the derivative
dK(θ)/d~θ. Third, when considering a configuration with missing data, we have to restrict
its neighbour space to include only those configurations that differ in a known question.

Importantly, while inference of the missing data is exact, K(~θ) is still only an approxi-
mation, and so minimizing K(~θ) will be in slight tension with the new (exact) inference step
that Partial-MPF takes. As we will see in Section 4.3, this is not a show stopper, and our
treatment of missing data is, in practice, much more effective than standard alternatives.

3. Data

Our case study draws on data from the Database of Religious History
(http://religiondatabase.org, accessed on 12 October 2022) (DRH) [4,6]. The DRH, an
ongoing project based at the University of British Columbia, includes a peer-reviewed
collection of information about religious groups in both the contemporary, historical, and
archaeological record, in the form of coded answers to standardized question sets (“polls”,
in the DRH) [4,30,31].

The DRH is organized hierarchically, such that some “super” questions (e.g., “Is
a spirit-body distinction present?”) have sub-questions (e.g., “Is spirit-mind conceived
of as having qualitatively different powers or properties than other body parts?”), and
even sub-sub-questions. For this case study, we limit ourselves to super questions, since
sub-questions are contingent on answers to super questions. This limits the number of
questions from 1133 to 171. The majority of the questions are binary questions, and so
are a natural fit to the Inverse Ising method. When we limit ourselves to questions that
ask for binary answers, this further limits the number of questions from 171 to 149, and
the number of records from 838 to 835.

The DRH is under continuous development. In this preliminary analysis, intended
to demonstrate the methods and the basic ideas behind landscape construction, we focus
on a subset of 20 questions, and do not correct for potentially uneven sampling of groups
by time or place. We start by selecting the questions with the fewest unanswered questions
across records, and then select all records (i.e., religious groups) that have five or fewer
missing answers. Additionally, selecting only civilizations from the “group” poll [30], leaves
us with a final data set of 407 civilizations. We infer parameters by running the Partial-MPF
algorithm on these observations. See Appendix B Table A1 for the full list of questions, and
Appendix B Tables A3 and A4 for all religious groups in our curated dataset.

4. Results: Simulations

We first present the results of simulations; these confirm that our extensions to the basic
MPF algorithm provide critically important improvements to the quality of the fit. To do
this, we create large numbers of “imaginary” landscapes, where the underlying parameters
have statistics similar to those observed in the real world. We take n, the number of YES/NO
questions, equal to 20, and we draw the parameters Jab and ha from a Gaussian distribution.
We then simulate data as draws from this underlying distribution, using the Metropolis–
Hastings algorithm, altering it in different ways to take into account how real-world data is
distorted by the data-gathering process.

With these simulated datasets in hand, we use our different extensions to the MPF algo-
rithm to attempt to infer the underlying true parameters. We quantify the performance of our

http://religiondatabase.org
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algorithms by direct calculation of the Kullback–Leibler divergence in the inferred distribution
(corresponding to inferred parameters Ĵab and ĥa) from the true distribution (which, in our
simulations, is known—it is just the distribution produced by the original Jab and ha),

KL = ∑
i∈C

pi(Jab, ha) log
pi(Jab, ha)

pi( Ĵab, ĥa)
. (11)

When KL is close to zero, the inferred distribution is hard to distinguish from the true
distribution—i.e., it is a good fit. KL has a number of useful properties that allow it to play
the role of “mean squared error” for probability distributions [32], quantifying the relative
error in reconstruction and prioritizing accurate reconstruction of the more common states.

In general, reconstruction performance will depend upon the parameters of the distri-
bution from which the test values Jab and ha are drawn. For our particular case of N = 20,
we choose this to be a Gaussian with mean zero, and σ ranging between 0.01 and 1.0.

When σ is small, the constraints are very weak and we are in a near-random or “dis-
persed” regime. As σ becomes larger, we enter what we call the “ordered” regime up to σ
of approximately 0.25, where constraints are strong enough to produce peaks where data
tends to cluster; practically speaking, this is where most real-world systems, including
the DRH, tend to be found. For completeness, we consider yet larger σ values: going
above 0.25 we enter the “near critical” regime, where peaks become sufficiently strong
to produce large-scale order, and, finally, what we call the “critical” regime, above 0.5,
where the distribution is near, or past, the spin-glass phase transition.

4.1. Regularization and Cross-Validation Greatly Improve Performance

Regularization using the λ parameter significantly improves our ability to estimate
the underlying landscape, making reliable extraction possible with very small amounts
of data. An example is shown in Figure 1, where we take a particular simulated dataset
(with σ equal to 0.5), and compare the probabilities estimated using the baseline MPF
(i.e., without regularization), to our regularization method where λ is estimated using
leave-one-out cross-validation.

Figure 1. Regularization corrects for overfitting. A sample reconstruction of the 220 (≈1 million)
probabilities for a landscape, based on 256 datapoints. Without the regularization constraint (red
points), the model underestimates the probabilities of some reasonably common configurations. The
effect is largely controlled for when using regularization with cross-validation (blue points).

The regularized model is not only better at estimating the probability of the peaks
of the landscape (the more likely, high-probability configurations), it also avoids overfitting
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to less common configurations. Standard MPF, by contrast, can sometimes recover very
large values for the Jab parameters, leading it to underestimate the vast majority of the less
likely configurations (p less than 10−2). For Standard MPF, sometimes, what has not been
seen is not just less likely, but effectively impossible.

Table 1 shows that regularization makes reconstruction possible even in the radically under-
sampled regime where the number of parameters (here, 210, for n = 20) exceeds the amount
of data (here, 128 observations), and cross-validation leads to near-optimal results.

Table 1. Cross-validation can recover near-optimal sparsity parameters. Without sparsity, MPF
consistently overfits to observed data. Reconstruction with 20 nodes (210 parameters), and 128 data
points (i.e., the undersampled regime). The more computationally expensive N2 strategy does not
improve significantly over the simpler N1.

β Range Optimal KL KL with CV Standard MPF

n = 20, 128 Points

0.01–0.125 (dispersed) 0.22 0.23 1.2
0.125–0.25 (ordered) 0.55 0.56 2.3

0.25–0.5 (near critical) 0.62 0.63 19.4
0.5–1.0 (critical) 0.50 0.54 9.5

4.2. Re-Weighting Can Correct for Sampling Bias

To study bias correction, we simulate multiple examples of a biased sampling process.
First, we construct landscapes (for a variety of β values) where answers to one of the ques-
tions are split, evenly, between YES (the “Type A” groups) and NO (the “Type B” groups).
We then create two samples: a full sample of 256 observations, and a biased data sam-
ple, with 128 observations of Type-A groups, but only 64 observations of Type-B groups.
This simulates an extreme form of bias, where the dominant Type-A cultures are over-
sampled by a factor of 2:1.

We then compare the reconstruction performance in three conditions: the ideal case,
with 256 observations; the naive-biased case, where parameters are learned from the bi-
ased sample; and the re-weighting case, where we implement the weighting prescription
of Section 2.3.4. We measure both the KL divergence, and the average log-odds bias against
the Type-B groups, defined as

Bias = exp
(〈

log
pB
pA

〉)
− 1, (12)

where pB is the model’s predicted probability of Type-B groups, pA (equal to 1 − pB)
is the predicted probability of Type-A groups, and the average is taken over multiple
simulations in a β range. The true value, by construction, is pA equal to pB, and negative
values indicate bias against the minority cultures.

