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Abstract

Parkinson’s disease (PD) is characterized by a long prodromal phase with a multitude of

markers indicating an increased PD risk prior to clinical diagnosis based on motor symp-

toms. Current PD prediction models do not consider interdependencies of single predic-

tors, lack differentiation by subtypes of prodromal PD, and may be limited and potentially

biased by confounding factors, unspecific assessment methods and restricted access to

comprehensive marker data of prospective cohorts. We used prospective data of 18

established risk and prodromal markers of PD in 1178 healthy, PD-free individuals and 24

incident PD cases collected longitudinally in the Tübingen evaluation of Risk factors for

Early detection of NeuroDegeneration (TREND) study at 4 visits over up to 10 years. We

employed artificial intelligence (AI) to learn and quantify PD marker interdependencies via

a Bayesian network (BN) with probabilistic confidence estimation using bootstrapping.

The BN was employed to generate a synthetic cohort and individual marker profiles.

Robust interdependencies were observed for BN edges from age to subthreshold parkin-

sonism and urinary dysfunction, sex to substantia nigra hyperechogenicity, depression,

non-smoking and to constipation; depression to symptomatic hypotension and excessive

daytime somnolence; solvent exposure to cognitive deficits and to physical inactivity; and

non-smoking to physical inactivity. Conversion to PD was interdependent with prior sub-

threshold parkinsonism, sex and substantia nigra hyperechogenicity. Several additional

interdependencies with lower probabilistic confidence were identified. Synthetic subjects

generated via the BN based representation of the TREND study were realistic as

assessed through multiple comparison approaches of real and synthetic data. Altogether

our work demonstrates the potential of modern AI approaches (specifically BNs) both for

modelling and understanding interdependencies between PD risk and prodromal markers,
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which are so far not accounted for in PD prediction models, as well as for generating real-

istic synthetic data.

Introduction

Parkinson’s disease (PD) is characterized by progressive neurodegeneration that has usually

advanced for many years before it is clinically diagnosed [1]. In addition to old age, a multitude

of risk markers, such as genetic factors, lifestyle, environmental factors, (comorbid) diseases

(e.g., diabetes) as well as biomarkers (e.g., low plasma urate levels, hyperechogenicity of the

substantia nigra) have been shown to indicate an increased risk of PD in prospective studies

[2, 3]. Moreover, prodromal markers like depression, autonomous dysfunction, REM-sleep

behavior disorder (RBD), subtle motor signs and pathological dopaminergic imaging [3–5]

may already indicate early neurodegenerative processes that can ultimately lead to the clinical

diagnosis of PD. The International Parkinson and Movement Disorder Society (MDS)

research criteria for prodromal PD [3, 6] have been designed to review and continually update

the predictive values of risk and prodromal markers of PD. This is indicated by the positive

and negative likelihood ratio (LR+, LR-) calculated from a 2x2 table of prospective data:

marker present/absent and incident PD diagnosis/healthy. Moreover, these criteria proposed a

naïve Bayesian classifier approach for the calculation of the probability that an individual is in

the prodromal phase. With age providing an a-priori probability of prodromal PD as derived

from epidemiological evidence [7], the individual profile of risk and prodromal markers, i.e.

constellations of LR+ and LR- values, allows the calculation of an a-posteriori probability of

prodromal PD [6]. While these criteria have repeatedly been shown to be highly specific, sensi-

tivity may depend upon marker selection, depth of assessment and time to PD diagnosis and

possibly specific subtypes of prodromal PD [8, 9]. While having the advantages of being both

evidence-based as well as practical, several limitations and assumptions are inherent to this

approach such as statistical independence assumption of risk markers and prodromal markers

as well as age. These assumptions are most likely not fulfilled in reality and should be

addressed to improve PD prediction accuracy. For example, many prodromal markers

increase in prevalence with advancing age irrespective of a future PD diagnosis, which may

decrease their specificity for PD prediction in an age-dependent manner [10]. Also, marker

prevalence and their predictive value for PD may be sex-specific, e.g., as previously suggested

for depression [10]. Thus, the predictive value for PD as currently assigned to the presence,

absence or borderline status of a particular marker, may partially depend on age as well as con-

stellations of the presence and absence of other markers in the profile of an individual. Marker

co-occurrences may (partially) depend on e.g., methodological aspects of data collection and

marker assessment, shared bio-pathological pathways and clinical comorbidity features. Such

interdependencies can influence the actual predictive value of specific marker constellations.

The heterogeneity of PD in its clinical as well as in its prodromal phase may be partially

explained by different subtypes of the disease [8, 9], e.g., subtypes differentiated by the site of

initiation, risk and prodromal marker progression profiles of pathology (brain-first vs. body-

first) [12, 13], and temporal dynamics in the prodrome of PD. However, as comprehensive

data of (major) prospective population-based cohorts is often not jointly accessible, early (pro-

dromal) subtyping, predictive values of markers (and their interdependencies) by subtype is

still largely restricted to highly selected and specific clinical populations such as RBD patients.

