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Abstract: The Gaussian law reigns supreme in the information theory of analog random variables.
This paper showcases a number of information theoretic results which find elegant counterparts for
Cauchy distributions. New concepts such as that of equivalent pairs of probability measures and the
strength of real-valued random variables are introduced here and shown to be of particular relevance
to Cauchy distributions.
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1. Introduction

Since the inception of information theory [1], the Gaussian distribution has emerged as
the paramount example of a continuous random variable leading to closed-form expressions
for information measures and extremality properties possessing great pedagogical value. In
addition, the role of the Gaussian distribution as a ubiquitous model for analog information
sources and for additive thermal noise has elevated the corresponding formulas for rate–
distortion functions and capacity–cost functions to iconic status in information theory.
Beyond discrete random variables, by and large, information theory textbooks confine their
coverage and examples to Gaussian random variables.

The exponential distribution has also been shown [2] to lead to closed-form formulas
for various information measures such as differential entropy, mutual information and
relative entropy, as well as rate–distortion functions for Markov processes and the capacity
of continuous-time timing channels with memory such as the exponential-server queue [3].

Despite its lack of moments, the Cauchy distribution also leads to pedagogically attrac-
tive closed-form expressions for various information measures. In addition to showcasing
those, we introduce an attribute, which we refer to as the strength of a real-valued random
variable, under which the Cauchy distribution is shown to possess optimality properties.
Along with the stability of the Cauchy law, those properties result in various counterparts
to the celebrated fundamental limits for memoryless Gaussian sources and channels.

To enhance readability and ease of reference, the rest of this work is organized in
120 items grouped into 17 sections, plus an appendix.

Section 2 presents the family of Cauchy random variables and their basic properties as
well as multivariate generalizations, and the Rider univariate density which includes the
Cauchy density as a special case and finds various information theoretic applications.

Section 3 gives closed-form expressions for the differential entropies of the univariate
and multivariate densities covered in Section 2.

Introduced previously for unrelated purposes, the Shannon and η-transforms re-
viewed in Section 4 prove useful to derive several information theoretic results for Cauchy
and related laws.

Applicable to any real-valued random variable and inspired by information theory,
the central notion of strength is introduced in Section 5 along with its major properties. In
particular, it is shown that convergence in strength is an intermediate criterion between
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convergence in probability and convergence in Lq, q > 0, and that differential entropy is
continuous with respect to the addition of independent vanishing strength noise.

Section 6 shows that, for any ρ > 0 the maximal differential entropy density satisfying
E[log(1 + |Z|ρ)] ≤ θ can be obtained in closed form, but its shape (not just its scale)
depends on the value of θ. In particular, the Cauchy density is the solution only if ρ = 2,
and θ = log 4. In contrast, we show that, among all the random variables with a given
strength, the centered Cauchy density has maximal differential entropy, regardless of the
value of the constraint. This result suggests the definition of entropy strength of Z, as
the strength of a Cauchy random variable whose differential entropy is the same as that
of Z. Modulo a factor, entropy power is the square of entropy strength. Section 6 also
gives a maximal differential entropy characterization of the standard spherical Cauchy
multivariate density.

Information theoretic terminology for the logarithm of the Radon–Nikodym derivative,
as well as its distribution, the relative information spectrum is given in Section 7. The
relative information spectrum for Cauchy distributions is found and shown to depend on
their location and scale through a single scalar. This is a rare property, not satisfied by
most common families such as Gaussian, exponential, Laplace, etc. Section 8 introduces
the notion of equivalent pairs of probability measures, which plays an important role not
only in information theory but in statistical inference. Distinguishing P1 from Q1 has
the same fundamental limits as distinguishing P2 from Q2 if (P1, Q1) and (P2, Q2) are
equivalent pairs. Section 9 studies the interplay between f -divergences and equivalent
pairs. A simple formula for the f -divergence between Cauchy distributions results from
the explicit expression for the relative information spectrum found in Section 7. These
results are then used to easily derive a host of explicit expressions for χ2-divergence,
relative entropy, total variation distance, Hellinger divergence and Rényi divergence in
Sections 10–14, respectively.

In addition to the Fisher information matrix of the Cauchy family, Section 15 finds
a counterpart of de Bruijn’s identity [4] for convolutions with scaled Cauchy random
variables, instead of convolutions with scaled Gaussian random variables as in the conven-
tional setting.

Section 16 is devoted to mutual information. The mutual information between
a Cauchy random variable and its noisy version contaminated by additive independent
Cauchy noise exhibits a pleasing counterpart (modulo a factor of two) with the Gaussian
case, in which the signal-to-noise ratio is now given by the ratio of strengths rather than
variances. With Cauchy noise, Cauchy inputs maximize mutual information under an
output strength constraint. The elementary fact that an output variance constraint translates
directly into an input variance constraint does not carry over to input and output strengths,
and indeed we identify non-Cauchy inputs that may achieve higher mutual information
than a Cauchy input with the same strength. Section 16 also considers the dual setting in
which the input is Cauchy, but the additive noise need not be. Lower bounds on the mutual
information, attained by Cauchy noise, are offered. However, as the bounds do not depend
exclusively on the noise strength, they do not rule out the possibility that a non-Cauchy
noise with identical strength may be least favorable. If distortion is measured by strength,
the rate–distortion function of a Cauchy memoryless source is shown to admit (modulo
a factor of two) the same rate–distortion function as the memoryless Gaussian source
with mean–square distortion, replacing the source variance by its strength. Theorem 17
gives a very general continuity result for mutual information that encompasses previous
such results. While convergence in probability to zero of the input to an additive-noise
transformation does not imply vanishing input-output mutual information, convergence in
strength does under very general conditions on the noise distribution.

Some concluding observations about generalizations and open problems are collected
in Section 17, including a generalization of the notion of strength.

Those definite integrals used in the main body are collected and justified in the
Appendix A.
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2. The Cauchy Distribution and Generalizations

In probability theory, the Cauchy (also known as Lorentz and as Breit–Wigner) dis-
tribution is the prime example of a real-valued random variable none of whose moments
of order one or higher exists, and as such it is not encompassed by either the law of large
numbers or the central limit theorem.

1. A real-valued random variable V is said to be standard Cauchy if its probability density
function is

fV(x) =
1
π

1
x2 + 1

, x ∈ R. (1)

Furthermore, X is said to be Cauchy if there exist λ 6= 0 and µ ∈ R such that
X = λV + µ, in which case

fX(x) =
|λ|
π

1
(x− µ)2 + λ2 , x ∈ R, (2)

where µ and |λ| are referred to as the location (or median) and scale, respectively, of
the Cauchy distribution. If µ = 0, (2) is said to be centered Cauchy.

2. Since E[max{0, V}] = E[max{0,−V}] = ∞, the mean of a Cauchy random variable
does not exist. Furthermore, E[|V|q] = ∞ for q ≥ 1, and the moment generating
function of V does not exist (except, trivially, at 0). The characteristic function of the
standard Cauchy random variable is

E
[
ei ω V

]
= e−|ω|, ω ∈ R. (3)

3. Using (3), we can verify that a Cauchy random variable has the curious property
that adding an independent copy to it has the same effect, statistically speaking, as
adding an identical copy. In addition to the Gaussian and Lévy distributions, the
Cauchy distribution is stable: a linear combination of independent copies remains
in the family, and is infinitely divisible: it can be expressed as an n-fold convolution
for any n. It follows from (3) that if {V1, V2, . . .} are independent, standard Cauchy,
and a is a deterministic sequence with finite `1-norm ‖a‖1, then ∑∞

i=1 ai Vi has the
same distribution as ‖a‖1V. In particular, the time average of independent identically
distributed Cauchy random variables has the same distribution as any of the random
variables. The families {λV, λ ∈ I} and {V + µ, µ ∈ I}, with I any interval of the
real line, are some of the simplest parametrized random variables that are not an
exponential family.

4. If Θ is uniformly distributed on [−π
2 , π

2 ], then tan Θ is standard Cauchy. This follows
since, in view of (1) and (A1), the standard Cauchy cumulative distribution function is

FV(x) =
1
2
+

1
π

arctan(x), x ∈ R. (4)

Therefore, V has unit semi-interquartile length. The functional inverse of (4) is the
standard Cauchy quantile function given by

QV(t) = tan
(

π
(

t− 1
2

))
, t ∈ (0, 1). (5)

5. If X1 and X2 are standard Gaussian with correlation coefficient ρ ∈ (−1, 1), then
X1/X2 is Cauchy with scale

√
1− ρ2 and location ρ. This implies that the reciprocal

of a standard Cauchy random variable is also standard Cauchy.
6. Taking the cue from the Gaussian case, we say that a random vector is multivariate

Cauchy if any linear combination of its components has a Cauchy distribution. Neces-
sary and sufficient conditions for a characteristic function to be that of a multivariate
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Cauchy were shown by Ferguson [5]. Unfortunately, no general expression is known
for the corresponding probability density function. This accounts for the fact that
one aspect, in which the Cauchy distribution does not quite reach the wealth of in-
formation theoretic results attainable with the Gaussian distribution, is in the study
of multivariate models of dependent random variables. Nevertheless, special cases
of multivariate Cauchy distribution do admit some interesting information theoretic
results as we will see below. The standard spherical multivariate Cauchy probability
density function on Rn is (e.g., [6])

fVn(x) =
Γ
(

n+1
2

)
π

n+1
2

(
1 + ‖x‖2

)− n+1
2 , (6)

where Γ(·) is the Gamma function. Therefore, Vn = (V1, . . . , Vn) are exchangeable
random variables. If X0, X1, . . . , Xn are independent standard normal, then the vector
X−1

0 Xn has the density in (6). With the aid of (A10), we can verify that any subset of
k ∈ {1, . . . , n− 1} components of Vn is distributed according to Vk. In particular, the
marginals of (6) are given by (1). Generalizing (3), the characteristic function of (6) is

E
[
ei t>Vn

]
= e−‖t‖, t ∈ Rn. (7)

7. In parallel to Item 1, we may generalize (6) by dropping the restriction that it be

centered at the origin and allowing ellipsoidal deformation, i.e., letting Zn = Λ
1
2 Vn +

µ with µ ∈ Rn and a positive definite n× n matrix Λ. Therefore,

fZn(x) =
Γ
(

n+1
2

)
π

n+1
2 det

1
2 (Λ)

(
1 + (x− µ)>Λ−1(x− µ)

)− n+1
2 . (8)

While ρ>Zn is a Cauchy random variable for ρ ∈ Rn − {0}, (8) fails to encompass
every multivariate Cauchy distribution—in particular, the important case of indepen-
dent Cauchy random variables. Another reason the usefulness of the model in (8) is
limited is that it is not closed under independent additions: if Vn and V̄n are inde-
pendent, each distributed according to (6); then, Λ

1
2 Vn + Λ̄

1
2 V̄n, while multivariate

Cauchy, does not have a density of the type in (8) unless Λ = α Λ̄ for some α > 0.
8. Another generalization of the (univariate) Cauchy distribution, which comes into play

in our analysis, was introduced by Rider in 1958 [7]. With ρ > 0 and β ρ > 1,

fVβ,ρ(x) =
κβ,ρ

(1 + |x|ρ)β
, x ∈ R, (9)

κβ,ρ =
ρ Γ(β)

2 Γ
(

1
ρ

)
Γ
(

β− 1
ρ

) . (10)

In addition to the (β, ρ) parametrization in (9), we may introduce scale and location
parameters by means of λVβ,ρ + µ, just as we did in the Cauchy case (β, ρ) = (1, 2).
Another notable special case is

√
ν Vν+1

2 ,2, which is the centered Student-t random
variable, itself equivalent to a Pearson type VII distribution.

3. Differential Entropy

9. The differential entropy of a Cauchy random variable is

h(λV + µ) = log |λ|+ h(V), (11)

h(V) = −
∫ ∞

−∞
fV(t) log fV(t)dt = log(4π), (12)
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using (A3). Throughout this paper, unless the logarithm base is explicitly shown, it
can be chosen by the reader as long as it is the same on both sides of the equation. For
natural logarithms, the information measure unit is the nat.

10. An alternative, sometimes advantageous, expression for the differential entropy of
a real-valued random variable is feasible if its cumulative distribution function FX
is continuous and strictly monotonic. Then, the quantile function is its functional
inverse, i.e., FX(QX(t)) = t for all t ∈ (0, 1), which implies that Q̇X(t) fX(QX(t)) = 1
for all t ∈ (0, 1). Moreover, since X and QX(U) with U uniformly distributed on [0, 1]
have identical distributions, we obtain

h(X) = E[− log fX(X)] = E[− log fX(QX(U))] =
∫ 1

0
log Q̇X(t)dt. (13)

Since (4) is indeed continuous and strictly monotonic, we can verify that we recover
(12) by means of (5), (13) and (A2).

11. Despite not having finite moments, an independent identically distributed sequence
of Cauchy random variables {Zi} is information stable in the sense that

1
n

n

∑
i=1

log fZ(Zi)→ −h(Z), a.s. (14)

because of the strong law of large numbers.
12. With Vn distributed according to the standard spherical multivariate Cauchy density

in (6), it is shown in [8] that

E
[
loge

(
1 + ‖Vn‖2

)]
= ψ

(
n + 1

2

)
+ loge 4 + γ, (15)

where γ is the Euler–Mascheroni constant and ψ(·) is the digamma function. There-
fore, the differential entropy of (6) is, in nats, (see also [9])

h(Vn) =
n + 1

2
E
[
loge

(
1 + ‖Vn‖2

)]
+

n + 1
2

loge π − loge Γ
(

n + 1
2

)
(16)

=
n + 1

2

(
loge(4π) + γ + ψ

(
n + 1

2

))
− loge Γ

(
n + 1

2

)
, (17)

whose growth is essentially linear with n: the conditional differential entropy
h(Vn+1|Vn) = h(Vn+1)− h(Vn) is monotonically decreasing with

h(V2|V1) =
3
2 (γ + ψ( 3

2 )) + loge 4 = 2.306... (18)

lim
n→∞

h(Vn+1|Vn) = 1
2 (1 + γ + loge(4π)) = 2.054... (19)

13. By the scaling law of differential entropy and its invariance to location, we obtain

h
(

Λ
1
2 Vn + µ

)
= h(Vn) +

1
2

log |det(Λ)|. (20)

14. Invoking (A6), we obtain a closed-form formula for the differential entropy, in nats, of
the generalized Cauchy distribution (9) as

h(Vβ,ρ) = − loge κβ,ρ + βE
[
loge

(
1 + |Vβ,ρ|ρ

)]
(21)

= − loge κβ,ρ + β ψ(β)− β ψ
(

β− 1
ρ

)
, (22)

with κβ,ρ defined in (10).
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15. The Rényi differential entropy of order α ∈ (0, 1) ∪ (1, ∞) of an absolutely continuous
random variable with probability density function fX is

hα(X) =
1

1− α
log

∫
f α
X(t)dt. (23)

For Cauchy random variables, we obtain, with the aid of (A12),

hα(λV + µ) = log |λ|+ hα(V), (24)

hα(V) =
1
2 − α

1− α
log π +

1
1− α

log
Γ(α− 1

2 )

Γ(α)
, α >

1
2

, (25)

which is infinite for α ∈ (0, 1
2 ], converges to log(4π) (cf. (12)) as α→ 1, and to log π,

the reciprocal of the mode height, as α→ ∞.
16. Invoking (A13), the Rényi differential entropy of order α ∈

(
1

βρ , 1
)
∪ (1, ∞) of the

generalized Cauchy distribution (9) is

hα(Vβ,ρ) =
α

1− α
log κβ,ρ +

1
1− α

log
2 Γ
(

βα− 1
ρ

)
Γ
(

1
ρ

)
ρ Γ(βα)

. (26)

4. The Shannon- and η-Transforms

In this section, we recall the definitions of two notions introduced in [10] for the
unrelated purpose of expressing the asymptotic singular value distribution of large ran-
dom matrices.