Table 2 shows the results; even at 2:1 levels of bias, our methods can achieve high
reconstruction accuracy without inappropriately biasing the underlying landscape in favor
of dominant cultures.

Table 2. Reweighting observations can correct for sample bias.

β Range Ideal Biased Sample

KL Bias against Minority

Corrected Naive Corrected Naive

0.01–0.125 (dispersed) 0.13 0.16 0.16 −0.2% −14%
0.125–0.25 (ordered) 0.34 0.45 0.46 −0.1% −40%

0.25–0.5 (near-critical) 0.43 0.55 0.60 9.6% −51%
0.5–1.0 (critical) 0.48 0.57 0.71 0.1% −65%
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4.3. Partially Observed Data Can Be Consistently Integrated into Inference

To test the performance of Partial-MPF, we consider a scenario where we have a certain
amount of complete data, and then add in new partially observed data. Figure 2 shows an
example of how this works in practice for a single simulated system. We begin with 128 data
points, and then add increasing amounts of data which is 25% incomplete (a random
selection of five of the 20 features are blanked out.) We compare our method to a common
“naive” choice of taking missing variables to have the most commonly observed value
in the remainder.

Figure 2. An example of how Partial-MPF adapts the baseline MPF algorithm to make use of partial
data. We begin with 128 complete samples of a particular 20-question landscape (drawn from a dis-
tribution with β equal to 0.2), and then add additional, incomplete samples where five of the
20 questions are marked unknown. As more, but incomplete, data is added, the Partial-MPF fit (blue
line) continues to improve, though not as fast as when the additional data is complete (yellow line).
By contrast, the naive strategy (red line) often makes the fit worse, because imputation destroys
implicit correlations.

The three lines show how fit quality changes as (1) more fully observed data is added
(the ideal case); (2) partially observed data is added, and integrated in using the Partial-MPF
strategy; and (3) partially observed data is added, using the naive strategy. While Partial-
MPF is able to make good use of the data to improve the fit (the KL from the estimated
landscape to the actual landscape declines), additional (noisy) data very often harms
the quality of the naive fit beyond a certain point. Table 3 shows the average results
in different regimes; the same pattern is observed.

Table 3. Using Partial-MPF to reconstruct landscapes in the presence of partially-observed data.
While the “naive” strategy actually decreases the quality of the fit, Partial-MPF enables efficient use
of partial observations to improve knowledge of the landscape.

β Range 128 Full 128 Full + 128 Partial 256 Full

Partial-MPF Naive

0.01–0.125 (dispersed) 0.23 0.17 0.23 0.15
0.125–0.25 (ordered) 0.56 0.41 0.56 0.34

0.25–0.5 (near critical) 0.63 0.44 0.81 0.40
0.5–1.0 (critical) 0.54 0.41 1.06 0.38
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5. Results: The Database of Religious History

We present our empirical results in four parts. First, in Section 5.1, we look at the values
of the inferred parameters. The parameters suggest how we should read the underlying
“logic” of the landscape: the key interactions that, in combination, make some configurations
more consistent with constraints than others.

We then look at the landscape of configurations, as implied by the parameters.
In Section 5.2, we show how it can be used to inform hypotheses in cases where data is
inconsistent or missing; we take, as an example, the case of a cult in the ancient Mediterranean.

In Section 5.3, we show how to visualize the large-scale structure of the landscape—the
topography of “peaks” (concentrated regions where religions tend to cluster), “valleys”
(where underlying constraints make traditions harder to sustain), and “floodplains” (areas
of configuration space where constraints are weaker, favoring diversity and variation).
Finally, in Section 5.4, we show how to analyze the local neighbourhood of a configuration,
which gives us a new window into the question of cultural evolution over time.

5.1. Parameter Interpretation and Landscape Logic

Figure 3 provides a simple overview of the logic of the cultural landscape derived
from the DRH. This compares the underlying parameters of the Inverse Ising model (the Jij
and hi terms), inferred by Partial-MPF, to the surface-level, observed correlations in the data.

A B

Figure 3. The logic of the cultural landscape (A), compared to the surface-level correlations (B).
Nodes represent questions; see Table A1 for the question text. (A) edges represent the fifteen strongest
pairwise couplings (Jij) between questions, as inferred by Partial-MPF; nodes (questions) are colored
by the value of the local fields hi. (B) edges represent the fifteen strongest Pearson correlations; nodes
are colored by the observed mean. Node placement (layout) is explained in the Appendix A.1.

In some cases, the surface-level correlations are a good guide to the underlying logic.
Our model suggests that, for example, the observed correlation between small-scale (18)
and large-scale (19) rituals is most naturally explained, at this resolution, by an underlying
sympathetic (i.e., J18,19 positive) pairwise constraint. Similarly, the “big Gods” [33] pairing
of supernatural monitoring (12) and supernatural punishment (13) is both a strong surface-
level feature, and a core part of the landscape logic.

Much of the surface-level structure that we observe, however, turns out to be an
emergent property of more complex relationships in the underlying parameters. The
model suggests, for example, that a strong surface-level correlation between monumental
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architecture (3) and special treatment for corpses (7) can be explained away by mediation
through other variables. Grave goods (9) is another example: it is rare in the observed
data, but the local field for this feature is slightly positive, suggesting that there is nothing
inherently difficult about maintaining a grave-good tradition. Instead, the practice is
disfavored because of how it interacts with, for example, the keeping of written scriptures
(2). Our model also reveals an underlying logic that links interactions among an “extreme”
set of practices (castration (14), adult sacrifice (15), child sacrifice (16), grave-co-sacrifices
(8), and suicide (17)).

5.2. Hypothesising the Unknown

Landscape models enable us to predict unknown data: given partial information
about a group, Equation (1) allows us to conjecture about how the constraints, inferred
from other systems, would interact in the particular case at hand. Cases with genuine
expert disagreement, and cases where features of religious cultures are unknown due
to the ravages of time, are the most exciting to analyze in this way.

As a particularly compelling example, consider the “Archaic Spartan Cults” (800 BCE—
500 BCE). For these precursors to the Spartan state, both the presence of child sacrifice
and small-scale rituals have been coded by the DRH expert as “unknown to the field”. In
Table 4, we use the inferred parameters, along with what is known about the Spartans, to
compute the degrees of belief in the four combinations.

Table 4. Predictions of the landscape model for Archaic Spartan Cults.

Small-Scale Ritual No Small-Scale Ritual

Child sacrifice 1.2% 0.4%
No child sacrifice 69.7% 28.8%

The model is nearly 99% certain that the Cults did not practice child sacrifice.
In this case, the known absence of both castration and adult sacrifice, both of which
have sympathetic links with child sacrifice in the underlying model, are sources of evidence
against the proposition (see Figure 3A).