Consequently, an evidence-based understanding of prodromal PD to improve PD prediction
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and aid the (subtype-specific) recruitment of future early intervention trials in prodromal PD

is challenged by the unavoidable statistical biases of each clinical study due to predefined

patient selection criteria.

Artificial Intelligence (AI) approaches, such as Bayesian networks (BNs) [14], may offer

possible solutions to these challenges, as 1) interdependencies of markers can be modelled, 2)

BNs can be used to realistically simulate prospective cohorts, which could–at least partially–

help to overcome restrictions posed by data privacy, and 3) access to such synthetic, compre-

hensive (population-based) cohort data. Thereby, both the consideration of more generalizable

evidence underlying PD prediction as well a more differentiated investigation and understand-

ing of prodromal PD subtypes may be supported and possibly help to inform the design and

recruitment for early intervention trials in prodromal PD.

The present study has the aim to model a BN with the interdependencies between longitu-

dinal data of risk and prodromal markers of PD and incident PD status of a large prospective

cohort (TREND study)

Materials and methods

Overview of the TREND study data

The TREND study is a prospective cohort study which has been conceptualized for the investi-

gation of markers that may help to predict PD and/or Alzheimer’s disease (AD). The cohort is

partly population-based and partly enriched with individuals with an increased PD/AD risk by

selectively recruiting participants based on the presence of olfactory loss, depression, and/or

possible RBD. Comprehensive assessments of risk and prodromal markers of neurodegenera-

tion, and e.g., neurological, neuropsychiatric and quantitative motor testing as well as biosam-

pling in 1,201 individuals (aged 50+ years at baseline), have been performed every two years

(baseline in 2009/2010, follow-up 1 to 4; follow-up 5 is currently ongoing). For more informa-

tion, visit https://www.trend-studie.de/english. The study was approved by the local ethics

committee (Medical Faculty, University of Tübingen; 444/2019BO2). All participants provided

written informed consent. Study data were collected and managed using REDCap electronic

data capture tools hosted at University of Tübingen [9].

Cohort participants in part had a delayed inclusion in the study (at follow-up 1) and some

participants missed single waves or dropped out of the study (retention rate at follow-up 4:

72.4%). Therefore, the number of individual visits instead of the wave number of the TREND

study is considered in the present work. For some participants the duration between two visits

may occasionally be longer than two years. After excluding individuals with PD or parkinson-

ism at visit 1, we included data of 1178 (98.08%) participants collected at four consecutive visits

(Tables 1 and 2) as the number of individuals with five visits was substantially lower (n = 545,

45.4%). Changes in sample size between visits as well as missingness of marker assessments

per visit are shown in Tables 1 and 2. For the BN approach missingness both due to study

drop-out (until visit 4) as well as due to missingness of marker assessment at single visits was

considered for the imputation of data (see below and Supporting Information).

While all of these participants were PD-free at the first visit, in total n = 24 incident PD

cases were clinically diagnosed at follow-up based on UKBB and MDS diagnostic criteria [15].

The visit at which the conversion to PD occurred was considered. For 16 of the 24 incident PD

cases diagnoses were made during Visits #2–4, the remaining 8 patients have been diagnosed

with PD after Visit #4 at Visit #5 or #6. Unlike the status as incident PD case, the marker data

of Visit #5 or #6 were not included in the BN as samples sizes were much smaller due to drop-

out. Descriptive statistics of PD-free individuals and incident PD cases regarding demographic

factors and risk and prodromal markers of PD are shown in Tables 1 and 2.
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Bayesian networks based approach

We propose a BN based approach [11] to model the interdependencies between different risk

and prodromal markers of PD and their longitudinal changes in a multi-modal, multi-scale

manner. BNs are probabilistic graphical models, where nodes represent variables and edges

represent conditional probabilistic dependencies between them [12]. These conditional

probabilistic dependencies are characterized by a conditional probability table (CPT) for each

Table 1. Age and risk markers of PD in the prospective TREND study.

Features Visit 1 Visit 2 Visit 3 Visit 4

Risk markers Category PD-free

(n = 1178)

PD-free

(n = 1070)

Incident PD

(n = 6)

PD-free

(n = 981)

Incident PD

(n = 5)

PD-free

(n = 880)

Incident PD

(n = 5)

Age at visit 1 63 (58, 68) 65 (60, 70) 74 (70, 74) 67 (62, 72) 75 (73, 76) 69 (64, 74) 70 (68, 71)

Sex Male 599 (51%) 546 (51%) 5 (83%) 503 (51%) 5 (100%) 464 (53%) 3 (60%)

Female 579 (49%) 524 (49%) 1 (17%) 478 (49%) 0 (0%) 416 (47%) 2 (40%)

PD family history No 1010 (86%) 917 (86%) 3 (50%) 840 (86%) 4 (80%) 751 (85%) 4 (80%)

Yes 168 (14%) 153 (14%) 3 (50%) 141 (14%) 1 (20%) 129 (15%) 1 (20%)

Polygenic risk score Marker

absent

247 (21%) 218 (20%) 2 (33%) 204 (21%) 1 (20%) 181 (21%) 3 (60%)