17. The Shannon transform of a nonnegative random variable X is the function VX : [0, ∞)→
[0, ∞), defined by

VX(θ) = E
[
loge(1 + θ X)

]
. (27)

Unless VX(θ) = ∞ for all θ > 0 (e.g., if X has the log-Cauchy density 1
πx

1
1+log2 x

, x > 0),

or VX(θ) = 0, θ ≥ 0, (which occurs if X = 0 a.s.), the Shannon transform is a strictly
concave continuous function from VX(0) = 0, which grows without bound as θ → ∞.

18. If V is standard Cauchy, then (A4) results in

VV2(θ2) = 2 loge(1 + |θ|), (28)

and the handy relationship

E
[
log
(

β2 + λ2V2
)]

= 2 log(|β|+ |λ|). (29)

19. For the distribution in (9) with (β, ρ) = (2, 2), (A7) results in

VV2
2,2
(θ2) = 2 loge(1 + |θ|)−

2|θ|
1 + |θ| . (30)

20. The η-transform ηX : [0, ∞)→ (0, 1] of a non-negative random variable is defined as
the function

ηX(θ) = E
[

1
1 + θX

]
= 1− θ V̇X(θ), (31)
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which is intimately related to the Cauchy–Stieltjes transform [11]. For example,

ηV2(θ2) =
1

1 + |θ| , (32)

ηV2
2,2
(θ2) =

1 + 2|θ|
(1 + |θ|)2 . (33)

5. Strength

The purpose of this section is to introduce an attribute which is particularly useful to
compare random variables that do not have finite moments.

21. The strength ς(Z) ∈ [0,+∞] of a real-valued random variable Z is defined as

ς(Z) = inf
{

ς > 0 : E
[

log
(

1 +
Z2

ς2

)]
≤ log 4

}
. (34)

It follows that the only random variable with zero strength is Z = 0, almost surely. If
the inequality in (34) is not satisfied for any ς > 0, then ς(Z) = ∞. Otherwise, ς(Z) is
the unique positive solution ς > 0 to

E
[

log
(

1 +
Z2

ς2

)]
= log 4. (35)

If ς(Z) ≤ ς, then (35) holds with ≤.
22. The set of probability measures whose strength is upper bounded by a given finite

nonnegative constant,

Aς = {PZ : ς(Z) ≤ ς}, (36)

is convex: The set A0 is a singleton as seen in Item 21, while, for 0 < ς < ∞, we can
express (36) as

Aς =

{
PZ : E

[
log
(

1 +
Z2

ς2

)]
≤ log 4

}
. (37)

Therefore, if PZ0 ∈ Aς and PZ1 ∈ Aς, we must have αPZ1 + (1− α)PZ0 ∈ Aς.
23. The peculiar constant in the definition of strength is chosen so that if V is standard

Cauchy, then its strength is ς(V) = 1 because, in view of (29),

E
[
log
(

1 + V2
)]

= log 4. (38)

24. If Z = k ∈ R, a.s., then its strength is

ς(Z) =
|k|√

3
. (39)

25. The left side of (35) is the Shannon transform of Z2 evaluated at ς−2, which is continuous
in ς2. If ς(Z) ∈ (0, ∞) then, (35) can be written as

ς2(Z) =
1

V−1
Z2 (loge 4)

, (40)

where, on the right side, we have denoted the functional inverse of the Shannon
transform. Clearly, the square root of the right side of (40) cannot be expressed as
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the expectation with respect to Z of any b : R → R that does not depend on PZ.
Nevertheless, thanks to (37), (36) can be expressed as

Aς =
{

PZ : E
[
bς2(Z)

]
≤ 1

}
, with bς2(x) = log4

(
1 +

x2

ς2

)
. (41)

26.

Theorem 1. The strength of a real-valued random variable satisfies the following properties:

(a)
ς(λZ) = |λ| ς(Z). (42)

(b)

ς2(Z) ≤ 1
3
E[Z2], (43)

with equality if and only if |Z| is deterministic.

(c) If 0 < q < 2, and ‖Z‖q = E
1
q [|Z|q] < ∞, then

ς(Z) ≤ κ
1
q
q ‖Z‖q, with κq = max

x>0

log4(1 + x2)

xq . (44)

(d) If V is standard Cauchy, independent of X, then ς(X + V) is the solution to

VX2

(
(ς + 1)−2

)
= 2 log

2
1 + ς−1 , (45)

if it exists, otherwise, ς(X + V) = ∞. Moreover, ≤ holds in (45) if ς(X + V) ≤ ς.
(e)

2 log(2 min{1, ς(Z)}) ≤ E
[
log
(

1 + Z2
)]
≤ 2 log(2 max{1, ς(Z)}). (46)

(f) If 0 < ς(Z) < ∞, then

h(Z) = log(4π ς(Z))− D(Z ‖ ς(Z)V), (47)

where V is standard Cauchy, and D(X ‖Y) stands for the relative entropy with
reference probability measure PY and dominated measure PX .

(g)

h(Z) < ∞ ⇐= ς(Z) < ∞ ⇐⇒ E
[
log
(

1 + Z2
)]

< ∞. (48)

(h) If V is standard Cauchy, then

ς(Z) < ∞ and h(Z) ∈ R ⇐⇒ D(Z ‖ λ V) < ∞, for all λ > 0. (49)

(i) The finiteness of strength is sufficient for the finiteness of the entropy of the integer
part of the random variable, i.e.,

H(bZc) = ∞ =⇒ ς(Z) = ∞.

(j) If Zn → Z in Lq for any q ∈ (0, 1], then ς(Zn)→ ς(Z).
(k)

Zn → 0 i.p. ⇐= E
[
log
(

1 + Z2
n

)]
→ 0 ⇐⇒ ς(Zn)→ 0. (50)
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(l) If ς(Xn)→ 0, then ς(Z + Xn)→ ς(Z).
(m) If ς(Xn)→ 0, ς(Z) < ∞ and Z is independent of Xn, then h(Z + Xn)→ h(Z).

Proof. For the first three properties, it is clear that they are satisfied if ς(Z) = 0,
i.e., Z = 0 almost surely.

(a) If ς2 ∈ (0, ∞) is the solution to (35), then λ2 ς2 is a solution to (35) with λZ
taking the role of Z. If (35) has no solution, neither does its version in which
λZ takes the role of Z.

(b) Jensen’s inequality applied to the left side of (35) results in 3ς2 ≤ E[Z2].
The strict concavity of log(1 + t) implies that equality holds if and only if
Z2 is deterministic. If (35) has no solution, the same reasoning implies that
E[Z2] = ∞.

(c) First, it is easy to check that, for q ∈ (0, 2), the function fq : (0, ∞) → (0, ∞)

given by fq(t) = t−q log4(1 + t2) attains its maximum κq at a unique point.
Assume ς(Z) ∈ (0, ∞). Since κq tq ≥ log4(1 + t2) for all t > 0, letting
t = |Z|/ς(Z) and taking expectations, (35) (choosing 4 as the logarithm base)
results in

κq

ςq(Z)
E[|Z|q] ≥ 1, (51)

which is the same as (44). If ς(Z) = ∞, then ∞ = E[log(1 + Z2)] ≤ κq E[|Z|q].
(d) Invoking (A4) with α2 = ς2 + x2 and | sin β| = ς√

x2+ς2
, we obtain

E
[

log
(

1 +
(x + V)2

ς2

)]
= log

(
(1 + ς)2 + x2

ς2

)
(52)

= log
(

1 +
x2

(1 + ς)2

)
− 2 log

ς

ς + 1
. (53)

Substituting x by X and averaging over X, the result follows from the definition
of strength.

(e) The result holds trivially if either ς(Z) = 0 or ς(Z) = ∞. Otherwise, we simply
rewrite (35) as

2 log(2ς(Z)) = E
[
log
(

ς2(Z) + Z2
)]

, (54)

and upper/lower bound the right side by E
[
log
(
1 + Z2)].

(f)

D(Z ‖ ς(Z)V) = −h(Z) + log(ς(Z)π) +E
[

log
(

1 +
Z2

ς2(Z)

)]
(55)

= log(4π ς(Z))− h(Z), (56)

where (55) and (56) follow from (2) and (35), respectively.
(g)

• If ς(Z) < ∞, then E
[
log
(
1 + Z2)] < ∞ and h(Z) < ∞ follow from (46)

and (47), respectively.
• If E

[
log(1 + Z2)

]
< ∞, the dominated convergence theorem implies

lim
ς→∞

E
[

log

(
1 +

(
Z
ς

)2
)]

= 0. (57)
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Excluding the case Z = 0 a.s. for which both E
[
log(1 + Z2)

]
and ς(Z) are

zero, we have

lim
ς↓0

E
[

log

(
1 +

(
Z
ς

)2
)]

= lim
ς↓0
VZ2

(
1
ς2

)
= ∞. (58)

Since (35) is continuous in ς, it must have a finite solution in view of (57)
and (58).

(h) It is sufficient to assume λ = 1 for the condition on the right of (49) because
the condition on the left holds if and only if it holds for αZ, for any α > 0 and
D(αZ ‖ αV) = D(Z ‖V). If h(Z) < ∞, then

D(Z ‖V) = −h(Z) + log π +E
[
log
(

1 + Z2
)]

, (59)

which is finite unless either h(Z) = −∞ or E[log(1 + Z2)] = ∞. This estab-
lishes =⇒ in view of (48). To establish⇐=, it is enough to show that

D(Z ‖V) < ∞ =⇒ E
[
log
(

1 + Z2
)]

< ∞, (60)

in view of (48) and the fact that, according to (59), h(Z) > −∞ if both D(Z ‖V)
and E

[
log
(
1 + Z2)] are finite. To show (60), we invoke the following vari-

ational representation of relative entropy (first noted by Kullback [12] for
absolutely continuous random variables): If PZ � PV , then

D(Z ‖V) = max
Q : Q�PV

E
[

log
dQ
dPV

(Z)
]

, (61)

attained only at Q = PZ. Let Q be the absolutely continuous random variable
with probability density function

q(x) =
loge 2

4|x| log2
e |x|

1{|x| ≥ 2}+ 1
8

1{|x| < 2}. (62)

Then,

∞ > D(Z ‖V) > E
[

log
q(Z)
fV(Z)

]
(63)

= E
[

1{|Z| ≥ 2}
(

log
π loge 2

4
+ log

(
1 + Z2

)
− log

(
|Z| log2

e |Z|
))]

+E
[
1{|Z| < 2}

(
log

π

8
+ log

(
1 + Z2

))]
(64)

> 1
5E
[
1{Z ≥ 2} log

(
1 + Z2

)]
+ log 5π

8 (65)

≥ 1
5E
[
log
(

1 + Z2
)]

+ 4
5 log 5− log 8

π , (66)

where (65) holds since

4
5 log(1 + x2) ≥ − log(π loge 2) + 2 log loge |x|+ log |x|, |x| > 2. (67)

(i)

ς(Z) < ∞ =⇒ E
[
log(1 + Z2)

]
< ∞ (68)

=⇒ E[log(1 + |Z|)] < ∞ (69)

=⇒ H(bZc) < ∞, (70)
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where (68)–(70) follow from (48), log(1 + x2) ≤ 2 log(1 + |x|), and p. 3743
in [13], respectively.

(j) If ς(Z) = 0, then Z = 0 a.e., and the result follows from (44). For all (x, z) ∈ R2,∣∣∣∣loge

(
1 + (x + z)2

1 + z2

)∣∣∣∣ ≤ loge

(
1 +

1
2
(x2 + |x|

√
4 + x2)

)
(71)

≤ 2
q
|x|q, (72)

where (71) follows by maximizing the left side over z ∈ R. Denote the differ-
ence between the right side and the left side of (72) by fq(x), an even function
which satisfies fq(0) = 0, and

ḟq(x) = 2xq−1 − 2√
4 + x2

> 0, x > 0, 0 < q ≤ 1. (73)

Therefore, (72) follows. Assuming 0 < ς(Z) < ∞, we have∣∣∣E[log(1 + Z2
n)
]
−E

[
log(1 + Z2)

]∣∣∣ ≤ E
[∣∣∣log(1 + Z2

n)− log(1 + Z2)
∣∣∣] (74)

≤ 2
q
E[|Zn − Z|q] log e. (75)

Now, because of the scaling property in (42), we may assume without loss of
generality that ς(Z) = 1. Thus, (74) and (75) result in∣∣∣E[log(1 + Z2

n)
]
− log 4

∣∣∣ ≤ 2
q
E[|Zn − Z|q] log e, (76)

which requires that ς(Zn)→ 1, since, by assumption, the right side vanishes.
Assume now that ς(Z) = ∞, and therefore, E

[
log(1 + Z2)

]
= ∞. Inequality

(75) remains valid in this case, implying that, as soon as the right side is
finite (which it must be for all sufficiently large n), E

[
log(1 + Z2

n)
]
= ∞, and

therefore, ς(Zn) = ∞ in view of (48).
(k)

1st⇐= For any ε > 0, Markov’s inequality results in

P[|Zn| > ε] = P
[
log
(

1 + Z2
n

)
> log

(
1 + ε2

)]
≤

E
[
log
(
1 + Z2

n
)]

log(1 + ε2)
. (77)

=⇒ First, we show that, for any α > 0, we have

E
[
log
(

1 + Z2
n

)]
→ 0 =⇒ E

[
log
(

1 + α Z2
n

)]
→ 0. (78)

The case 0 < α < 1 is trivial. The case α > 1 follows becauseE
[
log
(
1 + Z2

n
)]

→ 0 implies

E
[
log
(

1 + α Z2
n

)]
= E

[
log
(

1 + (α− 1) Z2
n

)]
, (79)

where ≥ is obvious, and ≤ holds because

log
(

1 + α t2
)
= log

(
1 + t2

)
+ log

(
1 + (α− 1)

t2

1 + t2

)
(80)

≤ log
(

1 + t2
)
+ log

(
1 + (α− 1) t2

)
. (81)
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If ς(Zn) = ∞ infinitely often, so is E
[
log
(
1 + Z2

n
)]

in view of (48). Assume
that lim sup ς(Zn) = ς ∈ (0, ∞], and ς(Zn) is finite for all sufficiently large.
Then, there is a subsequence such that ς(Zni )→ ς, and

log 4 = E
[

log

(
1 +

(
Zni

ς(Zni )

)2
)]
≤ E

[
log

(
1 +

(
Zni

λ

)2
)]

, (82)

for all sufficiently large i and λ < ς. Consequently, (78) implies that
E
[
log
(
1 + Z2

n
)]
6→ 0.

2nd⇐= Suppose that E
[
log
(
1 + Z2

n
)]
6→ 0. Therefore, there is a subsequence

along which E
[
log
(

1 + Z2
ni

)]
> η > 0. If η ≥ log 4, then ς(Zni ) > 1

along the subsequence. Because of the continuity of the Shannon trans-
form and the fact that it grows without bound as its argument goes to
infinity (Item 25), if 0 < η < log 4, we can find 1 < α < ∞ such that
E
[
log
(

1 + αZ2
ni

)]
> log 4, which implies ς(Zni ) > α−1/2. Therefore,

ς(Zn) 6→ 0 as we wanted to show.

