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Abstract: Because it is an accessible and routine image test, medical personnel commonly use a
chest X-ray for COVID-19 infections. Artificial intelligence (AI) is now widely applied to improve
the precision of routine image tests. Hence, we investigated the clinical merit of the chest X-ray to
detect COVID-19 when assisted by Al. We used PubMed, Cochrane Library, MedRxiv, ArXiv, and
Embase to search for relevant research published between 1 January 2020 and 30 May 2022. We
collected essays that dissected Al-based measures used for patients diagnosed with COVID-19 and
excluded research lacking measurements using relevant parameters (i.e., sensitivity, specificity, and
area under curve). Two independent researchers summarized the information, and discords were
eliminated by consensus. A random effects model was used to calculate the pooled sensitivities
and specificities. The sensitivity of the included research studies was enhanced by eliminating
research with possible heterogeneity. A summary receiver operating characteristic curve (SROC)
was generated to investigate the diagnostic value for detecting COVID-19 patients. Nine studies
were recruited in this analysis, including 39,603 subjects. The pooled sensitivity and specificity were
estimated as 0.9472 (p = 0.0338, 95% CI 0.9009-0.9959) and 0.9610 (p < 0.0001, 95% CI 0.9428-0.9795),
respectively. The area under the SROC was 0.98 (95% CI 0.94-1.00). The heterogeneity of diagnostic
odds ratio was presented in the recruited studies (I = 36.212, p = 0.129). The Al-assisted chest X-ray
scan for COVID-19 detection offered excellent diagnostic potential and broader application.

Keywords: artificial intelligence; chest X-ray; SARS-CoV-2; COVID-19; summary receiver operating
characteristic curve

1. Introduction

COVID-19 is a deadly pathogenic disease that results from the dissemination of
coronavirus infection [1]. Acute respiratory distress syndrome, nervous system problems,
organ dysfunction, or death may be caused by COVID-19 [2,3]. Thus, early recognition
and prompt medical treatment of COVID-19 has become a major issue. To identify COVID-
19 easily and efficiently, and to determine the prognosis, researchers have focused on
researching and developing new detection methods [4]. To date, the chest X-ray is cheaper
than other specialized methods. The chest X-ray is assessable from the image and has
been refined during the last decade [5]. Recent evidence has indicated that the chest
X-ray is a potent way of forecasting pulmonary diseases [6], respiratory diseases [7],
cardiovascular diseases [8], or acute internal bleeding [9]. Cytokine storms and innate
immune system overworking may trigger Acute Lung Injury (ALI) and the induction of
acute respiratory distress syndrome (ARDS) related to the COVID-19 patients involved
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with hypertension [10]. Multiphase fibrosis, tissue stiffness, and lung function damage [11]
may be caused by the hyaluronic acid (HA) molecules’” product in lung tissue, which is
triggered by the cytokine storm. SARS-CoV-2 transparent cells relying on binding to the
spike (S) glycoprotein of the Angiotensin-Converting Enzyme 2 (ACE2) receptor [12,13].

Therefore, a chest X-ray or computed tomography (CT) scan are recommended as
first-line diagnostic tools for pulmonary involved patients [14]. Multilobar bilateral and
unilateral chest X-ray, ground-glass opacity (GGO), and peripheral infiltrates on chest CT
scans have been clinically proven to have a radiological role in the diagnosis of the COVID-
19 disease [15,16]. For the peripheral regions of tissue, more than one lobe was found in the
form of GGOs, or less nodules were found in each lobe [14,17]. The diagnosis of vascular
nodules in the images of patients was difficult to attribute to the removal and large number
of lung CT images and their complex and heterogeneous structures [18]. Thus, the artificial
intelligence (AI) systems that assist medical imaging for screening have gained an important
role in supporting decision making [19]. The Al presented an ability to change clinical
decision-making; however, we should be cautious about implementing Al systems in each
information system [20]. In terms of the merit of Al systems for physicians, Al systems
assist as a diagnostic tool, making faster and efficient decisions. The augment ability on
medical imaging in disease diagnosis is driving advances in traditional image processing
and Al algorithms to retrieve diagnostic information. When diseases occur, Al provides a
physician with the necessary diagnostic information required to speed up diagnosis and
add precision intervention decisions. Some traditional image-assisted techniques for Al
diagnosis contain contours and region progression, which provide a physician an aid with
which to extract diagnostic information. Moreover, traditional models experience limited
performance, customizability, and a strong reliance on in-advance computed features. Al
has the ability to avoid the above limitations and to derive complex image features by
importing feature semantics into classifiers [21-23]. In previous studies that evaluated the
relationship between the use of a chest X-ray and COVID-19 incidence and death rates, it
was found that the chest X-ray has not only diagnostic value but also great potential as a
prediction image for clinical outcomes [24,25].