Borderline 500 (42%) 459 (43%) 2 (33%) 420 (43%) 2 (40%) 380 (43%) 1 (20%)

Marker

present

252 (21%) 237 (22%) 1 (17%) 218 (22%) 1 (20%) 197 (22%) 0 (0%)

Missing 179 (15%) 156 (15%) 1 (17%) 139 (14%) 1 (20%) 22 (14%) 1 (20%)

GBA mutation No 1126 (96%) 1021 (95%) 6 (100%) 938 (96%) 2 (40%) 845 (96%) 4 (80%)

Yes 52 (4%) 49 (5%) 0 (0%) 43 (4%) 3 (60%) 35 (4%) 1 (20%)

SN hyperechogenicity SN- 839 (71%) 771 (72%) 1(17%) 714 (73%) 3 (60%) 641 (73%) 3 (60%)

SN+ 210 (18%) 191 (18%) 5 (83%) 178 (18%) 2 (40%) 168 (19%) 2 (40%)

Missing 129 (11%) 108 (10%) 0 (0%) 89 (9%) 0 (0%) 71 (8%) 0 (0%)

Occupational pesticide
exposure

No 878 (75%) 855 (80%) 1(17%) 839 (86%) 1 (20%) 813 (92%) 3 (60%)

Yes 19 (2%) 18 (2%) 0 (0%) 17 (2%) 0 (0%) 17 (2%) 0 (0%)

Missing 281 (24%) 197 (18%) 5 (83%) 125 (13%) 4 (80%) 50 (6%) 2 (40%)

Occupational solvent
exposure

Yes 774 (66%) 753 (70%) 1 (17%) 739 (75%) 1 (20%) 714 (81%) 2 (40%)

No 129 (11%) 125 (12%) 0 (0%) 122 (12%) 0 (0%) 117 (13%) 1 (20%)

Missing 275 (23%) 192 (18%) 5 (83%) 120 (12%) 4 (80%) 49 (6%) 2 (40%)

Diabetes type II No 1131 (96%) 1015 (95%) 5 (83%) 922 (94%) 5 (100%) 826 (94%) 4 (80%)

Yes 47 (4%) 55 (5%) 1 (17%) 59 (6%) 0 (0%) 54 (6%) 1 (20%)

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Physical inactivity No 542 (46%) 343 (32%) 1 (17%) 754 (77%) 4 (80%) 701 (80%) 3 (60%)

Yes 142 (12%) 98(9%) 0 (0%) 223 (23%) 1 (20%) 176 (20%) 2 (40%)

Missing 494 (42%) 629 (59%) 5 (83%) 4 (0%) 0 (0%) 3 (0%) 0 (0%)

Non-smoking Marker

absent

535 (45%) 478 (45%) 2 (33%) 438 (45%) 3(60%) 396 (45%) 0 (0%)

Borderline 533 (45%) 509 (48%) 4 (67%) 470 (48%) 2(40%) 422 (48%) 4 (80%)

Marker

present

109 (9%) 83 (8%) 0 (0%) 72 (7%) 0 (0%) 61 (7%) 1 (20%)

Missing 1 (0.1%) 0 (0%) 0 (0%) 1 (0.1%) 0 (0%) 1 (0.1%) 0 (0%)

Summary statistics of age and risk markers of PD-free individuals and incident PD cases at different visits, absolute and relative (%) frequencies of marker presence or

median (inter-quartile range in brackets) are given unless specified otherwise. Sample sizes per visit are indicated. Missingness of marker data within a given visit is

indicated, i.e. not considering longitudinal study dropout. Percentage values indicate the relative frequency of marker presence/absence/borderline/missingness within

PD-free and incident PD groups, respectively, and within each visit. GBA, glucocerebrosidase; PD, Parkinson’s disease; SN, substantia nigra.

https://doi.org/10.1371/journal.pone.0280609.t001
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variable. These conditional distributions are specified by the network parameters [13]. The

details about our BN modeling approach, including handling of missing values, are described

in the Supporting Information.

In this work we compiled a BN of 10 risk markers and 8 prodromal markers as well as

age. Risk and prodromal markers were selected based on the recent MDS research criteria

Table 2. Prodromal markers of PD in the prospective TREND study.

Features Visit 1 Visit 2 Visit 3 Visit 4
Prodromal markers Category PD-free

(n = 1178)

PD-free

(n = 1170)

Incident PD

(n = 6)

PD-free

(n = 981)

Incident PD

(n = 5)

PD-free

(n = 880)

Incident PD

(n = 5)

Hyposmia Marker absent 913 (78%) 860 (80%) 1 (17%) 747 (76%) 0 (0%) 665 (76%) 1 (20%)

Borderline 244 (21%) 186 (17%) 4 (67%) 194 (20%) 5 (100%) 164 (19%) 4 (80%)

Marker present 17 (1%) 4 (0.4%) 0 (0%) 24 (2%) 0 (0%) 42 (5%) 0 (0%)

Missing 4 (0.3%) 20 (2%) 1 (17%) 16 (2%) 0 (0%) 9 (1%) 0 (0%)