The model is also reasonably confident about the presence of small-scale rituals; here,
emergent constraints such as the strong pairwise coupling to the presence of large-scale
rituals, which the Spartan Cults are known to have had, tilt the balance in favor of small-
scale ritual. The judgement is less certain, however. The power of the Inverse Ising
model is seen here not just in its recognition of common patterns, but in how it parses out
the evidentiary value of different pieces of information.

5.3. The Landscape of Religious Culture

The basic output of our model is a probability distribution over 220 possible configura-
tions: a cultural landscape with peaks (small groups of high-probability configurations),
and valleys (areas of low-probability configurations). As we shall see, landscapes can also
include wider “floodplains”—more widely dispersed collections of configurations that are
reasonably, and relatively equally, probable.

It is difficult, however, to visualize all the configurations at the same time: placing all
the points of a 20-dimensional hypercube on a two-dimensional plot makes it hard to see
which configurations are close (and, e.g., part of a connected plateau) vs. far (e.g., two
well-separated peaks).

One way to approach this problem is to start with the topography of the most likely
configurations. In Figure 4, we represent the 150 most probable configurations as a network,
where configurations that differ in only one answer are connected by an edge, and the nodes
are arranged to best represent distances; roughly speaking, configurations that differ
in more answers are further apart (see Appendix A.1 for details). The configurations
shown in the network represent 42% of the total probability mass, and provide an overview
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of the region of the landscape that contains the most favored configurations. Since we only
visualize the 150 most probable configurations, a great deal of the landscape structure is not
represented, including rarely explored parts of the space (e.g., configurations that support
extreme practices, such as human sacrifice, suicide, and castration).

BA

C

Figure 4. (A) (left) shows the 150 configurations that have the highest probability mass according
to our model. We only show edges between configurations (nodes) that are immediate neighbors
(separated by 1 Hamming distance). Nodes are scaled by the probability mass assigned to each con-
figuration, and edges are scaled by the product of the probability mass of the nodes that they connect.
Colors are assigned to each of five groups based on hierarchical clustering (see Appendix A.2 and
the dendrogram, Figure A1). (B) shows the 50 most probable configurations in the local neighborhood
of the Free Methodist Church, while (C) shows the 50 most probable configurations in the local neigh-
borhood of the Roman Imperial Cult. In all cases (A–C), the layout is determined by a force-directed
placement algorithm [34] as implemented in Graphviz [35]. For more on the layout approach, see
Appendix A.1.

As a second aid to visualization, we used hierarchical clustering to construct a den-
drogram (see Appendix Figure A1). Based on this clustering, we can split nodes into
nested communities (see Appendix A.2). Table 5 provides names for the religions labeled
in Figure 4A, and Table 6 (and Appendix B Table A3) provides a list of the most distinctive
features of each group. The full list of groups is provided in Appendix B Table A3.

Group 1 (red) is the largest by probability mass (21%); it is characterized by a relative
presence of small- and large-scale rituals, monuments, and scriptures. Among others, this
group contains Ancient Egyptian religions, many Islamic traditions, and Catholic groups
such as the Jesuits and Cistercians.

Group 2 (blue) is the second-largest (12%); it is characterized by a relative absence
of small- and large-scale rituals, grave goods, and special corpse treatment. It includes
demotic, charismatic, and reform traditions, including many Protestant groups such as
the Southern Baptists, Jehovah’s Witnesses, and Pentecostalism. Group 2, in contrast
to Group 1, is more evenly weighted among its configurations; where Group 1 has a small
number of peaks, Group 2 is more like a “floodplain”. The configurations in the light
blue group (2.1) tend to be found closer to Group 1 topologically; they have higher rates
of state-political support than the configurations in the dark-blue group (2.2), and higher
rates of both monuments and special treatment of corpses.
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Table 5. Observed configurations labelled in Figure 4A; DRH ID can be used as reference to the
original source, e.g., DRH ID 654 (the Cistercians) can be found at https://religiondatabase.org/
browse/654/#/.

Group DRH ID Entry Name (DRH)

Group 1 654 12th–13th c. Cistercians
738 Ancient Egyptian
931 The Society of Jesus (Jesuits) in Britain
1043 Islam in Aceh
852 Pre-Christian Religion / Paganism in Ireland
1218 Yiguan Dao/I-Kuan Tao
358 16th-17th c. Gaudiya Vaisnava Tradition
456 The Essenes
984 Calvinism (Early/Reformation)

Group 2 1311 Jehovah’s Witnesses
855 Middle-Class Migrant Muslims in the UAE
879 Free Methodist Church
839 19th century German Protestantism
1307 Southern Baptists
906 The Church of England
1392 Messalians
859 Valentinians
609 Tallensi
1010 Pythagoreanism
883 Catholics in the People’s Republic of China (PRC)
1304 Peyote Religion (Peyotism)

Group 3 1251 Tsonga
230 Religion in Mesopotamia
1323 Luguru
534 Roman Imperial Cult
723 Trumai
1511 Sokoto
710 Hidatsa
769 Wogeo

Table 6. Distinctive features of the five clusters in the landscape of Figure 4A; + indicates higher than
average rates of “yes”; −, higher than average rates of “no”. See Appendix Table A3 for full list.

Group Color Top Distinctive Practices

Group 1 Red + rituals (small, large); + monuments; + scriptures
Group 2 Blue − rituals (small, large); − grave goods; − special corpse treatment
Group 3 Yellow − scriptures; + grave goods; + co-sacrifices in tomb

Finally, Group 3 (yellow) is the smallest by probability mass (9%). It is characterized
by a relative absence of written scripture, and a relative presence of grave goods, and co-
sacrifices in tombs. It includes many folk, traditional, indigenous, and “pre-Axial” [36] pa-
gan cultures, such as the Iban traditional religion, Roman Imperial Cults and Mesopotamian
religions. The light-yellow group (3.1), topologically further away from both Group 1 and
Group 2, is characterized by a relative absence of moralizing “big Gods” [37] who conduct
supernatural monitoring and punishment.

While the landscape is inferred without reference to time, cultural evolution appears
to have explored the landscape in a somewhat sequential fashion. These temporal effects in-
clude shifts from Group 3’s pre-Axial tribal and archaic religious cultures towards Group 1’s
later Axial religious cultures [36] and “big Gods” religions that co-evolved with large-scale
complex societies [31,33]. Group-3 religions tend to be older than those in nearby Group
1, which has the highest concentration of religious cultures committed to a belief in high
Gods. Group 2, in turn, includes popular developments out of Group-1 traditions into
contemporary society, including many Protestant religions and more recent groups such

https://religiondatabase.org/browse/654/#/
https://religiondatabase.org/browse/654/#/
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as Pentecostalism, a sect established in the twentieth century and rapidly becoming one
of the largest Christian sub-groups [33].

The landscape reflects more than just a temporal sequence of social, economic, and
material evolution, however. It also seems to capture the constraints of more permanent fea-
tures of the human mind. While Group 1 includes many later “solutions” to the constraints
found by Axial-age and “Big Five” religions, it also includes cases such as pre-Christian
Ireland. Religions, in other words, may co-evolve with social context, but they also have
to respect the psychological constraints on how we believe and keep faith, and may well
wander back to earlier solutions [38].