(l) We start by showing that

E
[
log
(

1 + X2
n

)]
→ 0 ⇐⇒ E[ f (Xn)]→ 0, (83)

where we have denoted the right side of (71) with arbitrary logarithm base by
f (x). Since ḟ (x) = 2 log e√

4+x2 , it is easy to verify that

0 ≤ f (x)− log(1 + x2) ≤ log
4
3

, x ∈ R, (84)

where the lower and upper bounds are attained uniquely at x = 0 and |x| = 1√
2

,
respectively. The lower bound results in⇐= in (83). To show =⇒, decompose,
for arbitrary ε > 0,

E[ f (Xn)] = E[ f (Xn)1{|Xn| < ε}] +E[ f (Xn)1{|Xn| ≥ ε}] (85)

≤ f (ε) +E[ f (Xn)1{|Xn| ≥ ε}] (86)

≤ f (ε) + Aε E
[
log
(

1 + X2
n

)
1{|Xn| ≥ ε}

]
(87)

≤ f (ε) + Aε ε3, (88)

where

Aε = 1 +
log 4

3
log(1 + ε2)

, (89)

(87) holds from the upper bound in (84), and the fact that (89) is decreasing in
ε, and (88) holds for all sufficiently large n if E

[
log
(
1 + X2

n
)]
→ 0. Since the

right side of (88) goes to 0 as ε→ 0, (83) is established. Assume 0 < ς(Z) < ∞.
From the linearity property (42), we have ς(Z + Xn) = ς(Z) · ς(Z̄ + X̄n) with
Z̄ = ς−1(Z) Z and X̄n = ς−1(Z) Xn which satisfies ς(X̄n)→ 0. Therefore, we
may restrict attention to ς(Z) = 1 without loss of generality. Following (71)
and (74), and abbreviating Zn = Z + Xn, we obtain∣∣∣E[log(1 + Z2

n)
]
− log 4

∣∣∣ ≤ E
[∣∣∣log(1 + Z2

n)− log(1 + Z2)
∣∣∣] (90)

≤ E[ f (Xn)]. (91)
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Thus, the desired result follows in view of (50) and (83). To handle the case
ς(Z) = ∞, we use the same reasoning as in the proof of (i) since (83) remains
valid in that case.

(m) If ς(Z) = 0, then Z = 0 a.s., h(Z) = −∞ and h(Xn)→ −∞ in view of Part (f).
Assume henceforth that ς(Z) > 0. Since h(Z + Xn) ≥ h(Z), it suffices to show

lim sup
n→∞

h(Xn + Z) ≤ h(Z). (92)

Under the assumptions, Part (l) guarantees that

ς(Xn + Z)→ ς(Z). (93)

If V is a standard Cauchy random variable, then ς(Z + Xn)V → ς(Z)V in
distribution as the characteristic function converges: e−ς(Z+Xn)|t| → e−ς(Z)|t|

for all t. Analogously, according to Part (k), Z + Xn
D−→ Z since Xn → 0 in

probability. Since the strength of Xn + Z is finite for all sufficiently large n, we
may invoke (47) to express, for those n,

h(Xn + Z)− h(Z) = log
ς(Z + Xn)

ς(Z)
− D(Z + Xn ‖ ς(Z + Xn)V) + D(Z ‖ ς(Z)V). (94)

The lower semicontinuity of relative entropy under weak convergence (which,
in turn, is a corollary to the Donsker–Varadhan [14,15] variational representa-
tion of relative entropy) results in

lim inf
n→∞

D(Z + Xn ‖ ς(Z + Xn)V) ≥ D(Z ‖ ς(Z)V), (95)

because Z + Xn
D−→ Z and ς(Z + Xn)V

D−→ ς(Z)V. Therefore, (92) follows
from (94) and (95).

27. In view of (42) and Item 23, ς(λV) = |λ| if V is standard Cauchy. Furthermore, if
X1 and X2 are centered independent Cauchy random variables, then their sum is
centered Cauchy with

ς(X1 + X2) = ς(X1) + ς(X2). (96)

More generally, it follows from Theorem 1-(d) that, if X1 is centered Cauchy, and (96)
holds for X2 = αX and all α ∈ R, then X must be centered Cauchy. Invoking (52),
we obtain

ς(λV + µ) =
|λ|
3

+
1
3

√
4λ2 + 3µ2, (97)

which is also valid for λ = 0 as we saw in Item 24.
28. If X is standard Gaussian, then ς2(X) = 0.171085 . . . , and ς2(σX) = σ2ς2(X). There-

fore, if X1 and X2 are zero-mean independent Gaussian random variables, then

ς2(X1 + X2) = ς2(X1) + ς2(X2). (98)

Thus, in this case, ς(X1 + X2) < ς(X1) + ς(X2).
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29. It follows from Theorem 1-(d) that, with X independent of standard Cauchy V, we
obtain ς(X + V) > ς(X) + ς(V) whenever X is such that

VX2

(
(2 + ς(X))−2

)
> 2 loge

(
1 +

ς(X)

2 + ς(X)

)
. (99)

An example is the heavy-tailed probability density function

fX(x) =
1
π

log4(1 + x2)

1 + x2 , (100)

for which 7.0158 . . . = ς(X + V) > ς(X) + ς(V) = 6.8457 . . ..
30. Using (A8), we can verify that, if X is zero-mean uniform with variance σ2, then

ς2(X) =
3
c2 σ2 = 0.221618 . . . σ2, (101)

where c is the solution to loge(1 + c2) + 2
c arctan(c) = 2 + loge 4.

31. We say that Zn → 0 in strength if ς(Zn)→ 0. Parts (j) and (k) of Theorem 1 show that
this convergence criterion is intermediate between the traditional in probability and
Lq criteria. It is not equivalent to either one: If

Zn =

{
0, with probability 1− 1

n ;
2n, with probability 1

n ,
(102)

then ς(Zn)→ 1, while Zn → 0 in probability. If, instead, Zn = 3
2

n
, with probability 1

n ,
then Zn → 0 in strength, but not in Lq for any 0 < q.

32. The assumption in Theorem 1-(m) that Xn → 0 in strength cannot be weakened to
convergence in probability. Suppose that Xn is absolutely continuous with probability
density function

fXn(t) =


n− 1, t ∈

[
0, 1

n

]
;

0, t ∈ (−∞, 0) ∪
(

1
n , 2
)

;
1
n

loge 2
t log2

e t
, t ∈ [2, ∞).

(103)

We have Xn → 0 in probability since, regardless of how small ε > 0, P[Xn > ε] = 1
n

for all n ≥ 1
ε . Furthermore,

h(Xn + Z) ≥ h(Xn) = ∞, (104)

because (103) is the mixture of a uniform and an infinite differential entropy prob-
ability density function, and differential entropy is concave. We conclude that
h(Xn + Z) 6→ h(Z), since h(Z) < ∞.

33. The following result on the continuity of differential entropy is shown in [16]: if X
and Z are independent, E[|Z|] < ∞ and E[|X|] < ∞, then

lim
ε↓0

h(εX + Z) = h(Z). (105)

This result is weaker than Theorem 1-(m) because finite first absolute moment implies
finite strength as we saw in (44), and εX → 0 in L1 if ε→ 0, and therefore, it vanishes
in strength too.
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34. If Z and V are centered and standard Cauchy, respectively, then minλ D(Z ‖ λV) is
achieved by λ = ς(Z). Otherwise, in general, this does not hold. Since D(Z ‖ λV) =
VZ2

(
λ−2)− h(Z) + loge(πλ), the minimum is attained at the solution to

ηZ2

(
1

λ2∗

)
=

1
2

, (106)

where we have used the η-transform in (31). If Z = V2,2, recalling (33), (106), results
in λ∗ =

√
2− 1, while ς(V2,2) = 0.302 . . ..

35. Using (28) and the concavity of log(1 + x), we can verify that

ς(Xα) ≤ ας(X1) + (1− α)ς(X0), Xα ∼ αPX1 + (1− α)PX0 , (107)

if X0 and X1 are centered Cauchy, or, more generally, if X0 = λ0X, X1 = λ1X and
VX2(θ2) is concave on θ. Not only is this property not satisfied if X = 1 but (107) need
not hold in that case, as we can verify numerically for α = 0.1, λ1 = 1 and λ0 > 20.

6. Maximization of Differential Entropy

36. Among random variables with a given second moment (resp. first absolute moment),
differential entropy is maximized by the zero-mean Gaussian (resp. Laplace) distri-
bution. More generally, among random variables with a given p-absolute moment
µ, differential entropy is maximized by the parameter-p Subbotin (or generalized
normal) distribution with p-absolute moment µ [17]

fX(x) =
p1− 1

p

2 Γ( 1
p ) µ

1
p

e−
|x|p
p µ , x ∈ R. (108)

Among nonnegative random variables with a given mean, differential entropy is
maximized by the exponential distribution. In those well-known solutions, the cost
function is an affine function of the negative logarithm of the maximal differential
entropy probability density function. Is there a cost function such that, among all
random variables with a given expected cost, the Cauchy distribution is the maximal
differential entropy solution? To answer this question, we adopt a more general
viewpoint. Consider the following result, whose special case ρ = 2 was solved in [18]
using convex optimization:

Theorem 2. Fix ρ > 0 and θ > 0.

max
Z : E[loge(1+|Z|ρ)]≤θ

h(Z) = h(Vβ,ρ), (109)

where Vβ,ρ is defined in (9), the right side of (109) is given in (22), and β > ρ−1 is the
solution to

θ = ψ(β)− ψ
(

β− 1
ρ

)
. (110)

Therefore, the standard Cauchy distribution is the maximal differential entropy distribution
provided that ρ = 2 and θ = loge 4.

Proof.

(a) For every ρ > 0 and θ > 0, there is a unique β > ρ−1 that satisfies (110) because
the function of β on the right side is strictly monotonically decreasing, grows
without bound as β ↓ 1

ρ , and goes to zero as β→ ∞.
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(b) For any Z which satisfies E
[
loge(1 + |Z|ρ)

]
≤ θ, its relative entropy, in nats,

with respect to Vβ,ρ is

D(Z ‖Vβ,ρ) = −h(Z)− loge κβ,ρ + βE
[
loge(1 + |Z|

ρ)
]

(111)

≤ −h(Z)− loge κβ,ρ + β θ (112)

= −h(Z)− loge κβ,ρ + β ψ(β)− β ψ
(

β− 1
ρ

)
(113)

= h(Vβ,ρ)− h(Z), (114)

where (113) and (114) follow from (110) and (22), respectively. Since relative
entropy is nonnegative, and zero only if both measures are identical, not only
does (2) hold but any random variable other than Vβ,ρ achieves strictly lower
differential entropy.

37. An unfortunate consequence stemming from Theorem 2 is that, while we were able to
find out a cost function such that the Cauchy distribution is the maximal differential
entropy distribution under an average cost constraint, this holds only for a specific
value of the constraint. This behavior is quite different from the classical cases
discussed in Item 36 for which the solution is, modulo scale, the same regardless of
the value of the cost constraint. As we see next, this deficiency is overcome by the
notion of strength introduced in Section 5.

38.

Theorem 3. Strength constraint. The differential entropy of a real-valued random variable
with strength ς(Z) is upper bounded by

h(Z) ≤ log(4π ς(Z)). (115)

If 0 < ς(Z) < ∞, equality holds if and only if Z has a centered Cauchy density, i.e., Z = λV
for some λ > 0.

Proof.

(a) If Z is not an absolutely continuous random variable, or more generally,
h(Z) = −∞ such as in the case ς(Z) = 0 in which Z = 0 with probability
one, then (115) is trivially satisfied.

(b) If 0 < ς(Z) < ∞ and h(Z) > −∞, then we invoke (47) to conclude that not
only does (115) hold, but it is satisfied with equality if and only if Z = ς(Z)V.

39. The entropy power of a random variable Z is the variance of a Gaussian random
variable whose differential entropy is h(Z), i.e.,

N(Z) =
1

2πe
exp(2 h(Z)). (116)

While the power of a Cauchy random variable is infinite, its entropy power is given by

N(λV + µ) =
1

2πe
exp(2 h(λV + µ)) =

8 π λ2

e
. (117)
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In the same spirit as the definition of entropy power, Theorem 3 suggests the definition
of NC(Z), the entropy strength of Z, as the strength of a centered Cauchy random
variable whose differential entropy is h(Z), i.e., h(Z) = h(NC(Z)V). Therefore,

NC(Z) =
1

4π
exp(h(Z)) (118)

= ς(Z) exp(−D(Z ‖ ς(Z)V)) (119)

≤ ς(Z), (120)

where (119) follows from (56), and (120) holds with equality if and only if Z is centered
Cauchy. Note that, for all (α, µ) ∈ R2,

NC(α Z + µ) = |α|NC(Z). (121)

Comparing (116) and (118), we see that entropy power is simply a scaled version of
the entropy strength squared,

N(Z) =
8π

e
N2
C(Z). (122)

The entropy power inequality (e.g., [19,20]) states that, if X1 and X2 are independent
real-valued random variables, then

N(X1 + X2) ≥ N(X1) + N(X2), (123)

regardless of whether they have moments. According to (122), we may rewrite the
entropy power inequality (123) replacing each entropy power by the corresponding
squared entropy strength. Therefore, the squared entropy strength of the sum of
independent random variables satisfies

N2
C(X1 + X2) ≥ N2

C(X1) + N2
C(X2). (124)

It is well-known that equality holds in (123), and hence (124), if and only if both
random variables are Gaussian. Indeed, if X1 and X2 are centered Cauchy with
respective strengths ς1 > 0 and ς2 > 0, then (124) becomes (ς1 + ς2)

2 > ς2
1 + ς2

2.
40. Theorem 3 implies that any random variable with infinite differential entropy has

infinite strength. There are indeed random variables with finite differential entropy
and infinite strength. For example, let Z ∈ [2, ∞) be an absolutely continuous random
variable with probability density function

fZ(t) =

{
0.473991... log−2

e n, t ∈
[
n, n + 1

n

]
, n ∈ {2, 3, . . .};

0, elsewhere.
(125)

Then, h(Z) = 1.99258... nats, while the entropy of the quantized version as well as the
strength satisfy H(bZc) = ∞ = ς(Z).

41. With the same approach, we may generalize Theorem 3 to encompass the full slew
of the generalized Cauchy distributions in (9). To that end, fix ρ > 0 and define the
(ρ, θ)-strength of a random variable as

ςρ,θ(Z) = inf
{

ς > 0 : E
[

loge

(
1 +

∣∣∣∣Zς
∣∣∣∣ρ)] ≤ θ

}
. (126)
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Therefore, ςρ,θ(Z) = ς(Z) for (ρ, θ) = (2, loge 4), and if (β, ρ, θ) satisfy (110), then
ςρ,θ(Vβ,ρ) = 1. As in Item 25, if ςρ,θ(Z) ∈ (0, ∞), we have

ς
ρ
ρ,θ(Z) =

1
V−1
|Z|ρ(θ)

. (127)

42.

Theorem 4. Generalized strength constraint. Fix ρ > 0 and θ > 0. The differential entropy
of a real-valued random variable with (ρ, θ)-strength ςρ,θ(Z) is upper bounded by

h(Z) ≤ log
(
ςρ,θ(Z)

)
+ h(Vβ,ρ), (128)

where β is given by the solution to (110), Vβ,ρ has the generalized Cauchy density (9), and
h(Vβ,ρ) is given in (22). If ςρ,θ(Z) < ∞, equality holds if and only if Z is a constant
times Vβ,ρ.

Proof. As with Theorem 3, in the proof, we may assume 0 < ςρ,θ(Z) < ∞ to avoid
trivialities. Then,

E
[

loge

(
1 +

∣∣∣∣∣ Z
ςρ,θ(Z)

∣∣∣∣∣
ρ)]

= θ, (129)

and, in nats,

D

(
Z

ςρ,θ(Z)

∥∥∥∥Vβ,ρ

)
= −h(Z)− loge

κβ,ρ

ςρ,θ(Z)
+ βE

[
loge

(
1 +

∣∣∣∣∣ Z
ςρ,θ(Z)

∣∣∣∣∣
ρ)]

(130)

= −h(Z)− loge
κβ,ρ

ςρ,θ(Z)
+ β θ (131)

= −h(Z)− loge
κβ,ρ

ςρ,θ(Z)
+ β ψ(β)− β ψ

(
β− 1

ρ

)
(132)

= −h(Z) + loge
(
ςρ,θ(Z)

)
+ h(Vβ,ρ), (133)

where (130), (131), (132), and (133) follow from (9), (129), (110), and (22), respectively.

43. In the multivariate case, we may find a simple upper bound on differential entropy
based on the strength of the norm of the random vector.