Recently, a study conducted a literature review on the diagnostic role of Al, which
suggested its excellent potential and wide application relative to comparative methods,
based on sufficiently sized datasets and independent testing [26]. The study found that
radiographic diagnostics have sharper sensitivity than laboratory testing when compared to
the numerous diagnoses of COVID-19 under development that employ Al to swiftly assess
chest CT imaging [26]. Nonetheless, this study was based on a restricted review without
considering a summary sensitivity and the specificity of the receiver operating characteristic
curve (ROC). Hence, a more rigid multi-center study investigating the predictive role of
Al-assisted chest X-ray scans for COVID-19 is guaranteed to improve our understanding of
the accuracy of Al diagnostic devices.

According to the preceding study, we implemented a meta-analysis to evaluate the
diagnostic value of Al-assisted chest X-ray scans to determine their accuracy in COVID-19
patients.

2. Materials and Methods
2.1. Seek Tactics and Picking Standard

We used PubMed, Cochrane Library, MedRxiv, ArXiv, and Embase to search for
research published from 1 January 2020 to 30 May 2022 involving “machine learning”,
“artificial intelligence”, “medical image”, “SARS-CoV-2”, and “COVID-19”, because publi-
cation related to Al was distinct from traditional therapeutic publication. Only research
that considered chest X-rays to probe the usage of Al were chosen for the review. From
the selected papers, the following data were excerpted: the number of datasets used for
training and validation, the proportion of COVID-19 scans within the dataset, and the sensi-
tivity, specificity, and area under curve (AUC) of the proffered manner. We also considered
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whether the datasets and model code were estimable. The research was then classified by
imaging process: chest X-ray.

The following MeSH terms and their combinations were searched, including (Machine
learning OR Artificial intelligence OR Medical image) and (SARS-CoV-2 OR COVID-19)
and (AUC OR ROC OR Sensitivity OR Specificity).

2.2. Procedures

This review was performed in accordance with the preferred reporting items for
systematic reviews and meta-analyses (PRISMA). Two researchers (IST and PCH) inde-
pendently extracted the data from the included studies. Two researchers (IST and PCH)
performed the initial screening, manually searching the results and selecting articles for
full-text retrieval in the title (or abstract) review process. The opinion of the third re-
viewer (WLS) was considered if identification was inconsistent between IST and PCH.
They determined eligibility by screening the titles and abstracts of the retrieved studies
and extracted data by constructing a excel table. They validated any discrepancies and
addressed concerns through discussion to achieve consensus in the extracted data. In-
formation bias may be generated from an image data source, which also influenced the
results of study. Several sources of imaging data included the type of imaging contexts (i.e.,
three- or two-dimensional), type of Al approach, sensitivity, and specificity extracted from
recruited studies. The risk of bias was frontally evaluated by two independent reviewers
(IST and PCH). Next, we reviewed each study using the Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) guidelines [27]. The QUADAS-2 tool was used to assess
the methodological quality of the included studies [27]. The QUADAS-2 tool consisted of
four key domains covering patient selection, index test, reference standard, and flow and
timing. We identified the risk of bias as "high’, ‘low’, or ‘unclear’. The result of the risk of
bias for the recruited studies was presented using a plot.

2.3. Statistical Analysis

According to the patients with or without a COVID-19 diagnosis, we calculated counts
of true positives (i.e., sensitivity multiply number of COVID-19 diagnoses), false positives
(i.e., (1-specificity) multiply number of non-COVID-19 diagnoses), true negatives (i.e., speci-
ficity multiply number of non-COVID-19 diagnoses), and false negatives (i.e., (1-sensitivity)
multiply number of COVID-19 diagnoses) of COVID-19 from the included research and
calculated the pooled estimates for sensitivity and specificity and corresponding 95% CI.

The “mada” package [28] was used to assess the data to explore the pooled sensitivity
and specificity and their 95% CI. The “mada” package [28] was also used to evaluate the
summary receiver operating characteristic curve (SROC), which was used to calculate
the AUC value. Finally, funnel plots were created to examine the publication bias of the
included studies. All statistical analyses and graphical presentations mentioned above
were implemented using R software (4.2.0 version, Vienna, Austria).