5.4. Focal Landscapes

Figure 4A provides an overview of how constraints combine to imply a landscape of config-
urations; a second possibility is to map the local landscape of configurations around a particular
group. Among other things, this provides a grounded way to speculate on how a culture
might evolve into the future, or where it might have come from—to ask, for example, which
bits in a configuration might flip, and whether or not this would push the religion to a more
probable configuration which is better able to satisfy the underlying constraints.

Figure 4B,C does this for two groups in our data, the (contemporary) Free Methodist
Church and the (ancient) Roman Imperial Cult. In both cases, we show fifty nodes:
the group itself as the focal node, and then the 49 most probable nearby configurations,
which differ in up to two answers from the focal case.

As seen in Figure 4B, the Free Methodist Church is situated at a local peak, and all neighbor-
ing configurations are of lower probability. Some of them appear in our data (e.g., the Southern
Baptists, and Pauline Christianity), but several are unoccupied. The highest probability configura-
tion in the local region is occupied by the Jehovah’s Witnesses, two steps away.

The Free Methodist Church does not require participation in large-scale rituals.
A change in this attribute is their most probable reformation (15%) and would place
them in the same configuration as the Southern Baptists. This change would take the Free
Methodist Church configuration closer to the local maximum, which is occupied by the Je-
hovah’s Witnesses. Another path to the Jehovah’s Witnesses configuration is through
Pauline Christianity. However, all paths from the Free Methodist Church to the Jehovah’s
Witnesses require intermediary states of lower probability. Slightly less probable is a muta-
tion in which the Free Methodists adopt a practice for special treatment of corpses (13%).
This reformation would take the Free Methodists in another direction in the landscape, and
there is no religion in our dataset that corresponds to this configuration.

In contrast to the Free Methodist Church, the Roman Imperial Cult (Figure 4C) sits
in a valley, with several neighboring configurations of higher probability. The Cult satisfies
the constraints better without its own distinct written language, than with (as was actually
the case), and with scriptures rather than without. Loss of its own distinct language would
shift it up to the Mesopotamia configuration, while acquiring scriptures would shift it up
to the Achaemenid configuration.

6. Discussion

The main goal of this work was to provide those in cultural evolution and socio-
physics with new methods, and accompanying code, for inferring the landscapes beneath
the incomplete data of the historical record. In addition to characterizing these meth-
ods through simulation, we showed how they play out in a real-world example, drawn
from the Database of Religious History. In the words of archaeologist David Hurst Thomas,
“it’s not what you find, it’s what you find out”, and we endeavored to show how landscape
models not only organize data from the field, but provide insight into the underlying laws
and dynamics that can help explain it.

A key direction for future research is to consider how these methods might be extended
to even larger configuration spaces. As the number of features considered increase, so do
the challenges; when n goes from 20 to 100, for example, the number of parameters goes
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from 210 to more than 5000. To maintain the same level of accuracy would, generically,
require the amount of data to rise by a similar factor—however, this may not always be
possible; in the final analysis, there are only a finite number of civilizations in human history.

A more creative solution to the problem is to go from the “unrestricted” Boltzmann
machine case, where all Jijs are (potentially) non-zero, to the “restricted” case, where
some links are set to zero by the researcher ahead of time. In this case, the researcher
sculpts a theory of constraints, restricting a priori the ways in which features may interact
and reducing the number of free parameters. Another solution is to connect nodes not
to each other, but to a small number of hidden variables—“layers”, in the deep-learning
jargon. If there are n features, and m hidden nodes, then the total number of parameters,
including local fields, is n(m + 1), which may make the problem tractable again. Hidden
layers have proven to be particularly expressive; in the physics jargon, they are equivalent
to how renormalization leads to higher order interactions [39]. The original MPF paper [5]
demonstrated the use of hidden nodes in this fashion, and the framework makes it possible
to extend our Partial-MPF algorithm to these cases as well.

These are the are challenges in inference. There are equally compelling challenges
in data curation itself. The DRH is one example of the exciting resources coming online
for researchers in the human sciences, but these sources bring complexities of interpretation
in their wake. As discussed in Appendix A.3, for example, drawing the boundaries between
one group and another—in space, or time—is not a simple matter. This raises questions
about how to properly combine the rich, qualitative data that comes from the field in ways
that properly represent the diversity of human possibilities.

We paid particular attention to mitigating different forms of bias: both the bias that
comes from undersampling a subset of traditions, and from how we treat missing data.
There are other forms of bias in the data curation stage, however, and one we have not
addressed is “question bias”: the ways in which the questions we use map the neighbour-
hoods of some cultures better than others.

One might imagine, for example, a set of questions very finely tuned to distinctions
between different forms of Christianity, but that end up lumping indigenous practices
in Africa into a single configuration. A scholar of Christianity might not, for example,
include questions about whether a religious group has practitioners who are separately
distinguished as “sorcerers” or “witches”, because the answer for all the traditions they
have in mind would be “no”; the same question, however, could track important aspects
of cultural evolution in other parts of the world (We thank one of our referees for this
example). If we build a global landscape solely on the basis of “Christianity” questions, we
will radically underestimate the diversity of indigenous traditions, and learn little about
the network of constraints the stabilize these traditions.

A natural test for question bias is to check the extent to which “truly different” groups
are mapped to the same configuration. If all of the groups in a particular region have an
identical configuration, for example, or an usually low level of diversity, it might suggest
that we are biased against important dimensions of the religious experience in that region.

Question bias is not, however, something that can be spotted or corrected purely
at the algorithmic level. It may well be the case, for example, that one region truly has less
religious diversity than another: the religions in a region may have emerged from a single
founding group and undergone very little further evolution. Adding questions to artificially
increase the diversity, in such cases, can do more harm than good—if the new questions
are about somewhat accidental properties, they will increase noise without adding insight.
In the final analysis, the proper construction of a landscape requires a proper choice
of questions, which, in turn, requires sensitivity to the differences that matter.
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Appendix A. Database of Religious History: Analysis and Data Considerations

Appendix A.1. Network Layout

As briefly touched upon in Section 5.3, it is mathematically impossible to faithfully
represent the 20-dimensional hypercube landscape in a two-dimensional layout. By only
laying out a subset of the possible configurations (e.g., in Figure 4A, 150 out of the to-
tal 220 possible configurations), dimensionality reduction techniques can approximately
compress the high-dimensional space into a low-dimensional spatial representation. We at-
tempted approaches based on minimizing a global energy function (e.g. multi-dimensional
scaling, and similar approaches [42]), as well as force-directed placement algorithms
(e.g., Fruchterman–Reingold heuristic [34]). We achieved the most appealing results follow-
ing the latter approach, using the algorithm as implemented in Graphviz [35]. We stuck
with this approach for network layouts throughout, i.e., in all the plots shown in Figure 4,
and in both plots shown in Figure 3. For the plots shown in Figure 4, the layout uses
only immediate neighbors (1 Hamming distance) and is unweighted. To create the spatial
layout of nodes for Figure 3, we thresholded the connections (couplings) between nodes
(Figure 3A), such that only connections with an absolute coupling value above 0.15 are
taken into account when running the force-directed algorithm. Figure 3B uses the layout
obtained from Figure 3A to facilitate comparison.