Theorem 5. The differential entropy of a random vector Zn is upper bounded by

h(Zn) ≤ n log(ς(‖Zn‖)) + n + 1
2

log(4π)− log Γ
(

n + 1
2

)
. (134)

Proof. As in the proof of Theorem 3, we may assume that 0 < ς(‖Zn‖) < ∞. As
usual, Vn denotes the standard spherical multivariate Cauchy density in (6). Since for
α 6= 0, fαVn(xn) = |α|−n fVn(α−1xn), we have

D(Zn ‖ ς(‖Zn‖)Vn) = −h(Zn)−E
[
log fς(‖Zn‖)Vn(Zn)

]
(135)

= −h(Zn) + n log(ς(‖Zn‖))− log
Γ
(

n+1
2

)
π

n+1
2

+
n + 1

2
E
[

log
(

1 +
‖Zn‖2

ς2(‖Zn‖)

)]
(136)

= −h(Zn) + n log(ς(‖Zn‖))− log Γ
(

n + 1
2

)
+

n + 1
2

log(4π), (137)

where (136) and (137) follow from (6) and the definition of strength, respectively.
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For n = 1, Theorem 5 becomes the bound in (115). For n = 2, 3, . . ., the right side
of (15) is greater than loge 4, and, therefore, ς(‖Zn‖) > 1. Consequently, in the
multivariate case, there is no Zn such that (134) is tight.

44. To obtain a full generalization of Theorem 3 in the multivariate case, it is advisable to
define the strength of a random n-vector as

ς(Zn) = inf
{

ς > 0 : −E
[
log fVn

(
ς−1Zn

)]
≤ h(Vn)

}
(138)

= ς2,θn(‖Z
n‖) (139)

for θn = ψ
(

n+1
2

)
+ γ + loge 4. To verify (139), note (15)–(17). Notice that ς(λVn) =

|λ| and for n = 1, (138) is equal to (34). The following result provides a maximal differ-
ential entropy characterization of the standard spherical multivariate Cauchy density.

Theorem 6. Let Vn have the standard multivariate Cauchy density (6), Then,

h(Zn) ≤ n log ς(Zn) + h(Vn), (140)

where h(Vn) is given in (17). If 0 < ς(Zn) < ∞, equality holds in (140) if and only if
Zn = λVn for some λ 6= 0.

Proof. Assume 0 < ς(Zn) < ∞. Then,

D
(

Zn

ς(Zn)

∥∥∥∥Vn
)
= −h(Zn) + n log ς(Zn)−E

[
log fVn

(
ς−1(Zn)Zn

)]
(141)

= −h(Zn) + n log ς(Zn) + h(Vn) (142)

in view of (138). Hence, the difference between right and left sides of (140) is equal to
zero if and only if Zn = λVn for some λ 6= 0; otherwise, it is positive.

7. Relative Information

45. For probability measures P and Q on the same measurable space (A, F ), such that
P� Q, the logarithm of their Radon–Nikodym derivative is the relative information
denoted by

ıP‖Q(x) = log
dP
dQ

(x). (143)

46. As usual, we may employ the notation ıX‖Y(x) to denote ıPX‖PY
(x). The distributions

of the random variables ıX‖Y(X) and ıX‖Y(Y) are referred to as relative information spec-
tra (e.g., [21]). It can be shown that there is a one-to-one correspondence between the
cumulative distributions of ıX‖Y(X) and ıX‖Y(Y). For example, if they are absolutely
continuous random variables with respective probability density functions fX‖Y and
f̄X‖Y, then

fX‖Y(α) = exp(α) f̄X‖Y(α), α ∈ R. (144)

Obviously, the distributions of ıX‖Y(X) and dPX
dPY

(X) determine each other. One caveat
is that relative information may take the value −∞. It can be shown that

P[ıX‖Y(X) = −∞] = 0, (145)

P[ıX‖Y(Y) = −∞] = 1−E
[
exp(−ıX‖Y(X))

]
. (146)
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47. The information spectra determine all measures of the distance between the respective
probability measures of interest (e.g., [22,23]), including f -divergences and Rényi
divergences. For example, the relative entropy (or Kullback–Leibler divergence) of the
dominated measure P with respect to the reference measure Q is the average of the
relative information when the argument is distributed according to P, i.e., D(X‖Y) =
E[ıX‖Y(X)]. If P 6� Q, then D(P‖Q) = ∞.

48. The information spectra also determine the fundamental trade-off in hypothesis
testing. Let αν(P1, P0) denote the minimal probability of deciding P0 when P1 is true
subject to the constraint that the probability of deciding P1 when P0 is true is no larger
than ν. A consequence of the Neyman–Pearson lemma is

αν(P1, P0) = min
γ∈R

{
P
[
ıP1‖P0(Y1) ≤ γ

]
− exp(γ)

(
ν− P

[
ıP1‖P0(Y0) > γ

])}
, (147)

where Y0 ∼ P0 and Y1 ∼ P1.
49. Cauchy distributions are absolutely continuous with respect to each other and, in

view of (2),

ıλ1V+µ1‖λ0V+µ0
(x) = log

|λ1|
|λ0|

+ log
(x− µ0)

2 + λ2
0

(x− µ1)2 + λ2
1

. (148)

50. The following result, proved in Item 58, shows that the relative information spectrum
corresponding to Cauchy distributions with respective scale/locations (λ1, µ1) and
(λ0, µ0) depends on the four parameters through the single scalar

ζ(λ1, µ1, λ0, µ0) =
λ2

1 + λ2
0 + (µ1 − µ0)

2

2|λ0λ1|
≥ 1, (149)

where equality holds if and only if (λ1, µ1) = (λ0, µ0).

Theorem 7. Suppose that λ1λ0 6= 0, and V is standard Cauchy. Denote

Z =
dPλ1V+µ1

dPλ0V+µ0

(λ1V + µ1). (150)

Then,

(a)

E[Z] = ζ(λ1, µ1, λ0, µ0), (151)

(b) Z has the same distribution as the random variable

ζ +
√

ζ2 − 1 cos Θ, (152)

where Θ is uniformly distributed on [−π, π] and ζ = ζ(λ1, µ1, λ0, µ0). Therefore,
the probability density function of Z is

fZ(z) =
1
π

1√
ζ2 − 1− (z− ζ)2

, (153)

on the interval 0 < ζ −
√

ζ2 − 1 < z < ζ +
√

ζ2 − 1.

51. The indefinite integral (e.g., see 2.261 in [24])

∫ dx√
2ζx− x2 − 1

= arcsin
x− ζ√
ζ2 − 1

(154)
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results, with Xi = λiV + µi, i = 0, 1, in

P[ıX1‖X0
(X1) ≤ log t] =


1, ζ +

√
ζ2 − 1 ≤ t;

1
2 + 1

π arcsin t−ζ√
ζ2−1

, ζ −
√

ζ2 − 1 < t < ζ +
√

ζ2 − 1;

0, 0 < t ≤ ζ −
√

ζ2 − 1.

(155)

52. For future use, note that the endpoints of the support of (153) are their respective
reciprocals. Furthermore,

fZ

(
1
z

)
= z fZ(z), (156)

which implies

f 1
Z
(z) =

1
z

fZ(z). (157)

8. Equivalent Pairs of Probability Measures

53. Suppose that P1 and Q1 are probability measures on (A1, F1) such that P1 � Q1
and P2 and Q2 are probability measures on (A2, F2) such that P2 � Q2. We say
that (P1, Q1) and (P2, Q2) are equivalent pairs, and write (P1, Q1) ≡ (P2, Q2), if the
cumulative distribution functions of ıP1‖Q1

(X1) and ıP2‖Q2
(X2) are identical with

X1 ∼ P1 and X2 ∼ P2. Naturally, ≡ is an equivalence relationship. Because of the
one-to-one correspondence indicated in Item 46, the definition of equivalent pairs does
not change if we require equality of the information spectra under the dominated
measure, i.e., that ıP1‖Q1

(Y1) and ıP2‖Q2
(Y2) be equally distributed Y1 ∼ Q1 and

Y2 ∼ Q2. Obviously, the requirement that the information spectra coincide is the same
as requiring that the distributions of dP1

dQ1
(Y1) and dP2

dQ2
(Y2) are equal. As in Item 46,

we also employ the notation (X1, Y1) ≡ (X2, Y2) to indicate (P1, Q1) ≡ (P2, Q2) if
X1 ∼ P1, X2 ∼ P2, Y1 ∼ Q1, and Y2 ∼ Q2.

54. Suppose that the output probability measures of a certain (random or deterministic)
transformation are Q0 and Q1 when the input is distributed according to P0 and P1,
respectively. If (P0, P1) ≡ (Q0, Q1), then the transformation is a sufficient statistic for
deciding between P0 and P1 (i.e., the case of a binary parameter).

55. If (A, F ) is a measurable space on which the probability measures PX1 � PX2 are
defined, and φ : A → B is a (F , G )-measurable injective function, then Pφ(X1)

� Pφ(X2)

are probability measures on (B, G ) and

ıX1‖X2
(x) = ıφ(X1)‖φ(X2)(φ(x)). (158)

Consequently, (X1, X2) ≡ (φ(X1), φ(X2)).
56. The most important special case of Item 55 is an affine transformation of an arbi-

trary real-valued random variable X, which enables the reduction of four-parameter
problems into two-parameter problems: for all (λ2, µ1, µ2) ∈ R3 and λ1 6= 0,

(λ1X + µ1, λ2X + µ2) ≡ (X, λX + µ), (159)

with

λ =
λ2

λ1
and µ =

µ2 − µ1

λ1
, (160)

by choosing the affine function φ(x) = x−µ1
λ1

.
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57.

Theorem 8. If Xn ∈ Rn is an even random vector, i.e., PXn = P−Xn , then

(Xn + µ1, Xn + µ2) ≡ (Xn + µ3, Xn + µ4), (161)

whenever |µ1 − µ2| = |µ3 − µ4|.

Proof.

(a) If µ1 − µ2 = µ3 − µ4, then (161) holds even if Xn is not even because the
function x− µ is injective, in particular, with µ = µ3 − µ1 = µ4 − µ2.

(b) If µ1 − µ2 = µ4 − µ3, then

(Xn + µ1, Xn + µ2) ≡ (Xn, Xn + µ2 − µ1) (162)

≡ (Xn, Xn + µ3 − µ4) (163)

≡ (−Xn + µ3 − µ4,−Xn) (164)

≡ (Xn + µ3 − µ4, Xn) (165)

≡ (Xn + µ3, Xn + µ4), (166)

where (162) and (166) follow from Part (a), (164) follows because −x + µ3 − µ4
is injective, and (165) holds because Xn is even.

58. We now proceed to prove Theorem 7.

Proof. Since λV and −λV have identical distributions, we may assume for conve-
nience that λ1 > 0 and λ0 > 0. Furthermore, capitalizing on Item 56, we may assume
λ1 = 1, µ1 = 0, λ0 = λ, and µ0 = µ, and then recover the general result letting λ = λ0

λ1

and µ = µ0−µ1
λ1

. Invoking (A9) and (A10), we have

E
[

dPV
dPλV+µ

(V)

]
=

1
λ
E
[
(V − µ)2 + λ2

V2 + 1

]
(167)

=
1

π λ

∫ ∞

−∞

(t− µ)2 + λ2

(t2 + 1)2 dt (168)

=
λ2 + µ2 + 1

2 λ
, (169)

and we can verify that we recover (151) through the aforementioned substitution.
Once we have obtained the expectation of Z = dPV

dPλV+µ
(V), we proceed to determine

its distribution. Denoting the right side of (169) by ζ, we have

Z−E[Z] = 1
λ

λ2 + (V − µ)2

1 + V2 − ζ (170)

=
1

2λ

(1− λ2 − µ2)(V2 − 1)− 4µV
1 + V2 (171)

=
1

2λ
(1− λ2 − µ2)(sin2 Θ− cos2 Θ)− 4µ sin Θ cos Θ (172)

=
1

2λ

(
(λ2 + µ2 − 1) cos 2Θ− 2µ sin 2Θ

)
(173)

=
1

2λ

√
(λ2 + µ2 − 1)2 + 4µ2 cos

(
2Θ + φλ,µ

)
(174)

=
√

ζ2 − 1 cos
(
2Θ + φλ,µ

)
, (175)
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where Θ is uniformly distributed on [−π, π]. We have substituted V = tan Θ (see
Item 4) in (172), and invoked elementary trigonometric identities in (173) and (174).
Since the phase in (175) does not affect it, the distribution of Z is indeed as claimed in
(152), and (153) follows because the probability density function of cos Θ is

fcos Θ(t) =
1
π

1√
1− t2

, |t| < 1. (176)

59. In general, it need not hold that (X, Y) ≡ (Y, X)—for example, if X and Y are zero-
mean Gaussian with different variances. However, the class of scalar Cauchy distribu-
tions does satisfy this property since the result of Theorem 7 is invariant to swapping
λ1 ↔ λ0 and µ1 ↔ µ0. More generally, Theorem 7 implies that, if λ1λ0γ1γ0 6= 0, then

(λ1V + µ1, λ0V + µ0) ≡ (γ1V + ν1, γ0V + ν0)~� (177)

λ2
1 + λ2

0 + (µ1 − µ0)
2

|λ0λ1|
=

γ2
1 + γ2

0 + (ν1 − ν0)
2

|γ0γ1|
.

Curiously, (177) implies that (V, V + 1) ≡ (V, 2V + 1).
60. For location–dilation families of random variables, we saw in Item 56 how to reduce

a four-parameter problem into a two-parameter problem since (λ1V + µ1, λ0V +
µ0) ≡ (V, λV + µ) with the appropriate substitution. In the Cauchy case, Theorem 7
reveals that, in fact, we can go one step further and turn it into a one-parameter
problem. We have two basic ways of doing this:

(a) (λ1V + µ1, λ0V + µ0) ≡ (V, V + µ) with µ2 = 2ζ − 2.
(b) (λ1V + µ1, λ0V + µ0) ≡ (V, λV) with either

λ = ζ −
√

ζ2 − 1 < 1, or λ = ζ +
√

ζ2 − 1 > 1, (178)

which are the solutions to ζ = λ2+1
2λ .

9. f -Divergences

This section studies the interplay of f -divergences and equivalent pairs of measures.

61. If P � Q and f : [0, ∞) → R is convex and right-continuous at 0, f -divergence is
defined as

D f (P ‖Q) = E
[

f
(

dP
dQ

(Y)
)]

, Y ∼ Q. (179)

62. The most important property of f -divergence is the data processing inequality

D f (PX ‖QX) ≥ D f (PY ‖QY), (180)

where PY and QY are the responses of a (random or deterministic) transformation
to PX and QX, respectively. If f is strictly convex at 1 and D f (PX ‖QX) < ∞, then
(PX , QX) ≡ (PY, QY) is necessary and sufficient for equality in (180).

63. If (P, Q) ≡ (Q, P), then D f (P ‖Q) = D f ?(P ‖Q) with the transform f ?(t) = t f ( 1
t ),

which satisfies f ?? = f .
64.

Theorem 9. If P1 � Q1 and P2 � Q2, then

(P1, Q1) ≡ (P2, Q2) ⇐⇒ D f (P1 ‖Q1) = D f (P2 ‖Q2), ∀ f , (181)
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where ∀ f stands for all convex right-continuous f : [0, ∞)→ R.

Proof. As mentioned in Item 53, (P1, Q1) ≡ (P2, Q2) is equivalent to dP1
dQ1

(Y1) and
dP2
dQ2

(Y2) having identical distributions with Y1 ∼ Q1 and Y2 ∼ Q2.

=⇒ According to (179), D f (P ‖Q) is determined by the distribution of the random
variable dP

dQ (Y), Y ∼ Q.
⇐= For t ∈ R, the function ft(x) = etx, x ≥ 0, is convex and right-continuous at

0, and D ft(P ‖Q) is the moment generating function, evaluated at t, of the
random variable dP

dQ (Y), Y ∼ Q. Therefore, D ft(P1 ‖Q1) = D ft(P2 ‖Q2) for all
t implies that (P1, Q1) ≡ (P2, Q2).