Constipation Marker absent 1015 (86%) 891 (83%) 4 (67%) 810 (83%) 2 (40%) 758 (86%) 5 (100%)

Borderline 139 (12%) 135 (13%) 2 (33%) 113 (12%) 2 (40%) 90 (10%) 0 (0%)

Marker present 15 (1%) 23 (2%) 0 (0%) 28 (3%) 1 (20%) 28 (3%) 0 (0%)

Missing 9 (1%) 21 (2%) 0 (0%) 16 (2%) 0 (0%) 4 (1%) 0 (0%)

Excessive Daytime Somnolence No 0 (0%) 32 (3%) 1 (17%) 383 (39%) 1 (20%) 839 (95%) 5 (100%)

Yes 1178 (100%) 1037 (97%) 0 (0%) 586 (60%) 0 (0%) 2 (0.2%) 0 (0%)

Missing 0 (0%) 10 (<1%) 5 (83%) 12 (1%) 4 (80%) 39 (4%) 0 (0%)

Symptomatic Hypotension Marker absent 918 (78%) 793 (74%) 5 (83%) 746 (76%) 5 (100%) 738 (84%) 3 (60%)

Borderline 230 (20%) 218 (20%) 0 (0%) 200 (20%) 0 (0%) 96 (11%) 1 (20%)

Marker present 28 (2%) 52 (5%) 1 (17%) 27 (3%) 0 (0%) 43 (5%) 1 (20%)

Missing 2 (0.2%) 7 (1%) 0 (0%) 6 (0.6%) 0 (0%) 3 (0.3%) 0 (0%)

Urinary Dysfunction Marker absent 733 (62%) 691 (65%) 4 (67%) 637 (65%) 2 (40%) 631 (72%) 3 (60%)

Borderline 391 (33%) 286 (27%) 1 (17%) 269 (27%) 2 (40%) 192 (22%) 1 (20%)

Marker present 51 (4%) 82 (8%) 1 (17%) 65 (7%) 1 (20%) 53 (6%) 1 (20%)

Missing 3 (0.3%) 11 (1%) 0 (0%) 10 (1%) 0 (0%) 4 (1%) 0 (0%)

pRBD No 1116 (95%) 1041(97%) 6 (100%) 959 (98%) 4 (80%) 852 (97%) 4 (80%)

Yes 54 (5%) 28 (3%) 0 (0%) 22 (2%) 1 (20%) 28 (3%) 1 (20%)

Missing 8 (1%) 1 (<0.1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Subthreshold parkinsonism

(MDS-UPDRS-III)

No motor deficit 1006 (85%) 980 (92%) 0 (0%) 913 (93%) 1 (20%) 784 (89%) 1 (20%)

Borderline motor

deficit

120 (10%) 66 (6%) 1 (17%) 39 (4%) 2 (40%) 63 (7%) 0 (0%)

Subthreshold

parkinsonism

52 (4%) 24 (2%) 5 (83%) 29 (3%) 2 (40%) 33 (4%) 4 (80%)

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Depression No 830 (70%) 735 (69%) 3 (50%) 666 (65%) 4 (80%) 599 (68%) 4 (80%)

Yes 348 (30%) 335 (31%) 3 (50%) 315 (32%) 1 (20%) 281 (32%) 1 (20%)

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Global cognitive deficits No 971 (82%) 911 (85%) 6 (100%) 856 (87%) 4 (80%) 788 (90%) 4 (80%)

Yes 194 (16%) 142 (13%) 0 (0%) 111 (11%) 1 (20%) 81 (9%) 1 (20)

Missing 13 (1%) 17 (2%) 0 (0%) 14 (1%) 0 (0%) 11 (1%) 0 (0%)

Summary statistics of prodromal markers of PD-free individuals and incident PD cases at different time points, absolute and relative (%) frequencies of marker presence

or median (inter-quartile range in brackets) are given unless specified otherwise. Sample sizes per visit are indicated. Missingness of marker data within a given visit is

indicated, i.e. not considering longitudinal study dropout. Percentage values indicate the relative frequency of marker presence/absence/borderline/missingness within

PD-free and incident PD groups, respectively, and within each visit. MDS-UPDRS-III, MDS-sponsored Unified Parkinson’s Disease Rating Scale, motor part 3; PD,

Parkinson’s disease, pRBD, possible REM sleep behavior disorder.

https://doi.org/10.1371/journal.pone.0280609.t002
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for prodromal PD, and of which prospective data has been collected in the TREND study.

The markers were assigned to different domains including: autonomic dysfunction (consti-

pation, symptomatic orthostatic hypotension, erectile and urinary dysfunction), lifestyle fea-

tures and related diseases (physical inactivity, non-smoking, diabetes type II),

environmental features (occupational pesticide and solvent exposure), neuropsychiatric fea-

tures (depression, global cognitive deficit), neurological features (subthreshold parkinson-

ism (based on MDS-UPDRS-III), possible REM-sleep behavior disorder (pRBD), hyposmia,

substantia nigra (SN) hyperechogenicity), genetic factors (first-degree family history of PD,

polygenic risk scores of PD, GBA mutations) and demographic factors (age, sex). Moreover,

incident PD diagnosis (PD conversion based on neurological diagnosis during the time

course of the study) was included as a node in the BN. Since erectile dysfunction was only

assessed in males, this prodromal marker was not included in the final BN to avoid biases to

the model. The details of marker assessment methods and definitions are provided in the

Supporting Information. This also includes details regarding the handling of missing values.