3. Results
3.1. Literature Selection and Quality Assessment

After evaluating and carefully screening all the studies from the databases, the litera-
ture search yielded nine eligible studies [29-37], including 39,603 participants (included
2976 COVID-19 cases and 36,627 non-COVID-19 individuals). The PRISMA flowchart of
study selection is shown in Figure 1.
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Figure 1. The PRISMA flowchart of study selection.

3.2. Risk of Bias Assessment

Based on the definition of the criterion standard for the detection of COVID-19 using
chest X-rays assisted by Al system, data were extracted from the recruited studies for this
meta-analysis. Extraction data included the first author, year of publication, the conducted
study country, type of study, and number of patients. The QUADAS-2 tool was used to
assess the quality and potential bias of nine studies. Four key domains covering patient
selection, index test, reference standard, and flow and timing were assessed. The results of
the literature quality assessment using QUADAS [27] are provided in Figure 2. Low risk
bias implied confidence on the part of the literature reviewer that results represent the true
diagnostic effect (such as sensitivity, specificity, and AUC). Figure 2 showed that 90% of the
“overall risk of bias” item presented as having a low risk of bias.
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Figure 2. The risk of bias plot.

3.3. General Characteristics

We summarize the general characteristics of all nine studies included in this meta-
analysis in Table 1 and their research findings. The general characteristics of the recruited
studies are shown in Table 1. We found that four studies were conducted in the United
States of America and that the other five studies were conducted in different countries,
respectively. Next, we included seven case-control studies and two retrospective stud-
ies. For participants in this meta-analysis, this study included 2976 COVID-19 cases and
36,627 non-COVID-19-diagnosed individuals. The sensitivity and specificity of the nine
studies are presented as a forest plot in Figure 3. We also presented 95% CI of sensitivity

and specificity for the nine studies in Figure 3.
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Figure 3. The forest plot of sensitivity and specificity results of the nine studies.
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Table 1. The general characteristics of the recruited studies.
Study . Publication Study Deep Learning Non- e s [
Number First Author Year Country Type Dataset Model All Data COVID COVID Sensitivity Specificity
COVID-19/non-
United Case COVID Microsoft
1 Borkowski [29] 2020 States of trol pneumonia/ CustomVisi 1000 500 500 100 95
America contro COVID-19/non-COVID ustomuyision
pneumonia/normal
United COVID-19/non-
2 Zokaeinikoo 5y States of Case COVID AIDCOViusing  5g 269 5532 99.3 99.98
[30] A . control infection/ VGG-16
merica normal
. . COVID-
3 Keidar [31] 2021 Israel Retrospective RetNet50 2427 360 2067 87.1 92.4
19/normal
Case COVID/non-
4 Ahmed [32] 2021 Japan control COVID HRNet 1410 410 1000 98.53 98.52
COVID /bacterial
United pneumonia/
5 Kikkisetti [33] 2020 States of Retrospective viral VGG-16 2031 445 1586 79 93
America pneumonia/
normal
. Case COVID/non-
6 Shibly [34] 2020 Bangladesh control COVID Faster R-CNN 19,250 283 18,967 97.65 95.48
C COVID-
7 Gomes [35] 2020 Brazil C;ffml 19/bacterial and IKONOS 6320 464 5856 97.7 99.3
viral pneumonia
South Case COVID-
8 Ko [36] 2020 19/pneumonia/ DarkNet-19 1125 125 1000 95.13 95.3
Korea Control normal
9 Sharma [37] 2020 iﬁiﬁesdof Case COVID-19/non Residual Att 239 120 119 100 96
control COVID-19 Net

America
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3.4. Results of Pooled Estimates for Sensitivity and False Positive Rate Analysis

For the random effects model, the pooled sensitivity was 0.9472 (p = 0.0338, 95% CI
0.9009-0.9959), and the pooled specificity was 0.9610 (p < 0.0001, 95% CI 0.9428-0.9795).
Two-dimensional plots were provided by the “mada” package [28]. One is the crosshair
plot, and the other is the ROC ellipse plot. In Figure 4, the crosshair was conducted using
an arbitrary color, which made the crosshairs wider with increased weight. Bold purple
crosshairs were presented due to their biggest weight among nine studies. The SROC was
generated to assess the diagnostic value, and the results revealed an AUC of 0.98 (95% CI
0.94-1.00 in Figure 5).

Crosshairs Plot ROC Ellipse Plot

T T | 16555
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|
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| \ \
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Figure 4. Pooled estimates for sensitivity and false positive rate analysis. Crosshairs wider with
increased weight and colored arbitrarily.