65. Since P � Q is not necessary in order to define (finite) D f (P‖Q), it is possible
to enlarge the scope of Theorem 9 by defining (P1, Q1) ≡ (P2, Q2) dropping the
restriction that P1 � Q1 and P2 � Q2. For that purpose, let µ1 and µ2 be σ-finite
measures on (A1, F1) and (A2, F2), respectively, and denote pi = dPi

dµi
, qi = dQi

dµi
,

i = 1, 2. Then, we say (P1, Q1) ≡ (P2, Q2) if

(a) when restricted to [0, 1], the random variables p1(Y1)
q1(Y1)

and p2(Y2)
q2(Y2)

have identical
distributions with Y1 ∼ Q1 and Y2 ∼ Q2;

(b) when restricted to [0, 1], the random variables q1(X1)
p1(X1)

and q2(X2)
p2(X2)

have identical
distributions with X1 ∼ P1 and X2 ∼ P2.

Note that those conditions imply that

(c) Q1({ω ∈ A1 : p1(ω) = q1(ω)}) = Q2({ω ∈ A2 : p2(ω) = q2(ω)});
(d) Q1({ω ∈ A1 : p1(ω) = 0}) = Q2({ω ∈ A2 : p2(ω) = 0});
(e) P1({ω ∈ A1 : q1(ω) = 0}) = P2({ω ∈ A2 : q2(ω) = 0}).
For example, if P1 ⊥ Q1 and P2 ⊥ Q2, then (P1, Q1) ≡ (P2, Q2). To show the
generalized version of Theorem 9, it is convenient to use the symmetrized form

D f (P ‖Q) =
∫

0≤p<q
q f
(

p
q

)
dµ +

∫
0≤q<p

p f ?
(

q
p

)
dµ + f (1) Q[p = q]. (182)

66. Suppose that there is a class C of probability measures on a given measurable space
with the property that there exists a convex function g : (0, ∞)→ R (right-continuous
at 0) such that, if (P1, Q1) ∈ C2 and (P2, Q2) ∈ C2, then

Dg(P1 ‖Q1) = Dg(P2 ‖Q2) ⇐⇒ (P1, Q1) ≡ (P2, Q2). (183)

In such case, Theorem 9 indicates that C2 can be partitioned into equivalence classes
such that, within every equivalence class, the value of D f (P ‖Q) is constant, though
naturally dependent on f . Throughout C2, the value of Dg(P ‖Q) determines the
value of D f (P ‖Q), i.e., we can express D f (P ‖Q) = ϑ f ,g

(
Dg(P ‖Q)

)
, where ϑ f ,g is a

non-decreasing function. Consider the following examples:

(a) Let C be the class of real-valued Gaussian probability measures with given
variance σ2 > 0. Then,

D
(
N
(

µ1, σ2
)
‖N
(

µ2, σ2
))

=
(µ1 − µ2)

2

σ2 log e. (184)

Since Theorem 8 implies that (N
(
µ1, σ2),N(µ2, σ2)) ≡ (N

(
µ3, σ2),N(µ4, σ2))

as long as (µ1 − µ2)
2 = (µ3 − µ4)

2, (184) indicates that (183) is satisfied with
g(t) given by the right-continuous extension of t log t. Therefore, we can con-
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clude that, regardless of f , D f
(
N
(
µ1, σ2) ‖N(µ2, σ2)) depends on (µ1, µ2, σ2)

only through (µ1 − µ2)
2/σ2.

(b) Let C be the collection of all Cauchy random variables. Theorem 7 reveals that
(183) is also satisfied if g(x) = x2 because, if X ∼ P and Y ∼ Q, then

E
[

dP
dQ

(X)

]
= E

[(
dP
dQ

(Y)
)2
]

. (185)

67. An immediate consequence of Theorems 7 and 9 is that, for any valid f , the f -
divergence between Cauchy densities is symmetric,

D f (λ1V + µ1 ‖ λ0V + µ0) = D f (λ0V + µ0 ‖ λ1V + µ1). (186)

This property does not generalize to the multivariate case. While, in view of Theorem 8,

(Λ
1
2 Vn + µ1, Λ

1
2 Vn + µ2) ≡ (Λ

1
2 Vn + µ2, Λ

1
2 Vn + µ1), (187)

in general, (Λ
1
2 Vn, Vn) 6≡ (Vn, Λ

1
2 Vn) since the corresponding relative entropies do

not coincide as shown in [8].
68. It follows from Item 66 and Theorem 7 that any f -divergence between Cauchy prob-

ability measures D f (λ1V + µ1 ‖ λ0V + µ0) is a monotonically increasing function
of ζ(λ1, µ1, λ0, µ0) given by (149). The following result shows how to obtain that
function from f .

Theorem 10. With fZ given in (153),

D f (λ1V + µ1 ‖ λ0V + µ0) =
∫ ζ+
√

ζ2−1

ζ−
√

ζ2−1
f
(

1
z

)
fZ(z)dz (188)

= E
[

f

((
ζ +

√
ζ2 − 1 cos Θ

)−1
)]

(189)

=
∫ ζ+
√

ζ2−1

ζ−
√

ζ2−1

1
z

f (z) fZ(z)dz. (190)

where Θ is uniformly distributed on [0, π] in (189).

Proof. In view of (179) and the definition of Z in Theorem 7,

D f (λ1V + µ1 ‖ λ0V + µ0) = E
[

f
(

1
Z

)]
, (191)

thereby justifying (188) and (189) since we saw in Theorem 7 that Z has the distribu-
tion of ζ +

√
ζ2 − 1 cos Θ with Θ uniformly distributed on [0, π]. Item 52 results in

(190). Alternatively, we can rely on Item 63 and substitute f by f ? on the right side
of (188).

69. Suppose now that we have two sequences of Cauchy measures with respective pa-

rameters (λ
(n)
1 , µ

(n)
1 ) and (λ

(n)
0 , µ

(n)
0 ) such that ζ(λ

(n)
1 , µ

(n)
1 , λ

(n)
0 , µ

(n)
0 ) → 1. Then,

Theorem 10 indicates that

D f

(
λ
(n)
1 V + µ

(n)
1 ‖ λ

(n)
0 V + µ

(n)
0

)
→ f (1). (192)

The most common f -divergences are such that f (1) = 0 since in that case D f (P‖Q) ≥
0. In addition, adding the function αt− α to f (t) does not change the value of D f (P‖Q)
and with appropriately chosen α, we can turn f (t) into canonical form in which not
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only f (1) = 0 but f (t) ≥ 0. In the special case in which the second measure is fixed,
Theorem 9 in [25] shows that, if ess sup dPn

dQ (Y)→ 1 with Y ∼ Q, then

lim
n→∞

D f (Pn‖Q)

Dg(Pn‖Q)
= lim

t→1

f (t)
g(t)

, (193)

provided the limit on the right side exists; otherwise, the left side lies between the
left and right limits at 1. In the Cauchy case, we can allow the second probability to
depend on n and sharpen that result by means of Theorem 10. In particular, it can be
shown that

lim
n→∞

D f

(
λ
(n)
1 V + µ

(n)
1 ‖ λ

(n)
0 V + µ

(n)
0

)
Dg

(
λ
(n)
1 V + µ

(n)
1 ‖ λ

(n)
0 V + µ

(n)
0

) =
ḟ (0−) + ḟ (0+)
ġ(0−) + ġ(0+)

(194)

provided the right side is not 0
0 .

10. χ2-Divergence

70. With either f (x) = (x− 1)2 or f (x) = x2 − 1, f -divergence is the χ2-divergence,

χ2(P ‖Q) = E
[

dP
dQ

(X)

]
− 1, X ∼ P. (195)

71. If P and Q are Cauchy distributions, then (149), (151) and (195) result in

χ2(λ1V + µ1 ‖ λ0V + µ0) = ζ(λ1, µ1, λ0, µ0)− 1 (196)

=
(|λ0| − |λ1|)2 + (µ1 − µ0)

2

2 |λ0 λ1|
, (197)

a formula obtained in Appendix D of [26] using complex analysis and the Cauchy
integral formula. In addition, invoking complex analysis and the maximal group
invariant results in [27,28], ref. [26] shows that any f -divergence between Cauchy
distributions can be expressed as a function of their χ2 divergence, although [26]
left open how to obtain that function, which is given by Theorem 10 substituting
ζ = 1 + χ2.

11. Relative Entropy

72. The relative entropy between Cauchy distributions is given by

D(λ1V + µ1 ‖ λ0V + µ0) = log
(
(|λ0|+ |λ1|)2 + (µ1 − µ0)

2

4 |λ0 λ1|

)
, (198)

where λ1λ0 6= 0. The special case λ1 = λ0 of (198) was found in Example 4 of [29].
The next four items give different simple justifications for (198). An alternative proof
was recently given in Appendix C of [26] using complex analysis holomorphisms and
the Cauchy integral formula. Yet another, much more involved, proof is reported
in [30]. See also Remark 19 in [26] for another route invoking the Lévy–Khintchine
formula and the Frullani integral.

73. Since for absolutely continuous random variables D(X ‖Y) = −h(X)−E[log fY(X)],

D(V ‖ λ V + µ) = −h(V) + log
π

|λ| +E
[
log
(

λ2 + (V − µ)2
)]

(199)

= − log(4|λ|) + log
(
(1 + |λ|)2 + µ2

)
, (200)

where (200) follows from (12) and (A4) with α2 = λ2 + µ2 and cos β = µ
|α| .
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Now, substituting λ = λ0
λ1

and µ = µ0−µ1
λ1

, we obtain (198) since, according to Item 56,
(V, λ V + µ) ≡ (λ1V + µ1, λ0V + µ0).

74. From the formula found in Example 4 of [29] and the fact that, according to (197),

χ2 = µ2

2λ2 when λ1 = λ0 = λ, we obtain

D(λV + µ ‖ λV) = log
(

1 +
µ2

4λ2

)
= log

(
1 + 1

2 χ2
)

. (201)

Moreover, as argued in Item 60, (201) is also valid for the relative entropy between
Cauchy distributions with λ1 6= λ0 as long as χ2 is given in (197). Indeed, we can
verify that the right side of (201) becomes (198) with said substitution.

75. By the definition of relative entropy, and Theorem 7,

D(λ1V + µ1 ‖ λ0V + µ0) = E[log Z] (202)

=
1

2π

∫ 2π

0
log
(

ζ +
√

ζ2 − 1 cos θ

)
dθ (203)

= log
(

1 + ζ

2

)
, (204)

where (204) follows from (A14). Then, (198) results by plugging into (204) the value
of ζ in (149).

76. Evaluating (190) with f (t) = t log t results in (202).
77. If V is standard Cauchy, independent of Cauchy V1 and V0, then (198) results in

D(λV + ε V1 ‖ λV + ε V0) =
ε2

4λ2

(
(λ1 − λ0)

2 + (µ1 − µ0)
2
)

log e + o(ε2), (205)

where V1 = λ1V′ + λ1 and V0 = λ1V′ + λ1, and V′ is an independent (or exact) copy
of V. In contrast, the corresponding result in the Gaussian case in which X, X1, X0 are
independent Gaussian with means µ, µ1, µ0 and variances σ2, σ2

1 , σ2
0 , respectively, is

D(X + ε X1 ‖X + ε X0) =
ε2

2σ2 (µ1 − µ0)
2 log e + o(ε2). (206)

In fact, it is shown in Lemma 1 of [31] that (206) holds even if X1 and X0 are not
Gaussian but have finite variances. It is likely that (205) holds even if V1 and V0 are
not Cauchy, but have finite strengths.

78. An important information theoretic result due to Csiszár [32] is that if Q1 � Q2 and
P is such that

E
[
ıQ1‖Q2

(X)
]
= D(Q1 ‖Q2), X ∼ P, (207)

then the following Pythagorean identity holds

D(P ‖Q2) = D(P ‖Q1) + D(Q1 ‖Q2). (208)

Among other applications, this result leads to elegant proofs of minimum relative
entropy results. For example, the closest Gaussian to a given P with a finite second
moment has the same first and second moments as P. If we let Q1 and Q2 be centered
Cauchy with strengths λ1 and λ2, respectively, then the orthogonality condition (207)
becomes, with the aid of (148) and (198),

VX2

(
λ−1

2

)
− VX2

(
λ−1

1

)
= 2 loge

(
1 +

λ1

λ2

)
− 2 loge 2. (209)
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If, in addition, P is centered Cauchy, we can use (28) to verify that (209) holds only
in the trivial cases in which either λ1 = λ2 or P = Q1. For non-Cauchy P, (208) may
indeed be satisfied with λ1 6= λ2. For example, using (30), if X = V2,2, then (209), and
therefore (208), holds with (λ1, λ2) = (2, 0.35459 . . .).

79. Mutually absolutely continuous random variables may be such that

D(X ‖ Z) < ∞ = D(Z ‖X). (210)

An easy example is that of Gaussian X and Cauchy Z, or, if we let X be Cauchy, (210)
holds with Z having the very heavy-tailed density function in (62).

80. While relative entropy is lower semi-continuous, it is not continuous. For example,
using the Cauchy distribution, we can show that relative entropy is not stable against
small contamination of a Gaussian random variable: if X is Gaussian independent of
V, then no matter how small λ 6= 0,

D(λ|V|+ X ‖ − λ|V|+ X) = ∞. (211)

12. Total Variation Distance

81. With f (x) = |x − 1|, f -divergence becomes the total variation distance (with range
[0,2]). Moreover, we have the following representation:

Theorem 11. If P�� Q and (P, Q) ≡ (Q, P), then

1
2 |P−Q| = 2P[Z > 1]− P[Z 6= 1], (212)

with Z = dP
dQ (X), X ∼ P.

Proof.

1
2 |P−Q| = max

A∈F
{P(A)−Q(A)} (213)

= P
(

ω :
dP
dQ

(ω) > 1
)
−Q

(
ω :

dP
dQ

(ω) > 1
)

(214)

= P
(

ω :
dP
dQ

(ω) > 1
)
− P

(
ω :

dQ
dP

(ω) > 1
)

(215)

= P[Z > 1]− P[Z < 1] (216)

where (215) and (216) follow from (P, Q) ≡ (Q, P) and P�� Q, respectively.

82. Example 15 of [33] shows that the total variation distance between centered Cauchy
distributions is

∣∣Pλ1V − Pλ0V
∣∣ = 4

π
arctan

(
||λ1| − |λ0||
2
√
|λ0λ1|

)
(217)

=
4
π

arctan
(√

1
2 χ2(Pλ1V‖Pλ0V)

)
(218)

in view of (197). Since any f -divergence between Cauchy distributions depends on
the parameters only through the corresponding χ2-divergence, (217)–(218) imply the
general formula

∣∣Pλ1V+µ1 − Pλ0V+µ0

∣∣ = 4
π

arctan
(√

1
2 χ2(Pλ1V+µ1‖Pλ0V+µ0)

)
. (219)
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Alternatively, applying Theorem 11 to the case of Cauchy random variables, note that,
in this case, Z is an absolutely continuous random variable with density function
(153). Therefore, P[Z 6= 1] = 1, and

P[Z > 1] =
1
π

∫ ζ+
√

ζ2−1

1

1√
2zζ − z2 − 1

dz (220)

=
1
2
+

1
π

arctan
√

1
2 χ2, (221)

where (221) follows from (154) and the identity arcsin
√

δ√
1+δ

= arctan
√

δ specialized

to δ = 1
2 χ2 = 1

2 (ζ − 1). Though more laborious (see [26]), (219) can also be verified by
direct integration.

13. Hellinger Divergence

83. The Hellinger divergence, Hα(P ‖Q) of order α ∈ (0, 1)∪ (1, ∞), is the fα-divergence with

fα(t) =
tα − 1
α− 1

. (222)

Notable special cases are

H2(P ‖Q) = χ2(P ‖Q), (223)

lim
α↓1

Hα(P ‖Q) = D(P ‖Q), (224)

H 1
2
(P ‖Q) = 2 H 2(P ‖Q), (225)

where H 2(P ‖Q) is known as the squared Hellinger distance.
84. For Cauchy random variables, Theorem 10 yields

Hα(λ1V + µ1 ‖ λ0V + µ0) =
1

α− 1
(
E[Z−α]− 1

)
(226)

=
Pα−1(ζ)− 1

α− 1
, (227)

where ζ is as given in (149), and we have used (A15) and Pα(·) denotes the Legendre
function of the first kind, which satisfies P−α = Pα−1 (see 8.2.1. in [34]).