We employed a BN to learn dependencies between these variables in a data-driven manner

as a function of time. BNs result in a quantitative network representing statistical dependencies

between variables [12, 14]. For each variable the probability to take a specific value, dependent

on the values of its parents in the network, is inferred from the data. Notably, age (younger or

older than 65 years) as well as risk and prodromal markers of PD have been discretized such

that all variables indicate the presence or absence (or borderline status) of a marker in an indi-

vidual TREND participant, as published previously for the TREND cohort [15, 16] and sug-

gested by the MDS research criteria for prodromal PD [3, 6]. For each variable a CPT was

estimated while learning the overall BN from data (See S2 Fig in S1 Appendix for CPT plots of

each marker). Conversion to PD was defined as one node in the BN irrespective of the visit at

which PD was diagnosed. Further details about the BN learning procedure including the con-

straints imposed and handling of missing values are reported in the Supplementary material.

We trained a BN based on the data of all 1178 subjects using a non-parametric bootstrap

[16] by randomly selecting n = 1178 for 1,000 times, with replacement, and for each of these

1,000 bootstrap samples we learned a complete BN structure. The relative frequency of observ-

ing a particular edge (i.e. conditional probabilistic dependency) among those 1,000 bootstraps

was determined (see BN edges in Fig 1), and served as an indicator of the level of probabilistic

confidence, i.e., a higher value means a stronger support by the data for the existence of the

respective connection [16, 17]. A value of 1.0 indicates two specific nodes were interdependent

in all the 1,000 learned BNs, a value of 0.5 indicates in 50% of the BNs an interdependency was

observed. We selected a threshold of 0.5 as a conservative cutoff indicating high probabilistic

confidence as only edges, which were found in a majority of bootstrap samples, should be

interpreted.

Evaluation via generating synthetic TREND subjects

BNs belong to the class of generative machine learning models. That means they learn the mul-

tivariate statistical distribution underlying the observed data in an unsupervised manner.

Therefore, random samples drawn from the model correspond to synthetic subjects (see Sup-

porting Information for details) [18, 19]. If those synthetic subjects are close to real ones, it can

be assumed that the distribution learned by the BN represents well the original training data.

Hence, we performed two different tests:

1. We generated the same number of synthetic individuals as real individuals for the data

and then tested whether a conventional random forest (RF) classifier was able to separate

between synthetic and real subjects within 10 times repeated 10-fold cross-validation
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scheme [5]. Therefore, we sequentially left out 1/10 of subjects and trained an RF on the

remaining subjects to learn the discrimination between real and synthetic subjects. We

used the left-out portion of the data to assess the prediction performance of the RF. We

used the partial area under ROC curve (pAUC) at a pre-specified true positive rate of

99% for real subjects as a measure of the prediction performance. We chose the pAUC as

adequate measure, because classification of all real subjects as real is aimed for while mis-

classification of synthetic ones as real does not constitute a negative classification prop-

erty. The area under the ROC curve at which the detection rate for real subjects was

between 99% and 100% served as an indicator of the validity of the synthetic TREND

participants.

2. As a second test, we trained and evaluated the prediction performance of different

machine learning models on real as well as synthetic data. More specifically, we here

focused on the prodromal markers pRBD, hyposmia and depression. We trained a

machine learning model (a random forest classifier) to test the ability of several variables

to predict these prodromal markers at multiple visits. Outcomes at a subsequent visit

were predicted by training the classifier on variables from the previous visit. For example,

to predict the prodromal marker at visit 2, the classifier was trained on all the markers

(measured longitudinally in the study) at visit 1. We either trained and tested the classifier

on real subjects or trained the classifier on simulated / synthetic subjects generated by the

BN and subsequently tested the classifier on real subjects. We evaluated the prediction

performance of machine learning models using 10-fold cross validation repeated for 10

times. The overall dataset was randomly split into 10 folds, of which sequentially one of

the folds was left out for testing the model, while the rest of the data was used for training.

The prediction ability was measured via the area under the receiver operator characteris-

tic curve (AUC) [20].

Fig 1. Interdependencies between different risk markers and prodromal markers of Parkinson’s Disease. The depicted Bayesian network represents

interdependencies between variables learned from prospective TREND data. Domains of marker nodes are indicated by circle color. The node of the

“Conversion to PD” is indicated by a red circle outline. Numbers on edges indicate the level of statistical confidence (bootstrap probability), and dashed

edge lines indicate confidences<0.5 while solid lines indicate a confidence�0.5. A higher value indicates a higher confidence in the existence of a

connection. Nodes isolated from the rest of the network are not shown. V indicates the respective visit number.

https://doi.org/10.1371/journal.pone.0280609.g001
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Results

Descriptive statistics

For each of the four visits, the descriptive statistics of the longitudinal data of risk markers

(Table 1) and prodromal markers (Table 2) of PD-free individuals and incident PD cases is

shown. Of 1178 subjects, 24 participants were clinically diagnosed with PD over the course of

the prospective TREND (until visit 6).