Appendix A.2. Hierarchical Clustering

We use agglomerative clustering as implemented in the Python package scikit-learn [43]
to cluster nodes into nested groups. This produces the dendrogram shown in Figure A1.
The algorithm starts off with all individual leaves (in our case configurations) in individual
clusters and then successively merges nearby elements together. This results in a hier-
archical grouping, where, e.g., the red clade is closer to the two yellow clades than it is
to the two blue clades. There is no natural resolution of number of clades, as can be seen
from Figure A1. Five clusters was chosen for clarity, but we emphasized the three overall
splits between red, blue, and yellow, and we could equally well have used a higher resolu-
tion (i.e., more fine-grained clades). Notice that changing the resolution does not change
the structure for the hierarchical clustering algorithm used here. This is in contrast to other
common (non-hierarchical) approaches, such as Louvain community detection [44], which
were found to give unstable results on our network of top configurations.

https://github.com/victor-m-p/cultural-landscapes
https://github.com/victor-m-p/cultural-landscapes
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Appendix A.3. Duplicate Entry Names

Entries in the Database of Religious History (DRH) all have a unique Entry ID, and
the record has a name associated with it (Entry Name), but this name is not necessarily
unique. In our sample of 407 religious cultures (Entry IDs), we have two religious cultures
with the exact same Entry Name, Donatism and Roman Private Religion. In the case
of Donatism, we do, in fact, appear to have two overlapping entries from different experts,
one which focus on Donatism from 311 CE to 427 CE, and one which focus on Donatism
from 311 CE to 600 CE. In this one case, a legitimate argument can be made that it would
be more appropriate to collapse this into one record about Donatism, using the flexibility
of our MPF algorithm to weight potential disagreement. The Roman Private Religion case
is different, with both entries submitted by the same expert, one describing the religious
culture between 202 BCE and 44 BCE, and the other one describing the religious culture
between 600 BCE and 202 BCE. In this case, the periods do not overlap, and it is reasonable
to assume that the expert has made the decision to split the records based on differences
between the two cultures about which she has expert knowledge. These cases raise a more
general point about independence, and how we should treat partially overlapping cultures.

The most extreme example from our curated subset of the DRH is the case of the An-
cient Egyptian religions. We have a total of six different entries about Ancient Egyptian
religions (e.g., early dynastic, first intermediate period, and old kingdom, etc.). Since
these cultures naturally overlap on most attributes, the model will consider Ancient Egyp-
tian religions as very stable configurations (which is, in fact, not totally unreasonable).
Four of these six different entries focusing on Ancient Egyptian religions have the same
configuration, and this configuration is assigned the second-highest probability mass
in the landscape (annotated as “Ancient Egyption” in Figure 4A). Whether this is reasonable,
or whether all of the Ancient Egyptian religions should be treated as one religious culture
(and be weighted accordingly) is a difficult question. As culture is fluid, and no culture is
completely independent from other—past and present—cultures, it seems impossible to de-
sign a general decision rule for whether to consider two cultures meaningfully independent.
In this paper, we took the records from the DRH at face value, and treated each unique
Entry ID as its own religious culture. In the future, more sophisticated approaches should
be pursued in collaboration with domain experts.
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Appendix B. Database of Religious History: Religions and Question Codes used
in This Analysis

Table A1. Question subset used in DRH analysis. “Long” question names, e.g., “Does the religion
have official political support”, correspond to “Related Question” as they appear in the DRH, besides
ending characters which have been modified, e.g., “Does the religious group have scriptures?” instead
of “Does the religious group have scriptures:” as it appears in the DRH. Short question names are used
for convenience. ID column was recoded to range from 1–20, and does not correspond to “Related
Question ID” in the DRH.

ID Question (Short; Long)

1 Official political support
Does the religion have official political support

2 Scriptures
Does the religious group have scriptures?

3 Monumental religious architecture
Is monumental religious architecture present?

4 Spirit-body distinction
Is a spirit-body distinction present?

5 Belief in afterlife
Belief in afterlife?

6 Reincarnation in this world
Reincarnation in this world?

7 Special treatment for corpses
Are there special treatments for adherents’ corpses?

8 Co-sacrifices in tomb/burial
Are co-sacrifices present in tomb/burial?

9 Grave goods
Are grave goods present?

10 Formal burials
Are formal burials present?

11 Supernatural beings present
Are supernatural beings present?

12 Supernatural monitoring present
Is supernatural monitoring present?

13 Supernatural beings punish
Do supernatural beings mete out punishment?

14 Castration required
Does membership in this religious group require castration?

15 Adult sacrifice required
Does membership in this religious group require sacrifice of adults?

16 Child sacrifice required
Does membership in this religious group require sacrifice of children?

17 Suicide required
Does membership in this religious group require self-sacrifice (suicide)?

18 Small-scale rituals required
Does membership in this religious group require participation in small-scale rituals (private, household)?

19 Large-scale rituals required
Does membership in this religious group require participation in large-scale rituals?

20 Distinct written language
Does the religious group in question possess its own distinct written language?
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Figure A1. Dendrogram obtained by running an agglomerative clustering algorithm [43] on the
150 most probable configurations in our landscape. Labels correspond to the “Node” column
in Table A3.
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Table A2. For each community, we calculate the average possession of each of the 20 religious
attributes. We weight this by the probability of each configuration in the community, and convert
it to a percentage (Self). We compare this to the average possession of the attribute across all
configurations that are not in the community. Again, we weight this by the probability of each
configuration and convert it to a percentage (Other). We calculate the difference (S-O), and show
the three attributes for which each community differ most from the rest.

Group Color Question Self Other S-O

Group 1 Red Small-scale rituals required 97.41 38.67 58.74
Monumental religious architecture 79.64 40.41 39.23
Scriptures 94.95 56.08 38.87
Large-scale rituals required 100.00 65.77 34.23
Reincarnation in this world 38.47 8.93 29.54

Group 2 Blue Small-scale rituals required 22.25 86.72 −64.47
Grave goods 7.43 57.19 −49.76
Large-scale rituals required 50.90 95.99 −45.09
Special treatment for corpses 44.53 87.74 −43.20
Official political support 40.79 76.01 −35.22

Group 3 Yellow Scriptures 19.37 90.21 −70.84
Grave goods 86.97 30.62 56.35
Co-sacrifices in tomb/burial 37.15 3.81 33.34
Official political support 91.69 58.64 33.06
Special treatment for corpses 98.27 68.76 29.51

Distinctive community features.

Table A3. For each observed religion, we count up the total probability mass which corresponds
to configurations in either of the five communities. We assign the religion to the community which
contains the configuration with the highest probability mass. Some observed religions will not appear
in this table because none of their possible realized configurations correspond to data states in the top
150 most probable configurations. Some observed religions contain missing data or inconsistent
coding. Complete records (religions that have a unique configurations) will appear with 100% weight,
and incomplete records will appear for the community in which the sum is highest. DRH ID can be
linked back to the original entry online; e.g., https://religiondatabase.org/browse/654/#/ links
to DRH ID 654 (the Cistercians). Group 1 corresponds to the red community, Group 2.1 corresponds
to the light-blue community, Group 2.2 corresponds to the dark-blue community, Group 3.1 corre-
sponds to the light-yellow community, and Group 3.2 corresponds to the dark-yellow community
(see Figures 4 and A1).