14. Rényi Divergence

85. For absolutely continuous probability measures P and Q, with corresponding proba-
bility density functions p and q, the Rényi divergence of order α ∈ [0, 1) ∪ (1, ∞) is [35]

Dα(P ‖Q) =
1

α− 1
log
(∫ ∞

−∞
pα(t) q1−α(t)dt

)
. (228)

Note that, if (P1, Q1) ≡ (P2, Q2), then Dα(P1 ‖Q1) = Dα(P2 ‖Q2). Moreover, al-
though Rényi divergence of order α is not an f -divergence, it is in one-to-one corre-
spondence with the Hellinger divergence of order α:

Dα(P ‖Q) =
1

α− 1
log(1 + (α− 1)Hα(P ‖Q)). (229)
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86. An extensive table of order-α Rényi divergences for various continuous random
variables can be found in [36]. An addition to that list for Cauchy random variables
can be obtained plugging (227) into (229):

Dα(λ1V + µ1 ‖ λ0V + µ0) =
log Pα−1(ζ)

α− 1
(230)

=
1

α− 1
log Pα−1

(
λ2

1 + λ2
0 + (µ1 − µ0)

2

2|λ0λ1|

)
, (231)

for α ∈ (0, 1) ∪ (1, ∞).
87. Suppose that λ ∈ (0, 1). Then, (A16) yields

D 1
2
(V ‖ λV) = −2 log

(
2
√

λ

π
K
(√

1− λ2
))

, (232)

where K(·) stands for the complete elliptical integral of the first kind in (A18). As
indicated in Item 60, to obtain D 1

2
(λ1V + µ1 ‖ λ0V + µ0), we just need to substitute λ

by ζ −
√

ζ2 − 1 in (232), with ζ given by (149).
88. Notice that, specializing (86) to (α, µ0, µ1, λ0, λ1) = ( 1

2 , 0, 0, λ, 1), (232) results in
the identity

P− 1
2

(
1

2λ
+

λ

2

)
=

2
√

λ

π
K
(√

1− λ2
)

, λ ∈ (0, 1). (233)

Writing the complete elliptical integral of the first kind and the Legendre function of
the first kind as special cases of the Gauss hypergeometric function, González [37]
noticed the simpler identity (see also 8.13.8 in [34])

P− 1
2
(λ) =

2
π

K

(√
1− λ

2

)
, λ ∈ (0, 1). (234)

We can view (233) and (234) as complementary of each other since they constrain the
argument of the Legendre function to belong to (1, ∞) and (0, 1), respectively.

89. Since P1(z) = z, particularizing (230), we obtain

D2(λ1V + µ1 ‖ λ0V + µ0) = log ζ = log

(
λ2

1 + λ2
0 + (µ1 − µ0)

2

2|λ0λ1|

)
. (235)

90. Since P2(z) = 1
2 (3z2 − 1), for Cauchy random variables, we obtain

D3(P ‖Q) =
1
2

log
(

1 + 3 χ2(P ‖Q) +
3
2

χ4(P ‖Q)

)
. (236)

91. For Cauchy random variables, the Rényi divergence for integer order 4 or higher can
be obtained through (235), (236) and the recursion (dropping (P ‖Q) for typographical
convenience)

(n + 1) exp((n + 1)Dn+2) = (2n + 1) ζ exp(nDn+1)− n exp((n− 1)Dn), (237)

which follows from (230) and the recursion of the Legendre polynomials

(n + 1)Pn+1(z) = (2n + 1) z Pn(z)− n Pn−1(z), (238)

which, in fact, also holds for non-integer n (see 8.5.3 in [34]).
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92. The Chernoff information

C(P ‖Q) = sup
λ∈(0,1)

(1− λ)Dλ(P ‖Q) (239)

satisfies C(P ‖Q) = C(Q ‖ P) regardless of (P, Q). If, as in the case of Cauchy measures,
(P, Q) ≡ (Q, P), then Chernoff information is equal to the Bhattacharyya distance:

C(P ‖Q) = 1
2 D 1

2
(P ‖Q) = log

1∫ ∞
−∞

√
p(t) q(t)dt

= − log
(

1−H 2(P‖Q)
)

, (240)

where H 2(P‖Q) is the squared Hellinger distance, which is the f -divergence with
f (t) = 1

2 (1 −
√

t)2. Together with Item 87, (240) gives the Chernoff information
for Cauchy distributions. While it involves the complete elliptical integral function,
its simplicity should be contrasted with the formidable expression for Gaussian
distributions, recently derived in [38]. The reason (240) holds is that the supremum in
(239) is achieved at λ∗ = 1

2 . To see this, note that

f (λ) = (1− λ)Dλ(P ‖Q) = λ D1−λ(Q ‖ P) (241)

= λ D1−λ(P ‖Q) (242)

= f (1− λ), (243)

where (241) reflects the skew-symmetry of Rényi divergence, and (242) holds because
(P, Q) ≡ (Q, P). Since f (λ) : λ ∈ [0, 1] is concave and its own mirror image, it is
maximized at λ∗ = 1

2 .

15. Fisher’s Information

93. The score function of the standard Cauchy density (1) is

ρV(x) = ∇loge fV(x) = −∇loge(1 + x2) = − 2 x
1 + x2 . (244)

Then, ρV(V) is a zero-mean random variable with second moment equal to Fisher’s
information

J(V) = E
[
ρ2

V(V)
]
=

1
π

∫ ∞

−∞

4 t2

(1 + t2)3 dt =
1
2

, (245)

where we have used (A11). Since Fisher’s information is invariant to location and
scales as J(X) = α2 J(αX), we obtain

J(λV + µ) =
1

2 λ2 . (246)

Together with (117), the product of entropy power and Fisher information is 4π
e ,

thereby abiding by Stam’s inequality [4], 1 ≤ N(X) J(X).
94. Introduced in [39], Fisher’s information of a density function (245) quantifies its

similarity with a slightly shifted version of itself. A more general notion is the
Fisher information matrix of a random transformation PY|X : Rk → Y satisfying the
regularity condition

D(PY|X=α ‖ PY|X=θ) = o(‖α− θ‖). (247)



Entropy 2023, 25, 346 32 of 48

Then, the Fisher information matrix of PY|X at θ has coefficients

Jij(θ, PY|X) = E
[

∂

∂αi
ıPY|X=α‖PY|X=θ

(Yθ)
∂

∂αj
ıPY|X=α‖PY|X=θ

(Yθ)

]
|α←θ, (248)

and satisfies (with relative entropy in nats)

D(PY|X=α ‖ PY|X=θ) =
1
2
(α− θ)>J(θ, PY|X)(α− θ) + o(‖α− θ‖2). (249)

For the Cauchy family, the parametrization vector has two components, location and
strength, namely, θ> = (µ, λ). The regularity condition (247) is satisfied in view of
(205), and we can use the closed-form expression in (205) to obtain

J11(θ, PY|X) = J22(θ, PY|X) =
1

2 λ2 , (250)

J12(θ, PY|X) = J21(θ, PY|X) = 0. (251)

95. The relative Fisher information is defined as

J(P ‖Q) = E
[(
∇ıP‖Q(X)

)2
]

, X ∼ P. (252)

Although the purpose of this definition is to avoid some of the pitfalls of the classical
definition of Fisher’s information, not only do equivalent pairs fail to have the same
relative Fisher information but, unlike relative entropy or f -divergence, relative Fisher
information is not transparent to injective transformations. For example, J(X‖Y) =
λ2 J(λX‖ λY). Centered Cauchy random variables illustrate this fact since

J(V ‖ λV) =
(4 + λ)(λ− 1)2

2λ(1 + λ)2 and J(λV ‖V) =
(4λ + 1)(λ− 1)2

2λ2(1 + λ)2 . (253)

96. de Bruijn’s identity [4] states that, if N ∼ N(0, 1) is independent of X, then, in nats,

d
dt

h
(

X +
√

t N
)
=

1
2

J
(

X +
√

t N
)

, t > 0. (254)

As well as serving as the key component in the original proofs of the entropy power
inequality, the differential equation in (254) provides a concrete link between Shannon
theory and its prehistory. As we show in Theorem 12, it turns out that there is a Cauchy
counterpart of de Bruijn’s identity (254). Before stating the result, we introduce the
following notation for a parametrized random variable Yt (to be specified later):

∇loge fYt(y) =
∂

∂y
loge fYt(y) = f−1

Yt
(y)

∂

∂y
fYt(y), (255)

∇2 loge fYt(y) =
∂

∂t
loge fYt(y) = f−1

Yt
(y)

∂

∂t
fYt(y), (256)

J(Yt) = E
[(
∇loge fYt(Yt)

)2
]
, (257)

K(Yt) = E
[(
∇2 loge fYt(Yt)

)2
]
, (258)

i.e., J(Yt) and K(Yt) are the Fisher information with respect to location and with
respect to dilation, respectively (corresponding to the coefficients J11 and J22 of the
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Fisher information matrix when θ> = (µ, λ) as in Item 94. The key to (254) is that
Yt = X +

√
t N, N ∼ N(0, 1) satisfies the partial differential equation

∂2

∂y2 fYt(y) =
∂

∂t
fYt(y). (259)

Theorem 12. Suppose that X is independent of standard Cauchy V. Then, in nats,

d2

dt2 h(X + t V) = −J(X + t V)− K(X + t V), t > 0. (260)

Proof. Equation (259) does not hold in the current case in which Yt = X + t V, and

fYt(y) =
t
π
E
[

1
t2 + (X− y)2

]
. (261)

However, some algebra (the differentiation/integration swaps can be justified in-
voking the bounded convergence theorem) indicates that the convolution with the
Cauchy density satisfies the Laplace partial differential equation

∂2

∂y2 fYt(y) = −
∂2

∂t2 fYt(y) =
2t
π

E
[

3(X− y)2 − t2

(t2 + (X− y)2)3

]
. (262)

The derivative of the differential entropy of Yt is, in nats,

d
dt

h(Yt) = −
∫ ∞

−∞

∂

∂t
fYt(y)dy−

∫ ∞

−∞
loge fYt(y)

∂

∂t
fYt(y)dy (263)

= − ∂

∂t

∫ ∞

−∞
fYt(y)dy−

∫ ∞

−∞
loge fYt(y)

∂

∂t
fYt(y)dy. (264)

Taking another derivative, the left side of (260) becomes

d2

dt2 h(Yt) = −
∫ ∞

−∞

∂2

∂t2 fYt(y) loge fYt(y)dy−
∫ ∞

−∞

∂

∂t
fYt(y)

∂

∂t
loge fYt(y)dy (265)

=
∫ ∞

−∞

∂2

∂y2 fYt(y) loge fYt(y)dy−
∫ ∞

−∞
f−1
Yt

(y)
(

∂

∂t
fYt(y)

)2
dy (266)

=
∫ ∞

−∞

∂2

∂y2 fYt(y) loge fYt(y)dy− K(Yt) (267)

= −J(Yt)− K(Yt), (268)

where

• (265)⇐= the first term on the right side of (264) is zero;
• (266)⇐= (262);
• (267)⇐= (258);
• (268)⇐= integration by parts, exactly as in [4] (or p. 673 of [19]).

97. Theorem 12 reveals that the increasing function fX(t) = h(X + t V) is concave (which
does not follow from the concavity of differential entropy functional of the density).
In contrast, it was shown by Costa [40] that the entropy power N

(
X +
√

t N
)

, with
N ∼ N(0, 1) is concave in t.
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16. Mutual Information

98. Most of this section is devoted to an additive noise model. We begin with the simplest
case in which XC is centered Cauchy independent of WC, also centered Cauchy with
ς(WC) > 0. Then, (11) yields

I(XC; XC + WC) = h(XC + WC)− h(WC) (269)

= log(4π(ς(XC) + ς(WC)))− log(4πς(WC)) (270)

= log
(

1 +
ς(XC)

ς(WC)

)
, (271)

thereby establishing a pleasing parallelism with Shannon’s formula [1] for the mutual
information between a Gaussian random variable and its sum with an independent
Gaussian random variable. Aside from a factor of 1

2 , in the Cauchy case, the role of
the variance is taken by the strength. Incidentally, as shown in [2], if N is standard
exponential on (0, ∞), an independent X on [0, ∞) can be found so that X + N is
exponential, in which case the formula (271) also applies because the ratio of strengths
of exponentials is equal to the ratio of their means. More generally, if input and noise
are independent non-centered Cauchy, their locations do not affect the mutual infor-
mation, but they do affect their strengths, so, in that case, (271) holds provided that
the strengths are evaluated for the centered versions of the Cauchy random variables.

99. It is instructive, as well as useful in the sequel, to obtain (271) through a more
circuitous route. Since YC = XC + WC is centered Cauchy with strength ς(YC) =
ς(XC) + ς(WC), the information density (e.g., [41]) is defined as

ıXC;YC
(x; y) = log

dPXCYC

d(PXC
× PYC

)
(x, y) (272)

= log
fYC|XC

(y|x)
fYC

(y)
(273)

= log
ς(YC)
ς(WC)

+ log
(

1 +
y2

ς2(YC)

)
− log

(
1 +

(y− x)2

ς2(WC)

)
. (274)

Averaging with respect to (XC, YC) = (XC, XC + WC), we obtain

I(XC; YC) = E[ıXC;YC
(XC; YC)] (275)

= log
ς(YC)
ς(WC)

+ log 4− log 4 = log
(

1 +
ς(XC)

ς(WC)

)
. (276)

100. If the strengths of output Y = X + N and independent noise N are finite and their
differential entropies are not−∞, we can obtain a general representation of the mutual
information without requiring that either input or noise be Cauchy. Invoking (56) and
I(X; X + N) = h(X + N)− h(N), we have

I(X; Y) = log
NC(Y)
NC(N)

(277)

= log
ς(Y)
ς(N)

+ D(N ‖ ς(N)V)− D(Y ‖ ς(Y)V), (278)

since, as we saw in (49), the finiteness of the strengths guarantees the finiteness of
the relative entropies in (278). We can readily verify the alternative representation
in which strength is replaced by standard deviation, and the standard Cauchy V is
replaced by standard normal W:
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I(X; Y) =
1
2

log
N(Y)
N(N)

(279)

= log
σ(Y)
σ(N)

+ D(N ‖ σ(N)W)− D(Y ‖ σ(Y)W). (280)

A byproduct of (278) is the upper bound

I(X; Y) ≤ log
ς(Y)

NC(N)
(281)

= log
ς(Y)
ς(N)

+ D(N ‖ ς(N)V), (282)

where (281) follows from NC(Y) ≤ ς(Y), and (282) follows by dropping the last term
on the right side of (278). Note that (281) is the counterpart of the upper bound given
by Shannon [1] in which the standard deviation of Y takes the place of the strength
in the numerator, and the square root of the noise entropy power takes the place
of the entropy strength in the denominator. Shannon gave his bound three years
before Kullback and Leibler introduced relative entropy in [42]. The counterpart of
(282) with analogous substitutions of strengths by standard deviations was given by
Pinsker [43], and by Ihara [44] for continuous-time processes.

101. We proceed to investigate the maximal mutual information between the (possibly
non-Cauchy) input and its additive Cauchy-noise contaminated version.

Theorem 13. Maximal mutual information: output strength constraint. For any η ≥
ς(WC) > 0,

max
X : ς(X+WC)≤η

I(X; X + WC) = log
η

ς(WC)
, (283)

where WC is centered Cauchy independent of X. The maximum in (283) is attained uniquely
by the centered Cauchy distribution with strength η − ς(WC).

Proof. For centered Cauchy noise, the upper bound in (282) simplifies to

I(X; X + WC) ≤ log
ς(X + WC)

ς(WC)
, (284)

which shows ≤ in (283). If the input is centered Cauchy XC with strength η − ς(WC),
then ς(XC+WC) = η, and I(XC; XC+WC) is equal to the right side in view of (271).