Bayesian network of risk and prodromal markers of PD in the TREND

study

Fig 1 depicts the overall bootstrapped network structure of all connections learned from the

TREND data. Estimated CPTs are presented in S2 Fig in S1 Appendix. A wide range in the level

of confidence regarding the interconnectedness, i.e., statistical interdependence, was observed

between several nodes and domain clusters of nodes. High probabilistic confidence of edges

(>0.5, i.e. edges observed in the majority of BN bootstrap samples) between different markers

in the BN was found for edges between age to subthreshold parkinsonism (MDS-UPDRS-III)

and urinary dysfunction, sex to SN hyperechogenicity, depression, non-smoking and to consti-

pation; depression to symptomatic hypotension and excessive daytime somnolence; solvent

exposure to cognitive deficits and to physical inactivity; and non-smoking to physical inactivity.

Pairwise co-occurrences of different markers showing edges with probabilistic certainties of

>0.2 in the BN were shown and statistically tested for significance in Table 3. All of these edges

also showed statistically significant co-occurrences between markers, except for sex and PD

family history, sex and diabetes type-II (visit 1), occupational solvent exposure (visit 3) and con-

stipation (visit 3), as well as GBA mutation carriers and PRS. These associations were no longer

significant after accounting for multiple testing.

The BN revealed both expected as well as novel connections between risk and prodromal

markers and the phenoconversion to PD. Plausibly, the nodes with edges directed to the con-

version to PD comprised (prior) subthreshold parkinsonism indicated by MDS-UPDRS-III

scores, age, and (with lower statistical confidence), SN hyperechogenicity. Further expected

marker interdependencies were observed for edges pointing from depression and solvent

exposure to global cognitive deficits, which itself was linked to physical inactivity while non-

smoking was linked to physical inactivity. Edges pointing from depression to excessive day-

time somnolence, pointing from solvent exposure and depression to hyposmia, or pointing

from hyposmia to global cognitive deficits and to SN hyperechogenicity demonstrated further

expected interdependencies.

Novel interdependencies were observed from non-smoking to depression; pesticide expo-

sure to symptomatic hypotension; and edges with directionality from SN hyperechogenicity,

global cognitive deficits, sex and PD family history to diabetes. Interestingly, constipation was

dependent on sex, global cognitive and occupational solvent exposure. These dependencies

were unexpected because they have not been reported in the established literature and/or in

the context of (prodromal) PD. Surprisingly, little interdependencies were observed for pRBD,

which was only linked to depression and received an edge from physical inactivity. This lack of

interdependencies could be the consequence of assessing RBD by a questionnaire only (i.e.

there was no polysomnography). Nodes with genetic features were not dependent on other

markers except for sex being linked to PD family history, which itself was linked to diabetes.

Nodes of the same marker assessed at different timepoints were largely highly interdepen-

dent, except for subthreshold parkinsonism (MDS-UPDRS-III) for which visit 2 and visit 3,

which were not linked to other nodes of the BN. MDS-UPDRS-III at visit 1 showed no edge
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Table 3. Co-occurrence of markers.

Risk/prodromal marker A Risk/prodromal marker B Risk/prodromal marker B Participants (n) p-value

No Borderline Yes

Male sex Depression (V1) 471 128 <0.0001�

Female sex 359 220

Male sex Non-smoker (V1) 228 320 51 <0.0001�

Female sex 308 213 58

Male sex SN hyperechogenicity 453 146 <0.0001�

Female sex 515 64

Male sex Constipation (V1) 549 45 5 <0.0001�

Female sex 472 96 11

Male sex PD family history 529 70 0.013

Female sex 481 98

Male sex Symptomatic hypotension (V1) 508 83 8 <0.0001�

Female sex 412 147 20

Male sex Diabetes type II (V1) 567 32 0.024

Female sex 564 15

Exposure to solvents (V1) Cognitive deficits (V1) 302 86 <0.0001�

No exposure to solvents (V1) 678 112

Exposure to solvents (V2) Cognitive deficits (V2) 246 176 <0.0001�

No exposure to solvents (V2) 682 74

Exposure to solvents (V3) Cognitive deficits (V3) 201 237 <0.0001�

No exposure to solvents (V3) 668 72

Exposure to solvents (V3) Constipation (V3) 394 32 12 0.029

No exposure to solvents (V3) 626 88 26

Exposure to pesticides (V1) Symptomatic hypotension (V1) 13 20 1 <0.0001�

No exposure to pesticides (V1) 907 210 27

Presence of depression (V2) Day time somnolence (V4) 414 26 <0.0001�

Absence of depression (V2) 725 13

Presence of depression (V2) Symptomatic hypotension (V2) 213 200 27 <0.0001�

Absence of depression (V2) 588 122 28

Non-smoker at visit (V1) Physically active (V1) 107 429 <0.0001�

Borderline smoker (V1) 82 451

Smoker (V1) 63 46

Non-smoker (V1) Depression (V1) 389 147 <0.0001�

Borderline smoker (V1) 382 151

Smoker (V1) 59 50

Presence of Global cognitive deficits (V2) Physically active (V3) 224 85 <0.0001�

Absence of Global cognitive deficits (V2) 193 676

GBA mutation carries Polygenic risk score 21 24 7 0.002

GBA mutation non-carriers 226 655 245

Age (> 65 years) Conversion to PD 500 23 <0.0001�

Age (� 65 years) 654 1

Age (> 65 years) Subthreshold parkinsonism (V4) 462 31 30 <0.0001�

Age (� 65 years) 616 32 7

Age (> 65 years) Subthreshold parkinsonism (V1) 418 71 34 <0.0001�

Age (� 65 years) 588 49 18

Age (> 65 years) Urinary Dysfunction (V1) 269 220 34 <0.0001�

Age (� 65 years) 465 173 17

(Continued)
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with the corresponding nodes of other visits, but instead only received edges from depression

and pesticide exposure at visit 1. An interactive Cytoscape network file of the BN is given in

the Supporting Information.

Evaluation via simulation of a synthetic TREND study cohort

The generative property of the BN allowed the simulation of synthetic versions of the prospec-

tive data of the TREND study and to extract individual synthetic participant profiles including

age and the risk and prodromal markers of PD. Table 4 shows five arbitrary examples of syn-

thetic subjects (from the synthetic cohort with the same sample size) and three real subjects

together with their individual data (at visit 4) on age, sex, MDS-UPDRS-III, pRBD, depression,

global cognitive deficits and PD conversion status. The Multiple Correspondence Analysis

(MCA) [21] plot shown in Fig 2 indicates the similarity of synthetic subjects in relation to real

ones. Further systematic comparisons of the distribution of individual variables and their cor-

relation structure are presented in the (S2-S6 Figs in S1 Appendix). An RF classifier trained to

discriminate between real and synthetic subjects only performed slightly better than chance

level (pAUC 52%), indicating that both real and synthetic subjects cannot be reliably discrimi-

nated (S8 Fig in S1 Appendix).

To further evaluate the synthetically generated TREND subjects we developed RF

classifiers to predict for the individual participant, whether a participant would develop pRBD,

hyposmia and/or depression at subsequent visits of the study. As outlined in the Methods part

of this paper, corresponding classifiers were trained within a 10-times repeated 10-fold cross-

Table 3. (Continued)

Risk/prodromal marker A Risk/prodromal marker B Risk/prodromal marker B Participants (n) p-value

No Borderline Yes

Age (> 65 years) Non-smoking (V1) 260 236 27 <0.0001�

Age (� 65 years) 276 297 82

Statistical testing of the co-occurrence of risk and prodromal marker pairs (A & B) in the TREND data (including imputed data) as suggested by edges in the TREND

BN of real data. P-values have been calculated based on a χ2-test and corrected for multiple testing using Holm’s method. Significant findings (after Holm-Bonferroni

correction for multiple testing) are indicated by an asterisk. Findings remain significant in logistic regressions additionally accounting for age and sex. V, visit.

https://doi.org/10.1371/journal.pone.0280609.t003

Table 4. Real and synthetic marker profiles.

Subjects Age Sex MDS-UPDRS-III (V4) pRBD (V4) Depression (V4) Global cognitive deficits (V4) Conversion to PD
Synthetic subject # 1 68 Male No motor deficit No No No No

Synthetic subject #2 67 Female No motor deficit No No No No

Synthetic subject #3 68 Male Subthreshold parkinsonism No No Yes Yes

Synthetic subject #4 73 Female No motor deficit No No No No

Synthetic subject #5 69 Male Borderline motor deficit No No No Yes

Real subject #1 63 Female No motor deficit No No No No

Real subject #2 68 Male Subthreshold parkinsonism No No No Yes

Real subject #3 70 Male Borderline motor deficit No No No Yes

Examples of synthetic and real subjects and their demographics, selected prodromal markers, subthreshold parkinsonism (MDS-UPDRS-III) and PD conversion status

at visit 4. The rows in bold represent the similarity between the real and synthetic subjects’ data for incident PD cases. MDS-UPDRS-III, subthreshold parkinsonism

indicated by the MDS-sponsored Unified Parkinson’s Disease Rating Scale; PD, Parkinson’s Disease, pRBD, possible REM-sleep behavior disorder. V, visit.

https://doi.org/10.1371/journal.pone.0280609.t004
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validation, once on real subjects and once on synthetically generated subjects. To account for

the possible variability due to the random sampling of synthetic subjects from the BN model,

the process was repeated 10 times. Models were always tested on real patients.