SROC curve (bivariate model) for Chest X-ray of COVID-19 data

Sensitivity
0.85 0.90
| |

0.80
|

0.75
|

— SROC A data
_| —— conf. region O summary estimate

l l I l l
0.00 0.05 0.10 0.15 0.20

0.70

False Positive Rate

Figure 5. The summary operating characteristic curve and the AUC were 0.98 (95% CI 0.94-1.00). By
default, the point estimate of the pair of sensitivity and false positive rate is also plotted together
with a confidence region (i.e., conf.region).
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3.5. Deeks’ Test

We used the formulas provided by Deeks [38]. The “mada” module also performed x2
tests to evaluate the heterogeneity of sensitivities and specificities. The null hypotheses in
both cases” heterogeneity of sensitivities and specificities were equivalent. Test results for
the equality of sensitivities: X-squared = 297.3168 with p < 0.0001; test results for equality
of specificities: X-squared = 581.6488 with p < 0.0001. This showed that the heterogeneity
results of sensitivities and specificities were not equal in both cases.

4. Discussion

COVID-19 is a severe acute respiratory syndrome caused by the SARS-CoV-2 virus,
resulting in organ exhaustion and gradual death [39]. In September 2022, COVID-19
infections and deaths worldwide reached 620 and 6.5 million, respectively, (https://www.
worldometers.info/coronavirus/, accessed on 31 January 2023). This study successfully
presented overwhelming evidence suggesting that the adoption of Al-based chest X-rays is
a useful diagnostic tool to detect COVID-19.

There were seven case-control studies and two retrospective studies recruited in this
meta-analysis due to the search strategy adopted in this study. Moreover, we focused on
diagnostics of the COVID-19 epidemic rather than the novelties of Al, as clinical research
studies are more widespread for other Al utilizations. Finding accessible small datasets
in the public domain is a general challenge for overall research. Because COVID-19 has
occurred only since late 2019, there are few images of COVID-19 patients accessible at
separate institutions and in public domain datasets. Some studies have adopted similar
datasets (Table 1). This is a drawback, as the algorithm trained on a specific dataset
may not have the ability to execute as well when lending itself to the assorted data [40].
Simultaneously, the scarcity of external checks among the investigated studies may enhance
this risk of bias.

Our evaluation of the repeatability of the results of the algorithms may have been
limited owing to smaller datasets. Nevertheless, some research used datasets in public
domain but neglected their clarity regarding the origin and disposition of the image data.
This may cause a certain level of bias. Another review utilizing Al to interpret COVID-19
diagnoses revealed that the high level of bias in most of their papers was an effect of the
small number of COVID-19 images [37]. However, small datasets are not incompatible
with research on Al in COVID-19. The stated influence may be controversial. A previous
study focusing on pulmonary nodules assessed with Al was based on a small sample of
186 patients [41]. Images used in the study were found in numerous public storehouses and
taken from publications [36]. These images probably presented extreme and provocative
cases of COVID-19 that may have been easier for the algorithm to perceive. Furthermore,
some datasets were branched through vision ascent and the development of repetition.
Among the nine studies, only two studies presented an independent examination with
an external dataset (22%), and the two studies that adopted external validation presented
average sensitivity and specificity results of 97.56% and 95.15%, respectively. The remaining
seven studies without external validation presented average sensitivity and specificity
values of 94.18% and 96.38%, respectively. Thus, evaluating the performance of externally
checked models was superior to disregarding externally checked models [42]. A previous
study revealed in another current review of this objective [43] that only 21% (13/62) assessed
their algorithms on separate datasets. High performance in external testing provided solid
evidence that the model may be extrapolated to another patient population. Such external
validation may mitigate influence and controversy. To date, the performance in external
testing confirmed that the model could be converted into clinical practice.

Some studies constructed on the sampling from large COVID-19 datasets to mitigate
the uncertainty of prediction [44-47]. Then, a previous systematic review described Al-
based diagnostic imaging (CT and chest X-ray) tools and showed that the performance of
both CT and chest X-ray diagnostic tools may be limited by the scale of the dataset [48]. In
addition, the well-balanced data had the benefit of the training of neural networks. Minor
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differences of in the variable class of data significantly affect the results of study [49]. Equal
classes of data are also found in a previous review [50]. However, a small number of chest
X-rays are still to be found in some studies conducted throughout the pandemic [51-53].