102. In the information theory literature, the maximization of mutual information over the
input distribution is usually carried out under a constraint on the average cost E[b(X)]
for some real-valued function b. Before we investigate whether the optimization in
(283) can be cast into that conventional paradigm, it is instructive to realize that
the maximization of mutual information in the case of input-independent additive
Gaussian noise can be viewed as one in which we allow any input such that the output
variance is constrained, and because the output variance is the sum of input and noise
variances that the familiar optimization over variance constrained inputs obtains.
Likewise, in the case of additive exponential noise and random variables taking
nonnegative values, if we constrain the output mean, automatically we are constraining
the input mean. In contrast, the output strength is not equal to the sum of Cauchy
noise strength and the input strength, unless the input is Cauchy. Indeed, as we saw
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in Theorem 1-(d), the output strength depends not only on the input strength but on
the shape of its probability density function. Since the noise is Cauchy, (45) yields

ς(X + WC) ≤ η ⇐⇒ ς2,θ(X) ≤ ς(WC) + η, with θ = 2 log
2η

η + ς(WC)
(285)

⇐⇒ E
[
log
(

ς(WC) + η + X2
)]
≤ 2 log(2η), (286)

which is the same input constraint found in [45] (see also Lemma 6 in [46] and Section
V in [47]) in which η affects not only the allowed expected cost but the definition of
the cost function itself. If X is centered Cauchy with strength η − ς(WC), then (286) is
satisfied with equality, in keeping with the fact that that input achieves the maximum
in (283). Any alternative input with the same strength that produces output strength
lower than or equal to η can only result in lower mutual information. However, as
we saw in Item 29, we can indeed find input distributions with strength η − ς(WC)
that can produce output strength higher than η. Can any of those input distributions
achieve I(X; Y) > log η

ς(WC)
? The answer is affirmative. If we let X = Vβ,2, defined in

(9), we can verify numerically that, for β ∈ [0.8, 1),

I(X; X + V) > log(ς(X) + 1). (287)

We conclude that, at least for θ
ς(WC)

∈ (1, ς(V0.8,2)) = (1, 3.126 . . .), the capacity–input–
strength function satisfies

C(θ) = max
X : ς(X)≤θ

I(X; X + WC) > log
(

1 +
θ

ς(WC)

)
. (288)

103. Although not always acknowledged, the key step in the maximization of mutual
information over the input distribution for a given random transformation is to
identify the optimal output distribution. The results in Items 101 and 102 point out
that it is mathematically more natural to impose constraints on the attributes of the
observed noisy signal than on the transmitted noiseless signal. In the usual framework
of power constraints, both formulations are equivalent as an increase in the gain of the
receiver antenna (or a decrease in the front-end amplifier thermal noise) of κ dB has
the same effect as an increase of κ dB in the gain of the transmitter antenna (or increase
in the output power of the transmitted amplifier). When, as in the case of strength,
both formulations lead to different solutions, it is worthwhile to recognize that what
we usually view as transmitter/encoder constraints also involve receiver features.

104. Consider a multiaccess channel Yi = X1i + X2i + Wi, where Wi is a sequence of
strength ς(W) independent centered Cauchy random variables. While the capacity
region is unknown if we place individual cost or strength constraints on the transmit-
ters, it is easily solvable if we impose an output strength constraint. In that case, the
capacity region is the triangle

Cη =

{
(R1, R2) ∈ [0, ∞)2 : R1 + R2 ≤ log

η

ς(W)

}
, (289)

where η > ς(W) is the output strength constraint. To see this, note (a) the corner
points are achievable thanks to Theorem 13; (b) if the transmitters are synchronous,
a time-sharing strategy with Cauchy distributed inputs satisfies the output strength
constraint in view of (107); (c) replacing the independent encoders by a single encoder
which encodes both messages would not be able to achieve higher rate sum. It is also
possible to achieve (289) using the successive decoding strategy invented by Cover [48]
and Wyner [49] for the Gaussian multiple-access channel: fix α ∈ (0, 1); to achieve
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R1 = α log η
ς(W)

and R2 = (1− α) log η
ς(W)

, we let the transmitters use random coding
with sequences of independent Cauchy random variables with respective strengths

ς1 = η − ςα(W)η1−α > 0, (290)

ς2 = ςα(W)η1−α − ς(W) > 0, (291)

which abide by the output strength constraint since ς1 + ς2 + ς(W) = η, and

R1 = log
(

1 +
ς1

ς2 + ς(W)

)
, (292)

R2 = log
(

1 +
ς2

ς(W)

)
, (293)

a rate-pair which is achievable by successive decoding by using a single-user decoder
for user 1, which treats the codeword transmitted by user 2 as noise; upon decoding
the message of user 1, it is re-encoded and subtracted from the received signal, thereby
presenting a single-user decoder for user 2 with a signal devoid of any trace of user 1
(with high probability).

105. The capacity per unit energy of the additive Cauchy-noise channel Yi = Xi + λVi,
where {Vi} is an independent sequence of standard Cauchy random variables, was
shown in [29] to be equal to (4λ2)−1 log e, even though the capacity-cost function of
such a channel is unknown. A corollary to Theorem 13 is that the capacity per unit
output strength of the same channel is

CO =
1
λ

max
η≥λ

λ

η
log

η

λ
=

log e
λ e

. (294)

By only considering Cauchy distributed inputs, the capacity per unit input strength is
lower bounded by

CI ≥ max
γ>0

1
γ

log
(

1 +
γ

λ

)
=

log e
λ

(295)

but is otherwise unknown as it is not encompassed by the formula in [29].
106. We turn to the scenario, dual to that in Theorem 13, in which the input is Cauchy but

the noise need not be. As Shannon showed in [1], if the input is Gaussian, among all
noise distributions with given second moment, independent Gaussian noise is the
least favorable. Shannon showed that fact applying the entropy power inequality
to the numerator on the right side of (279), and then further weakened the resulting
lower bound by replacing the noise entropy power in the denominator by its variance.
Taking a cue from this simple approach, we apply the entropy strength inequality
(124) to (277) to obtain

I(XC; XC + W) =
1
2

log
N2
C(Y)

N2
C(W)

(296)

≥ 1
2

log
N2
C(XC) + N2

C(W)

N2
C(W)

(297)

=
1
2

log
(

1 +
ς2(XC)

N2
C(W)

)
(298)

≥ 1
2

log
(

1 +
ς2(XC)

ς2
C(W)

)
, (299)

where (299) follows from N2
C(W) ≤ ς2

C(W). Unfortunately, unlike the case of Gaus-
sian input, this route falls short of showing that Cauchy noise of a given strength
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is least favorable because the right side of (299) is strictly smaller than the Cauchy-
input Cauchy-noise mutual information in (271). Evidently, while the entropy power
inequality is tight for Gaussian random variables, it is not for Cauchy random vari-
ables as we observed in Item 39. For this approach to succeed showing that, under
a strength constraint, the least favorable noise is centered Cauchy we would need
that, if W is independent of standard Cauchy V, then NC(V + W)− NC(W) ≥ 1. (See
Item 119-(a).)

107. As in Item 102, the counterpart in the Cauchy-input case is more challenging due to
the fact that, unlike variance, the output strength need not be equal to the sum of input
and noise strength. The next two results give lower bounds which, although achieved
by Cauchy noise, do not just depend on the noise distribution through its strength.

Theorem 14. If XC is centered Cauchy, independent of W with 0 < ς(W) < ∞, denote
Y = XC + W. Then,

I(XC; XC + W) ≥ log
ς(Y)
ς(W)

−
∣∣∣∣log

ς(W)

ς(Y)− ς(XC)

∣∣∣∣, (300)

with equality if W is centered Cauchy.

Proof. Let us abbreviate ς = ς(Y)− ς(XC). Consider the following chain:

D(Y ‖ ς(Y)V)− D(W ‖ ς(W)V) = D(XC + W ‖XC + ς V)− D(W ‖ ς(W)V) (301)

≤ D(W ‖ ς V)− D(W ‖ ς(W)V) (302)

= log
ς(W)

ς
+E

[
log

ς2 + W2

ς2(W) + W2

]
(303)

≤
∣∣∣∣log

ς(W)

ς

∣∣∣∣, (304)

where

• (301)⇐= XC is centered Cauchy;
• (302)⇐= relative entropy data processing theorem applied to a random trans-

formation that consists of the addition of independent “noise” XC;
• (303)⇐= both relative entropies are finite since ς(W) < ∞;
• (304)⇐= the elementary observation

log
ς2 + t2

ς2(W) + t2 ≤
{

0, ς < ς(W);
2 log ς

ς(W)
, ς ≥ ς(W).

(305)

The desired bound (300) now follows in view of (278). It holds with equality in W
being centered Cauchy as, in that case, ς(Y) = ς(XC) + ς(WC).

Although the lower bound in Theorem 14 is achieved by a centered Cauchy, it does not rule
out the existence of W such that ς(W) = ς(WC) and I(XC; XC + W) < I(XC; XC + WC).

108. For the following lower bound, it is advisable to assume for notational simplicity and
without loss of generality that ς(XC) = 1. To remove that restriction, we may simply
replace W by ς(XC)W.

Theorem 15. Let V be standard Cauchy independent of W. Then,

I(V; V + W) ≥ log
(

1 +
1

λ(W)

)
, (306)
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where λ(W) is the solution to

E
[

log
(2 + λ)2 + W2

λ2 + W2

]
= 2 log

(
1 +

1
λ

)
. (307)

Equality holds in (306) if W is a centered Cauchy random variable, in which case, λ(W) = ς(W).

Proof. It can be shown that, if PXY = PXPY|X = PYPX|Y and QY|X is an auxiliary
random transformation such that PXQY|X = QYQX|Y where QY is the response of
QY|X to PX , then

I(X; Y) = D(PX|Y‖QX|Y | PY) +E
[
ıX;Y(X; Y)

]
, (308)

where (X, Y) ∼ PXPY|X and the information density ıX;Y corresponds to the joint
probability measure PXQY|X. We can particularize this decomposition of mutual
information to the case where PX = PV , PY|X=x = PW+x, QY|X=x = PWC+x where WC

is centered Cauchy with strength λ > 0. Then, PXQY|X is the joint distribution of V
and V + WC, and

ıX;Y(x; y) = log
λ

1 + λ
− log

(
λ2 + (y− x)2

)
+ log

(
(1 + λ)2 + y2

)
. (309)

Taking expectation with respect to (x, y) = (V, V + t), and invoking (52), we obtain

E
[
ıX;Y(V; V + t)

]
= log

λ

1 + λ
+E

[
log

(1 + λ)2 + (V + t)2

λ2 + t2

]
(310)

= log
λ

1 + λ
+ log

(2 + λ)2 + t2

λ2 + t2 . (311)

Finally, taking expectation with respect to t = W, we obtain

E
[
ıX;Y(V; V + W)

]
= E

[
log

(2 + λ)2 + W2

λ2 + W2

]
− log

(
1 +

1
λ

)
. (312)

If λ = λ(W), namely, the solution to (307), then (306) follows as a result of (308). If
W = ς(W)V, then the solution to (307) is λ(W) = ς(W), and the equality in (306) can
be seen by specializing (271) to (ς(XC), ς(WC)) = (1, ς(W)).

109. As we just saw, if W is centered Cauchy, then the solution to (307) satisfies λ(W) = ς(W).
On the other hand, we have

0.302.. = ς(V2,2) < λ(V2,2) = 0.349 . . . (313)

4.961... = λ(W) < ς(W) = 5.845 . . . (314)

if W has the probability density function in (100).
110. As the proof indicates, at the expense of additional computation, we may sharpen the

lower bound in Theorem 15 to show

I(V; V + W) ≥ max
λ>0

{
E
[

log
(2 + λ)2 + W2

λ2 + W2

]
− log

(
1 +

1
λ

)}
, (315)

which is attained at the solution to

λ

2 + λ
ηW2

(
1

(2 + λ)2

)
− ηW2

(
1

λ2

)
+

1
2λ + 2

= 0. (316)

111.
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Theorem 16. The rate–distortion function of a memoryless source whose distribution is
centered Cauchy with strength ς(X) such that the time-average of the distortion strength is
upper bounded by D is given by

R(D) =

{
log ς(X)

D , 0 < D < ς(X);
0, D ≥ ς(X).

(317)

Proof. If D ≥ ς(X), reproducing the source by (0, . . . , 0) results in time-average
of the distortion strength equal to 1

n ∑n
i=1 ς(Xi) = ς(X). Therefore, R(D) = 0. If

0 < D < ς(X), we proceed to determine the minimal I(X; X̂) among all PX̂|X such
that ς(X− X̂) ≤ D. For any such random transformation,

I(X; X̂) = h(X)− h(X|X̂) (318)

= h(X)− h(X− X̂|X̂) (319)

≥ h(X)− h(X− X̂) (320)

= log(4πς(X))− h(X− X̂) (321)

≥ log(4πς(X))− log
(
4πς(X− X̂)

)
(322)

≥ log
ς(X)

D
, (323)

where (320) holds because conditioning cannot increase differential entropy, and (322)
follows from Theorem 3 applied to Z = X − X̂. The fact that there is an allowable
PX̂|X that achieves the lower bound with equality is best seen by letting X = X̂ + Z,
where Z and X̂ are independent centered Cauchy random variables with ς(Z) = D
and ς(X̂) = ς(X)− D. Then, PX̂|XPX = PX|X̂PX̂ is such that the X marginal is indeed
centered Cauchy with strength ς(X), and ς(X− X̂) = D. Recalling (271),

I(X̂; X) = log
(

1 +
ς(X)− D

ς(Z)

)
= log

ς(X)

D
, (324)

and the lower bound in (323) can indeed be satisfied with equality. We are not finished
yet since we need to justify that the rate–distortion function is indeed

R(D) = min
PX̂|X : ς(X−X̂)≤D

I(X; X̂), (325)

which does not follow from the conventional memoryless lossy compression theorem
with average distortion because, although the distortion measure is separable, it is
not the average of a function with respect to the joint probability measure PXX̂ . This
departure from the conventional setting does not impact the direct part of the theorem
(i.e., ≤ in (325)), but it does affect the converse and in particular the proof of the fact
that the n-version of the right side of (325) single-letterizes. To that end, it is sufficient
to show that the function of D on the right side of (325) is convex (e.g., see pp. 316–317
in [19]). In the conventional setting, this follows from the convexity of the mutual
information in the random transformation since, with a distortion function d(·, ·),
we have

E[d(X, X̂α)] = αE[d(X, X̂1)] + (1− α)E[d(X, X̂0)], (326)

where (X, X̂1) ∼ PXP1
X̂|X , (X, X̂0) ∼ PXP0

X̂|X , and (X, X̂α) ∼ αPXP1
X̂|X +(1− α)PXP0

X̂|X .
Unfortunately, as we saw in Item 35, strength is not convex on the probability measure
so, in general, we cannot claim that

ς(X− X̂α) ≤ α ς(X− X̂1) + (1− α)ς(X− X̂0). (327)
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The way out of this quandary is to realize that (327) is only needed for those P0
X̂|X and

P1
X̂|X that attain the minimum on the right side of (325) for different distortion bounds

D0 and D1. As we saw earlier in this proof, those optimal random transformations are
such that X− X̂0 and X− X̂1 are centered Cauchy. Fortuitously, as we noted in (107),
(327) does indeed hold when we restrict attention to mixtures of centered Cauchy
distributions.

Theorem 16 gives another example in which the Shannon lower bound to the rate–
distortion function is tight. In addition to Gaussian sources with mean–square dis-
tortion, other examples can be found in [50]. Another interesting aspect of the lossy
compression of memoryless Cauchy sources under strength distortion measure is that
it is optimally successively refinable in the sense of [51,52]. As in the Gaussian case,
this is a simple consequence of the stability of the Cauchy distribution and the fact
that the strength of the sum of independent Cauchy random variables is equal to the
sum of their respective strengths (Item 27).