Group Node DRH ID Entry Name (DRH) Weight

Group 1 1 654 12th–13th c Cistercians 100
Group 1 1 661 Congregation of Savigny 100
Group 1 1 899 Nahdlatul Ulama (NU) 100
Group 1 1 943 Moravian Missionaries in Nunatsiavut 100
Group 1 1 963 The Knights Templar 100
Group 1 1 966 Naqshbandı̄ Order, Naqshbandı̄ Tarı̄qa, Naqshbandı̄yyah, Khwājagān, 100
Group 1 1 974 Greek Chalcedonian Christians, Nicaea 100
Group 1 1 1293 The Zapotec or Ben ’Zaa (The Cloud People) 100
Group 1 1 676 The Order of the Holy Trinity for the Redemption of Captives, 1198–1500 55.01
Group 1 1 1466 Islamic modernists 51.06
Group 1 1 900 Pharisees 50.63
Group 1 1 965 Pachomian Monasticism 44.75
Group 1 1 888 Céli Dé monks 38.77
Group 1 1 843 Bnay Qyāmā and Bnāt Qyāmā 29.88
Group 1 1 691 Fur 28.28
Group 1 1 1268 Monotheistic Pre-Islamic South Arabia 26.53
Group 1 2 476 Cham Bani 100.00
Group 1 2 738 Ancient Egyptian 100
Group 1 2 788 The Late Bronze Age City-State of Ugarit 100
Group 1 2 970 Cult of Isis (Mysteries of Isis) 100
Group 1 2 1006 Ancient Egypt—Old Kingdom 100.00
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Table A3. Cont.

Group Node DRH ID Entry Name (DRH) Weight

Group 1 2 1008 Ancient Egypt—First Intermediate Period 100
Group 1 2 1125 Ancient Egypt—the Ramesside Period 100
Group 1 2 1069 Religion at Deir el-Medina 95.76
Group 1 2 1162 Lingbao dafa 93.52
Group 1 2 1258 Religion in Judah 93.52
Group 1 2 1191 Religion in Greco-Roman Alexandria 75.48
Group 1 2 228 Late Chosŏn Korea 53.15
Group 1 2 1149 Christianity in Tang China 35.99
Group 1 3 632 Local Religion at Selinous 100
Group 1 3 931 The Society of Jesus (Jesuits) in Britain 100
Group 1 3 1140 Early Medieval Confucianism 100
Group 1 3 354 Priests and Scholars of Hellenistic Uruk 98.01
Group 1 3 1004 Religion in Roman Ostia 51.50
Group 1 3 1227 Polytheistic Pre-Islamic South Arabia 32.14
Group 1 5 1043 Islam in Aceh 100.00
Group 1 5 1108 Early Christianity and Monasticism in Egypt 83.98
Group 1 6 852 Pre-Christian Religion/Paganism in Ireland 82.15
Group 1 6 1231 Shenxiao (“Divine Empyrean”) Daoism 54.45
Group 1 6 960 Bön (Bon) 52.93
Group 1 7 1218 Yiguan Dao/I-Kuan Tao 90.44
Group 1 9 358 16th-17th c. Gaudiya Vaisnava Tradition 73.72
Group 1 9 590 Huayan School (Early Tang) 51.70
Group 1 9 1172 Twofold Mystery (Chongxuan) 33.31
Group 1 11 914 Tariqa Shadhiliyya 100
Group 1 11 1370 Teda 69.30
Group 1 11 994 Monastic Communities of Lower Egypt: Nitria, Kellia, Scetis 35.27
Group 1 11 456 The Essenes 31.62
Group 1 12 416 Edinoverie 100.00
Group 1 12 984 Calvinism (Early/Reformation) 100
Group 1 15 442 Donatism 100.00
Group 1 15 483 Northern Irish Roman Catholics 100
Group 1 15 989 Opus Dei 100.00
Group 1 15 1038 Sino-Muslims in Qing China 100
Group 1 15 1321 Mourides (Muridiyya) 100
Group 1 15 387 Ahmadi; Ahmadiyya Muslim Jama’at; Ahmadiya 50.15
Group 1 15 927 Zealots 28.67
Group 1 18 176 Qumran Movement 62.40
Group 1 26 1295 Donatism 77.18
Group 1 26 621 Haitians 33.15
Group 1 28 869 Sichuan Esoteric Buddhist Cult 100
Group 1 29 891 Peruvian Mormons 100
Group 1 29 983 Tibetan and Himalayan Mundane and Landscape Cults 100
Group 1 29 493 Krishna Worship in North India—Modern Period 32.01
Group 1 29 441 Worshipers of Śı̄talā 29.47
Group 1 31 972 Nestorian Christianity 86.73
Group 1 31 1012 Inhabitants of Medieval Kurgus 83.58
Group 1 31 944 Mohyla’s Ukrainian Church 76.62
Group 1 33 200 Nechung Cult 100
Group 1 33 390 Dasara 100
Group 1 33 415 Shaiva World Renouncers 100
Group 1 33 440 Jain Digambara Tantra, Karnataka 100
Group 1 33 636 Balinese Śaiva priests (pedanda siwa) 68.74
Group 1 38 1041 Korean Catholicism 100
Group 1 39 850 Pre-Christian Religion / Paganism in Gaul 77.24
Group 1 41 420 Swaminarayan Sampraday 100
Group 1 41 227 Hindu Goddess Worship in Northwest India—Modern Period 83.93
Group 1 41 623 Diasporic American Hinduism 32.95
Group 1 42 1241 Taiping Movement 61.03
Group 1 42 870 Postsocialist Mongolian Buddhism 49.11
Group 1 42 934 Mongolian Buddhism during the Revolutionary Period 44.78
Group 1 43 1192 Kaharingan 100.00
Group 1 45 657 Trukese 23.23
Group 1 49 667 Ainu 58.28
Group 1 49 736 Jivaro 45.07
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Table A3. Cont.