According to the diagnostic ability of CT, another meta-analysis conducted based
on CT imaging settled as the future work. This meta-analysis extracted the diagnostic
performance of Al-assisted CT-Scan for COVID-19. Some studies which based their meta-
analysis on Al-assisted CT-Scan diagnostic performance for COVID-19 demonstrated
an AUC from 0.95 to 0.97 [54,55]. Consequently, the Al-assisted CT-Scan for COVID-19
was associated with pneumonia based on objective investigation [56,57]. A review of
recent publications proved that physicians, in detecting COVID-19, used an Al supportive
system [26]. Community acquired pneumonia and lung diseases were detected with an
AUC value of 0.96 using a deep learning model [58]. On the contrary, some published
studies showed the fair performance (AUC values ranged from 0.732 to 0.87) of DL model-
assisted COVID-19 detection [59-61]. However, molecular diagnostic tests, such as reverse
transcription—-polymerase chain reaction (RT-PCR), were still the most reliable diagnostic
tool, rather than the Al-assisted CT-Scan for COVID-19 detection [62]. Because lungs
are infected at the later stage of infection and present a certain level of confusion in
identification through medical imaging (Figure S1), the importance of RT-PCR tests cannot
be underestimated. Controversially, Al, which assisted the chest CT-Scan to classify diseases’
status, has an excellent performance of diagnoses, with AUC values ranging from 0.90 to
1.00 [36,63-65].

This study utilized the SROC analysis of diagnostic accuracy in the adoption of
Al-assisted chest X-rays for the detection of COVID-19. In this meta-analysis, a strictly
screened literature search was performed for all studies published in English between
1 January 2020 and 30 May 2022. The pooled estimates for sensitivity and specificity were
0.9472 (p = 0.0338, 95% CI 0.9009-0.9959) and 0.9610 (p < 0.0001, 95% CI 0.9428-0.9795),
respectively. To evaluate the diagnostic value and prediction accuracy of using Al-assisted
chest X-rays for COVID-19, the SROC curve indicated that the AUC value was 0.98 (95%
CI0.94-1.00). The results of this study suggested that the use of Al in chest X-rays has a
significant value for forecasting COVID-19. Soda et al. [66] determined that the AUC of
Al in chest X-rays in predicting COVID-19 was 0.63 (95% CI 0.52-0.74); nevertheless, only
older adults aged above 65 years were included, and the number of subjects was not large.
Another review study [67] summarized the literature of Al in chest X-rays for predicting
COVID-19, albeit without synthesis evidence.

This meta-analysis verified the prediction value of Al in chest X-rays for COVID-19
patients (Table 2); however, there were some limitations and shortcomings. First, there
was notable but not significant heterogeneity (1> = 36.212, p = 0.129) on the diagnostic
odds ratio in the review; the random effect results of the pooled sensitivity and specificity
were 94.72 (p = 0.0338, 95% CI 90.09-99.59) and 96.10 (p < 0.0001, 95% CI 94.28-97.95),
respectively. The funnel plot of the sensitivity and specificity may show a certain selection
bias for recruited studies (Figure S2). However, such heterogeneity may have resulted from
dissimilarity in areas, the cut-off value of Al in chest X-rays, the severity of COVID-19,
and the resolution of the chest X-ray (Figure S2). Moreover, the predictive value of Al in
chest X-rays was not consistent, and the predictive value of Al in chest X-rays had not been
considered in the preceding studies, which may have negatively influenced the contributed
sensitivity and specificity. Deep learning is a type of machine learning. Moreover, the goal
of machine learning is to enable computers to think and behave independently of human
input. However, deep learning is the process of teaching computers to reason by using
structures inspired by the human brain. The recruited nine studies, which focus on a deep
learning model (Table 1), may limit the results of this study.
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Table 2. The characteristics and performance of diagnostic test results.

Test Result
Total (n = 39,603) Positive Negative
True condition COVID-19 (n =2976) 2804.79 171.21
Non COVID-19 (n = 36,627) 1259.0788 35,367.9212

5. Conclusions

In conclusion, Al can play a significant auxiliary role in utilizing chest X-rays when
diagnosing COVID-19. Considering that COVID-19 is a complicated syndrome involving
complex pathophysiological mechanisms, Al can assist chest X-rays though should not
be considered as the single decisive signal for perceiving COVID-19. Other elements such
as medical history, physical examination, and pathogenic microorganism tests should be
implemented during the clinical diagnostic procedure. Future studies should consider
clinical comparisons and external validation.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/diagnostics13040584/s1, Figure S1: Funnel plots for recruited
9 articles according to sensitivity and specificity. Figure S2: Medical images of COVID-19, pneumonia
patients, and normal individual.
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