112. The continuity of mutual information can be shown under the following suffi-
cient conditions

Theorem 17. Suppose that Xn is a sequence of real-valued random variables that vanishes in
strength, Z is independent of Xn, h(Z) > −∞ and 0 < ς(Z) < ∞. Then,

lim
n→∞

I(Xn; Xn + Z) = 0. (328)

Proof. Under the assumptions, h(Z) ∈ R. Therefore, I(Xn; Xn + Z) = h(Xn + Z)−
h(Z), and (328) follows from Theorem 1-(m).

113. The assumption h(Z) > −∞ is not superfluous for the validity of Theorem 17 even
though it was not needed in Theorem 1-(m). Suppose that Z is integer valued, and
Xn = (nL)−1 ∈ (0, 1

2 ) where L ∈ {2, 3, . . .} has probability mass function

PL(k) =
0.986551...

k log2
2 k

, k = 2, 3, . . . (329)

Then, I(Xn; Xn + Z) = H(Xn) = H(L) = ∞, while E[|Xn|] = 0.328289...
n , and therefore,

ς(Xn)→ 0.
114. In the case in which Vn and Wn are standard spherical multivariate Cauchy random

variables with densities in (6), it follows from (7) that λX Vn + λW Wn has the same
distribution as (|λX |+ |λW |)Vn. Therefore,

I(Vn; λX Vn + λW Wn) = h(λX Vn + λW Wn)− h(λW Wn) (330)

= n log
(

1 +
|λX |
|λW |

)
, (331)

where we have used the scaling law h(αXn) = n log |α|+ h(Xn). There is no possibil-
ity of a Cauchy-counterpart of the celebrated log-determinant formula for additive
Gaussian vectors (e.g., Theorem 9.2.1 in [41]) because, as pointed out in Item 7,
Λ

1
2 Vn + Λ̄

1
2 Wn is not distributed according to the ellipsoidal density in (8) unless Λ

and Λ̄ are proportional, in which case the setup reverts to that in (330).
115. To conclude this section, we leave aside additive noise models and consider the

mutual information between a partition of the components of the standard spherical
multivariate Cauchy density (6). If I ∩ J = ∅, then (17) yields

I
(
{Vi, i ∈ I}; {Vj, j ∈ J }

)
= h|I| + h|J | − h|I|+|J |, (332)
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where hn stands for the right side of (17). For example, if i 6= j, then, in nats,

I(Vi; Vj) = 2 h(V1)− h(V1, V2) (333)

= 2 loge(4π)− 3
2
(
loge(4π) + γ + ψ( 3

2 )
)
− loge Γ( 3

2 ) (334)

= loge(8π)− 3 = 0.22417 . . . (335)

More generally, the dependence index among the n random variables in the standard
spherical multivariate Cauchy density is (see also [9,53]), in nats,

D(PVn ‖ PV1 × · · · × PVn) = n h(V1)− h(Vn) (336)

=
n− 1

2
loge(4π) + loge Γ

(
n + 1

2

)
− n + 1

2

(
γ + ψ

(
n + 1

2

))
(337)

=


n
2 loge(8π) + ∑

n
2
k=1

(
loge(2k− 1)− n+1

2k−1

)
, n even;

n−1
2 loge(4π) + ∑

n−1
2

k=1

(
loge k− n+1

2k

)
, n odd.

(338)

116. The shared information of n random variables is a generalization of mutual information
introduced in [54] for deriving the fundamental limit of interactive data exchange
among agents who have access to the individual components and establish a dialog to
ensure that all of them find out the value of the random vector. The shared information
of Xn is defined as

S(Xn) = min
Π

1
|Π| − 1

D

(
PXn

∥∥∥∥ |Π|∏
`=1

PX(I`)

)
, (339)

where X(J ) = {Xi, i ∈ J }, with J ⊂ I = {1, . . . , n}, and the minimum is over all
partitions of I :

Π = {I` 6= ∅, ` = 1, . . . , |Π|}, with ∪|Π|`=1 I` = I , I` ∩ Ij = ∅, ` 6= j,

such that |Π| > 1. If we divide (338) by n− 1, we obtain the shared information of n
random variables distributed according to the standard spherical multivariate Cauchy
model. This is a consequence of the following result, which is of independent interest.

Theorem 18. If Xn are exchangeable random variables, any subset of which have finite
differential entropy, then for any partition Π of {1, . . . , n},

1
|Π| − 1

D

(
PXn

∥∥∥∥ |Π|∏
`=1

PX(I`)

)
≥ 1

n− 1
D(PXn ‖ PX1 × · · · × PXn). (340)

Proof. Fix any partition Π with |Π| = L ∈ {2, . . . , n− 1} chunks. Denote by n` the
number of chunks in Π with cardinality ` ∈ {1, . . . , n− 1}. Therefore,

n−1

∑
`=1

n` = L, and
n−1

∑
`=1

` n` = n. (341)

By exchangeability, any chunk of cardinality k has the same differential entropy, which
we denote by hk. Then,

D

(
PXn

∥∥∥∥ |Π|∏
`=1

PX(I`)

)
= −hn +

n−1

∑
`=1

n` h`, (342)
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and the difference of the left minus the right sides of (340) multiplied by (n− 1)(L− 1)
is readily seen to equal

− (n− 1) hn + (n− 1)
n−1

∑
`=1

n` h` + (L− 1) hn − (L− 1)n h1

= ((n− 1)n1 − n(L− 1)) h1 + (L− n) hn + (n− 1)
n−1

∑
`=2

n` h` (343)

≥
(
(n− 1)n1 − n(L− 1) +

n−1

∑
`=2

(n− `)n`

)
h1 +

(
L− n +

n−1

∑
`=2

(`− 1)n`

)
hn (344)

= 0 (345)

where

• (344)⇐= for all ` ∈ {2, . . . , n− 1},

h` ≥
`− 1
n− 1

hn +
n− `

n− 1
h1, (346)

since h1, . . . , hn is a concave sequence, i.e., 2 hk ≥ hk−1 + hk+1 as a result of the
sub-modularity of differential entropy.

• (345)⇐= (341).

Naturally, the same proof applies to n discrete exchangeable random variables with
finite joint entropy.

17. Outlook

117. We have seen that a number of key information theoretic properties pertaining to the
Gaussian law are also satisfied in the Cauchy case. Conceptually, those extensions shed
light on the underlying reason the conventional Gaussian results hold. Naturally, we
would like to explore how far beyond the Cauchy law those results can be expanded.
As far as the maximization of differential entropy is concerned, the essential step is to
redefine strength tailoring it to the desired law: Fix a reference random variable W
with probability density function fW and finite differential entropy h(W) ∈ R, and
define the W-strength of a real valued random variable Z as

ςW(Z) = inf
{

ς > 0 : −E
[

log fW

(
Z
ς

)]
≤ h(W)

}
. (347)

For example,

(a) For α > 0, ςW(αW) = α;

(b) if W is standard normal, then ς2
W(Z) = E[Z2];

(c) if V is standard Cauchy, then ςV(Z) = ς(Z);

(d) if W is standard exponential, then ςW(Z) = E[Z] if Z ≥ 0 a.s., otherwise,
ςW(Z) = ∞;

(e) if W is standard (µ = 1) Subbotin (108) with p > 0, then, ς
p
W(Z) = E[|Z|p];

(f) if W has the Rider distribution in (9), then ςW(Z) = ςρ,θ(Z) defined in (126)
for θ chosen as in (110);

(g) if W is uniformly distributed on [−1, 1], ςW(Z) = ess sup |Z|;

(h) if W is standard Rayleigh, then ςW(Z) = inf
{

ς > 0 : E
[

Z2

ς2 − loge
Z2

2ς2

]
≤ 2 + γ

}
if Z ≥ 0 a.s., otherwise, ςW(Z) = ∞.

The pivotal Theorems 3 and 4 admit the following generalization.
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Theorem 19. Suppose h(W) ∈ R and ς > 0. Then,

max
Z : ςW (Z)≤ς

h(Z) = h(W) + log ς. (348)

Proof. Fix any Z in the feasible set. For any σ ≥ ςW(Z) such that−E
[
log fW

(
Z
σ

)]
≤

h(W), we have

0 ≤ D(σ−1Z ‖W) = −h(Z) + log σ−E
[

log fW

(
Z
σ

)]
(349)

≤ −h(Z) + log σ + h(W). (350)

Therefore, h(Z) ≤ h(W) + log ςW(Z), by definition of ςW(Z), thereby establishing ≤
in (348). Equality holds since ςW(ςW) = ς.

A corollary to Theorem 19 is a very general form of the Shannon lower bound for
the rate–distortion function of a memoryless source Z such that the distortion is
constrained to have W-strength not higher than D, namely,

R(D) ≥ h(Z)− h(W)− log D. (351)

Theorem 19 finds an immediate extension to the multivariate case

max
Zn : ςWn (Zn)≤ς

h(Zn) = h(Wn) + n log ς, (352)

where, for Wn with h(Wn) ∈ R, we have defined

ςWn(Zn) = inf
{

ς > 0 : −E
[
log fWn

(
ς−1Zn

)]
≤ h(Wn)

}
. (353)

For example, if Wn is zero-mean multivariate Gaussian with positive definite covari-
ance Σ, then ς2

Wn(Zn) = 1
nE
[
Zn>Σ−1Zn].

118. One aspect in which we have shown that Cauchy distributions lend themselves
to simplification unavailable in the Gaussian case is the single-parametrization of
their likelihood ratio, which paves the way for a slew of closed-form expressions
for f -divergences and Rényi divergences. It would be interesting to identify other
multiparameter (even just scale/location) families of distributions that enjoy the same
property. To that end, it is natural, though by no means hopeful, to study various
generalizations of the Cauchy distribution such as the Student-t random variable,
or more generally, the Rider distribution in (9). The information theoretic study of
general stable distributions is hampered by the fact that they are characterized by their
characteristic functions (e.g., p. 164 in [55]), which so far, have not lent themselves to
the determination of relative entropy or even differential entropy.

119. Although we cannot expect that the cornucopia of information theoretic results in
the Gaussian case can be extended to other domains, we have been able to show that
a number of those results do find counterparts in the Cauchy case. Nevertheless,
much remains to be explored. To name a few,

(a) The concavity of the entropy-strength NC(X + tV)—a counterpart of Costa’s en-
tropy power inequality [40] would guarantee the least favorability of Cauchy noise
among all strength-constrained noises as well as the entropy strength inequality

NC(X + t V) ≥ NC(t V) + NC(X). (354)

(b) Information theoretic analyses quantifying the approach to normality in the
central limit theorem are well-known (e.g., [56–58]). It would be interesting
to explore the decrease in the relative entropy (relative to the Cauchy law) of
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independent sums distributed according to a law in the domain of attraction
of the Cauchy distribution [55].

(c) Since de Bruijn’s identity is one of the ancestors of the I-MMSE formula of [59],
and we now have a counterpart of de Bruijn’s identity for convolutions with
scaled Cauchy, it is natural to wonder if there may be some sort of integral
representation of the mutual information between a random variable and its
noisy version contaminated by additive Cauchy noise. In this respect, note that
counterparts for the I-MMSE formula for models other than additive Gaussian
noise have been found in [60–62].

(d) Mutual information is robust against the addition of small non-Gaussian con-
tamination in the sense that its effects are the same as if it were Gaussian [63].
The proof methods rely on Taylor series expansions that require the existence
of moments. Any Cauchy counterparts (recall Item 77) would require substan-
tially different methods.

(e) Pinsker [41] showed that Gaussian processes are information stable imposing
only very mild assumptions. The key is that, modulo a factor, the variance of
the information density is upper bounded by its mean, the mutual information.
Does the spherical multivariate Cauchy distribution enjoy similar properties?

120. Although not surveyed here, there are indeed a number of results in the engineering
literature advocating Cauchy models in certain heavy-tailed infinite-variance sce-
narios (see, e.g., [45] and the references therein.) At the end, either we abide by the
information theoretic maxim that “there is nothing more practical than a beautiful
formula”, or we pay heed to Poisson, who after pointing out in [64] that Laplace’s
proof of the central limit theorem broke down for what we now refer to as the Cauchy
law, remarked that “Mais nous ne tiendrons pas compte de ce cas particulier, quil
nous suffira d’avoir remarqué à cause de sa singularité, et qui ne se recontre sans
doute pas dans la pratique”.
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Appendix A. Definite Integrals

∫ x

0

1
1 + t2 dt = arctan(x), (A1)∫ 1

2

− 1
2

log cos(πt)dt = log 1
2 , (A2)

∫ ∞

−∞

log(1 + t2)

1 + t2 dt = π log 4, (A3)∫ ∞

−∞

log(α2 − 2αt cos β + t2)

1 + t2 dt = π log(1 + α2 + 2α| sin β|), (A4)∫ ∞

−∞

log(1 + t2)

1 + (ξt− κ)2 dt =
π

ξ

(
log
(

κ2 + (ξ + 1)2
)
− 2 log ξ

)
, ξ > 0, (A5)

κβ,ρ

∫ ∞

−∞

loge(1 + |t|ρ)
(1 + |t|ρ)β

dt = ψ(β)− ψ
(

β− 1
ρ

)
, β ρ > 1, (A6)

∫ ∞

−∞

loge
(
1 + θ2t2)

(1 + t2)
2 = π

(
loge(1 + |θ|)−

|θ|
1 + |θ|

)
, (A7)
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∫ α

−α
loge(t

2 + ς2)dt = 4ς arctan
(

α

ς

)
− 4α + 2α loge

(
α2 + ς2

)
, (A8)∫ ∞

−∞

t2

(1 + t2)2 dt =
π

2
, (A9)∫ ∞

−∞

1
(1 + t2)2 dt =

π

2
, (A10)∫ ∞

−∞

t2

(1 + t2)3 dt =
π

8
, (A11)

∫ ∞

−∞

1
(β2 + t2)ν

dt =
√

π β1−2ν
Γ
(

ν− 1
2

)
Γ(ν)

, ν >
1
2

, (A12)

∫ ∞

0

1
(1 + tρ)ν

dt =
Γ
(

ν− 1
ρ

)
Γ
(

1 + 1
ρ

)
Γ(ν)

, ν >
1
ρ
> 0, (A13)∫ π

0
log(α + β cos θ)dθ = π log

(
α

2
+

1
2

√
α2 − β2

)
, α ≥ |β| > 0, (A14)∫ π

0
log
(

β +
√

β2 − 1 cos θ

)α

dθ = π Pα(β), β > 0, (A15)∫ ∞

0

dt√
1 + t2

√
β2 + t2

= K
(√

1− β2
)

, β ∈ (0, 1), (A16)

where

• (A2) is a special case of 4.384.21 in [24];

• (A3) is a special case of (A4);

• (A4) is 4.296.2 in [24];

• (A5) follows from (A4) by change of variable;

• (A6), with κβ,ρ defined in (10) and ψ(·) denoting the digamma function, follows from

4.256 in [24] by change of variable x = (1 + tp)−
1

2n and n = m p;

• (A7) is a special case of 4.295.25 in [24];

• (A8) follows from 2.733.1 in [24];

• (A9)–(A10) follow from 3.252.6 in [24];

• (A11) can be obtained by integration by parts and (A10);

• (A12), with Γ(·) denoting the gamma function, is a special case of 3.251.11 in [24];

• (A13) can be obtained from 3.251.11 in [24] by change of variable;

• (A14) is 4.224.9 in [24];

• (A15) is 8.822.1 in [24] with Pα(x) the Legendre function of the first kind, which is
a solution to

d
dx

((
1− x2

)du(x)
dx

)
+ α(α + 1) u(x) = 0; (A17)

• (A16) is a special case of 3.152.1 in [24] with the complete elliptic integral of the first
kind defined as 8.112.1 in [24], namely,

K(k) =
∫ π

2

0

dα√
1− k2 sin2 α

, |k| < 1. (A18)
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Note that MATHEMATICA defines the complete elliptic integral function EllipticK
such that

K(k) =
EllipticK

(
−k2

1−k2

)
√

1− k2
, |k| < 1. (A19)
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