Group Node DRH ID Entry Name (DRH) Weight

Group 1 49 1210 Mende 44.09
Group 1 49 717 Igbo 26.85
Group 1 49 1110 Twana 18.96
Group 1 59 563 Gaddi, a Hindu community of the Western Himalayas 100
Group 1 63 1178 Modern Mystery School (MMS) 100
Group 1 63 802 Chinese Nunnery in Myanmar 33.18
Group 1 69 886 Pushtimarg (The Path of Grace) in the UK and Gujarat 100
Group 1 75 714 Tamil Śaiva Bhakti 100
Group 1 75 926 Ladakhi Buddhism 100.00
Group 1 94 1247 Exovedate 100
Group 1 94 744 Rwala Bedouin 27.13
Group 1 108 526 Hmong Christianity 100.00
Group 1 108 564 Tribal Christianity (and allied castes) in the Himalayas 100
Group 1 110 686 Popoluca 53.45
Group 1 124 887 Postsocialist Mongolian Shamanism 84.17
Group 1 124 576 Kuy traditional religions 49.14
Group 1 133 958 Society of Jesus 100
Group 1 150 987 Parsis, Zoroastrians of India 100
Group 2.1 8 855 Middle-Class Migrant Muslims in the UAE 100
Group 2.1 8 1076 Inquisitors of Goa’s Santo Ofício 100
Group 2.1 22 1196 K’iche’ (Quiché) 68.03
Group 2.1 24 839 19th century German Protestantism 100
Group 2.1 24 1371 Twelver Shi’ism in post-revolutionary Iran 100
Group 2.1 37 1374 The Reformed Church (Early Orthodoxy) 100
Group 2.1 37 1522 Tijaniyya Order/ 100
Group 2.1 37 906 The Church of England 62.60
Group 2.1 54 609 Tallensi 28.36
Group 2.1 58 977 Chishti Sufis 100
Group 2.1 58 883 Catholics in the People’s Republic of China (PRC) 99.63
Group 2.1 60 602 Amhara 26.91
Group 2.1 71 1517 Tunisian Women’s Associations 55.28
Group 2.1 79 1333 Cult of Thecla 90.43
Group 2.1 85 935 Nigerian Pentecostalism 100
Group 2.1 85 1127 Anglican Church of Korea 100
Group 2.1 85 1376 African Initiated Churches 53.25
Group 2.1 88 633 Mādhva 69.68
Group 2.1 95 884 Sub Saharan Africa Pentecostalism 100
Group 2.1 96 941 Chan Buddhists in early Qing period 86.26
Group 2.1 96 1024 Universal Salvation Ritual 34.38
Group 2.1 103 928 The Ghost Dance Movement and the Lakota Sioux 100
Group 2.1 104 1349 The Dingxiang Wang Cult 61.80
Group 2.1 130 419 The Worship of Jagannath in Puri (Odisha) 100
Group 2.1 145 607 Mohism 66.52
Group 2.1 146 637 Yahgan 90.63
Group 2.2 4 873 The Branch Davidians 100
Group 2.2 4 880 Egyptian Salafism (inluding North Africa and West Asia) 100
Group 2.2 4 968 Anabaptist Mennonites in North America, 1683–2021 100
Group 2.2 4 988 Churches of Christ- United States 100
Group 2.2 4 1311 Jehovah’s Witnesses 100
Group 2.2 4 858 The New Prophecy or “Montanism” 87.89
Group 2.2 4 897 Gaengjeongyudo 71.90
Group 2.2 4 948 Christianity in Ephesus 46.18
Group 2.2 4 196 Pauline Christianity (ca. 45–60 CE) 39.29
Group 2.2 4 1309 Circumcellions 31.63
Group 2.2 17 857 Wesleyanism 100
Group 2.2 17 879 Free Methodist Church 100.00
Group 2.2 17 942 African Methodist Episcopal Church 100
Group 2.2 17 950 The Religious Society of Friends 100
Group 2.2 17 975 Neo-Charismatic Movement—Third Wave Charismatic Movement 100.00
Group 2.2 17 1334 No-debt Movement in US Evangelicalism 100.00
Group 2.2 17 892 Charismatic Renewal Movement in Christianity—Second Wave Pentecostalism 96.88
Group 2.2 36 1307 Southern Baptists 100
Group 2.2 44 1392 Messalians 39.84
Group 2.2 46 859 Valentinians 83.50
Group 2.2 53 953 Sachchai 96.93
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Table A3. Cont.

Group Node DRH ID Entry Name (DRH) Weight

Group 2.2 55 1010 Pythagoreanism 66.18
Group 2.2 64 1013 Estado da Índia Renegades in Deccan 100
Group 2.2 64 182 Pauline Christianity 63.55
Group 2.2 109 1304 Peyote Religion (Peyotism) and the Native American Church 100
Group 2.2 109 812 Temple of the Jedi Order 81.19
Group 2.2 115 862 Ilm-e-Khshnoom 100.00
Group 2.2 125 842 American Evangelicalism 100.00
Group 2.2 125 915 Protestantism welcoming People with Disabilities 100.00
Group 2.2 129 871 Spiritualism 100
Group 3.1 76 768 Mundurucu 35.17
Group 3.1 76 723 Trumai 21.93
Group 3.1 80 1511 Sokoto 53.77
Group 3.1 92 710 Hidatsa 50.32
Group 3.1 105 689 Lengua 21.84
Group 3.1 127 677 Yapese 44.57
Group 3.1 128 658 Mapuche 87.90
Group 3.1 139 769 Wogeo 46.72
Group 3.1 143 764 Timbira (Canela) 95.67
Group 3.1 143 1228 Lesu 41.89
Group 3.1 149 1240 Azande 63.60
Group 3.1 149 737 Nama Hottentot 51.49
Group 3.1 149 1458 Mbuti 35.30
Group 3.2 10 1251 Tsonga 10
Group 3.2 10 794 Omaha 82.23
Group 3.2 10 389 Iban traditional religion 68.05
Group 3.2 10 492 Roman Divination 59.68
Group 3.2 10 748 Lamet 41.79
Group 3.2 10 729 Kikuyu 32.93
Group 3.2 10 1434 Kuna 28.65
Group 3.2 10 739 Lakalai 27.59
Group 3.2 13 230 Religion in Mesopotamia 100
Group 3.2 13 1129 Ancient Thessalians 100
Group 3.2 13 1337 Tell Afis (Syria) 55.01
Group 3.2 13 757 Kiribati 32.51
Group 3.2 13 1101 Natchez 22.65
Group 3.2 19 685 Badjau 82.79
Group 3.2 20 1323 Luguru 69.58
Group 3.2 21 993 Pontifex Maximus and Pontifices (Pontifical College) 100
Group 3.2 23 424 Achaemenid Religion 89.49
Group 3.2 23 681 Sargonic Empire 50.82
Group 3.2 25 534 Roman Imperial Cult 100
Group 3.2 25 1051 Religion at Tell el-Dab’a (ancient Avaris) in Ancient Egypt 98.74
Group 3.2 25 1189 Yādiya/Sam’al 90.74
Group 3.2 25 479 Mesopotamian city-state cults of the Early Dynastic periods 37.75
Group 3.2 27 1248 Religion in the Old Assyrian Period 100
Group 3.2 27 712 Huichol 27.33
Group 3.2 27 1015 Ancient Egypt—Predynastic Period—Early Naqada Culture 27.12
Group 3.2 32 721 Semang 89.41
Group 3.2 32 651 Kapauku 56.67
Group 3.2 35 470 Archaic Spartan Cults 69.65
Group 3.2 48 224 Old Norse Fornsed 42.32
Group 3.2 57 581 Mentawai (Rereiket) 39.64
Group 3.2 57 620 Papago 25.17
Group 3.2 77 662 Goajiro 51.79
Group 3.2 77 578 Gond 42.36
Group 3.2 81 650 Manus 61.11
Group 3.2 81 626 Barama River Carib 52.54
Group 3.2 81 614 !Kung 39.80
Group 3.2 87 1246 Shilluk 58.89
Group 3.2 87 733 Kaska 50.10
Group 3.2 99 722 Gros Ventre 92.31
Group 3.2 101 918 Fangshi 56.42
Group 3.2 120 257 Classic Zapotec 73.85
Group 3.2 120 671 Mbau Fijians 69.48
Group 3.2 120 1420 Creek 63.49
Group 3.2 120 732 Marquesans 19.45
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Table A4. Religious cultures in our dataset that do not have configurations (or even possible configu-
rations) which overlap with the 150 most probable configurations visualized in Figure 4.

DRH ID Entry Name (DRH)

23 Late Shang Religion
173 Johannine Christianity
174 Matthew-James-Didache Movement
190 Sri Lankan Buddhism (1948-Present)
204 Han Confucianism
217 Roman private religion
222 Late Classic Lowland Maya
231 Roman private religion
263 Irish Catholicism
284 Yolngu religion
294 Xuanxue
308 Neo-Assyrian Scholars
310 Aztec Imperial Core
364 Chittagong Plain Buddhists
378 Bahinabai Chaudhari’s Songs: A Performance Tradition in Maharashtra
381 Sikhism: Guru Nanak to Guru Arjan
383 Varkaris
392 Sikhism: Guru Hargobind to Guru Gobind Singh
395 International Society for Krishna Consciousness (ISKCON)
400 Singaporean Mega-Churches
422 Demeter Cult
439 Śaiva Magic
455 Lan Na Buddhism
469 Won-Buddhism
472 Karma Kagyu or Kamtsang Kagyu
477 Tractarian Movement
478 Early Indian Buddhism
484 Northern Irish Protestants
485 Sámi pre-Christian religion
486 Church of Jesus Christ of Latter-day Saints (early)
490 Guglielmites
491 Anglican Church
520 Cham Ahiér
525 Church of Jesus Christ of Latter-day Saints (modern)
535 Pāśupatas
562 Medieval Srivaisnavism
570 Supreme Master Ching Hai World Society
580 Nāth Sampradāya
582 Siamese (Central Thai)
586 Kelantanese Thai Religion
589 Warrau
592 Veerashaivas
597 Confucianism - Eastern Zhou
599 Lepcha
605 Burmese
613 Maori
618 Nuxalk
619 Gilyak
624 The Roshaniyya
625 Copper Inuit
627 Tikopia
629 Newar Buddhists
630 Aranda
631 Cayapa
635 Ifugao
638 Klamath
639 Chinese Esoteric Buddhism (Tang Tantrism)
645 Meo Muslim, Mev, Mewati Muslim
646 Lakota Religious Traditions
647 Havasupai
649 Worshippers at the Chidambaram Nataraja Temple, Modern Period
652 Tiwi
655 Siriono
660 Iban
666 Siuai
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Table A4. Cont.

DRH ID Entry Name (DRH)

669 Orokaiva
674 Aymara
675 Chukchee
679 Santal
680 Gujarati Mata Worshipers
682 Lakher
684 Huron
688 Darul Uloom Deoband
690 Ahl-e-Sunnat wa Jamaat
711 Kwoma
713 Northern Saulteaux
719 Hinduism in Trinidad
726 Early Sramanas
727 Raglai
742 Thai Bhikkhunis
745 Buka
749 Korean shamanism
751 Buddhism in the Mekong Delta
752 Haroi
755 Uyghur Islam
759 Comanche
765 The Oneida Community
770 Thai Forest Tradition
771 Muscular Christianity
826 The Church of Christ, Scientist
833 Dobu
841 Sa skya
846 Xuanzang’s Yogācāra Tradition
848 Sadducees
849 “Gaiwiio Religion,” “Longhouse Religion,” or “The Way of Handsome Lake” of the

Seneca Tribe
851 Sikhism in the United States
854 pre-Christian Irish
860 Kimpa Vita
867 Nyingma Treasure
877 The International Network of Engaged Buddhists - INEB
882 Orphism
885 Contemporary West African Vodun
893 Sethian Gnostic
894 Universal Fellowship of Metropolitan Community Churches
896 Sannō Shintō
898 Rastafari of Jamaica
910 Christian Base Community movement
919 Catholicism in contemporary Croatia
921 Bhils
924 Muridiyya of Senegal
925 Rabbinic Judaism (Babylonia)
929 Drikung Kagyu
933 Marcionites
937 Vestal Virgins
938 Ugarit
939 Goodenough and Fergusson Islanders
940 Julio-Claudian Imperial Cult
946 Nyingma (rnying ma)
949 The Church of All Worlds
952 Ethiopian Jews
957 Spartan Religion
961 Romanian Orthodox Church
962 Amdo Gelukpa
964 Baul Fakirs of Bengal
967 Unitarian Universalism
969 Adi Dravida/Valluva Sakya Buddhism
971 Ganapatya
973 The Sarna religion of the Oraons of Jharkhand
976 Mising Community
978 Indonesian Catholicism
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Table A4. Cont.

DRH ID Entry Name (DRH)

980 Pure Land Buddhist Schools in Early Medieval Japan
981 Nation of Islam
982 The Samaritans (Persian to early Roman periods)
985 The Victorines
986 Theurgy
991 Beat Buddhism
995 Tamil Neo-Saivism
997 Ancient Egypt - Early Dynastic Period
1028 German Pietists (Hasidei Ashkenaz)
1037 Third Intermediate Period in Ancient Egypt
1044 Han Imperial Cult under Emperor Wu
1060 The Taizhou Movement
1071 Digital Shinto Communities
1083 Drukpa Kagyü School (Bhutan)
1087 The Bogomils
1106 Old Kingdom Religion at Abydos
1109 Chan Buddhism in the Song
1133 Religion in Greco-Roman Egypt
1134 Tiantai
1136 The Fellowship of Goodness (Tongshanshe)
1153 Russian Orthodox Mission in Alaska
1154 The Cult of the Fox
1156 Solovetski monastery
1180 Batak Traditional Religions
1183 Religion at Nippur in the Ur III period
1197 Atheism in the Soviet Union
1199 Tiv
1223 Toda
1234 Ashanti
1279 Mandarese Muslims
1283 Butonese Muslims
1284 Religion of Phoenicia
1289 Buginese Muslims
1299 Russians (of Viriatino Village)
1300 Enlace de Agentes de Pastoral Indígena (EAPI, Network of Indigenous Ministry Agents)
1301 Moche (Mochica)
1312 Bishnoi
1319 Reginistas
1322 Pagans under the Emperor Julian
1335 Congregation of the Oratory
1341 Muslim Students Association of the United States and Canada
1344 Tibetan Nonsectarianism (ris med)
1352 Sakadvipiya Brahmanas
1357 Encratites
1386 Liumen (Liu School)
1390 Eastern Apache
1396 Ptolemaic Egypt—Egyptian Religion
1397 The Classic Period Peripheral Coastal Lowlands Ritual Ballgame Cult
1409 Formative Olmec
1412 Tenrikyo
1415 Anomeans
1419 Ancient Egyptian Religion in the Early 18th Dynasty
1426 Early Missionary Christianity in China
1433 Novatians
1436 The Monastic School of Gaza
1441 Mexica (Aztec) Religion
1454 Hesychastic Controversy
1468 Eastern Christianity From Nicaea to Chalcedon
1495 Secular Buddhists
1521 Order of the Hermits of St Augustine (Augustinian friars)
1542 Umbanda
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