Despite synthetic data generally showing a high similarity to real data, our results indicate a

loss of ~10% AUC when training on synthetic compared to training on real subjects (S9 Fig

in S1 Appendix). This could be due to slight differences between real and synthetic data

regarding the distribution of individual variables (e.g. hyposmia, physical inactivity, see S5 Fig

in S1 Appendix) as well as correlation structure (S7 Fig in S1 Appendix). Notably, RFs are a

comparably complex machine learning method, which allows for modeling highly nonlinear

structures.

Altogether these results highlight that synthetic data shared many patterns of real patient

data and thus indicate a sufficient fit of the BN to the training data.

Discussion

The present study shows the feasibility of learning and evaluating a BN based on prospective

data of established risk and prodromal markers of PD in the TREND cohort of older PD-free

Fig 2. Multiple correspondence (MCA) analysis plot of prospective data of real (in blue) and simulated (in yellow) TREND participants.

https://doi.org/10.1371/journal.pone.0280609.g002
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individuals and incident PD cases. The BN model showed several expected as well as unex-

pected interdependencies between the markers, which may be explained by biological and

clinical reasons for the co-occurrences of markers and/or by confounding due to practical and

other methodological aspects of marker assessment. The multitude of marker interdependen-

cies as revealed through the BN modelling could have important methodological implications

for evidence-based PD prediction approaches as well as for the understanding of the interplay

of different markers in the prodromal phase of PD.

The current established methodological approach of the MDS research criteria for prodro-

mal PD [1, 2] uses a naïve Bayes classifier for the prediction of PD (or diagnosis of prodromal

PD), which assumes that predictive values of risk and prodromal markers are statistically inde-

pendent. However, based on our findings from BN model and pair-wise testing of co-occur-

rences of established PD markers in the prospective TREND cohort, we could show that for

many of these predictive markers the assumption of statistical independence is most likely not

met. Hence, concerns about the validity of the naïve Bayes classifier approach for PD predic-

tion are raised.

While the number of incident PD cases was relatively low in the present study, robust and

plausible interdependency was observed between MDS-UPDRS-III and the phenoconversion

to PD. Also, age and SN hyperechogenicity were linked to the incidence of PD, which is

expected as the prevalence of PD markedly increases with advancing age [1, 2] and SN hypere-

chogenicity is observed in 83% of PD patients [22]. However, for SN hyperechogenicity, a sub-

stantially lower probabilistic confidence was present in the bootstrapping of the BN models as

may be partly explained both by low number of incident PD cases and by potential prodromal

differences between distinct subtypes of the disease, e.g., the hypothesized brain-first vs. body-

first prodromal PD subtypes [4, 6, 7].

Among risk and prodromal markers of PD, which have been shown to also play a role in

other neurodegenerative and neuropsychiatric conditions, several interdependencies were

observed in the BN model. In the following we only discuss those, which demonstrated a boot-

strap confidence > 50%. Occupational solvent exposure has been associated with an increased

risk of global cognitive impairment [23], which is consistent with their observed interdepen-

dency in the BN. As expected, current smokers were less physically active than former smokers

and non-smokers explaining the edge between non-smoking and physical inactivity. Similarly,

smokers were more frequently depressed than non-smokers. Given the known protective

effects of smoking for PD [24] and increased PD risk due to physical inactivity and depression

[25, 26], these often co-occurring factors may have opposing effects for individual PD risk esti-

mates. Excessive daytime somnolence has been shown to be both a risk factor for depression as

well as a frequent comorbid factor in depressed individuals, supporting their interdependency

observed in the BN [27]. Diabetes received interesting edges from several nodes including SN

hyperechogenicity, global cognitive deficits, sex and PD family history, and while their confi-

dences were low, this finding might provide new hypotheses regarding biological prodromal

mechanisms to be tested in future studies.

Several node interdependencies were unexpected and should be further investigated in

independent cohorts. Possible RBD was only assessed using a self-report questionnaire, and

while we applied the most specific criteria to determine the presence and absence of (possible)

RBD [28], polysomnography would likely reveal a high false-positive rate among pRBD as a

prevalence of polysomnography-proven RBD is less than 2% in the general, older population

[29]. Low specificity of the assessment methods might have contributed to the lack of interde-

pendencies between possible RBD and many other risk and prodromal markers of PD, includ-

ing markers of autonomous dysfunction, which, together with RBD, may often co-occur in a

body-first prodromal PD subtype [6].
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Genetic risk markers of PD were, except for sex and diabetes, not interdependent with

other risk and prodromal markers of PD, and while the number of GBA mutation carriers was

low, a positive PD family history and a high polygenic risk score may increase the PD risk in a

highly complex and multifaceted manner, which may partly explain the lack of their direct

interdependency with other risk and prodromal markers.

While we expected age to be interdependent with several other markers frequent in old age

(e.g., constipation, SN hyperechogenicity, hyposmia, global cognitive deficits), yet such edges

were not observed in the BN and accounting for age did largely not alter effects of pair-wise

co-occurrences in our analysis.

As expected, nodes of the same marker assessed at different visits were largely highly inter-

dependent. MDS-UPDRS-III at visit 1 however showed no edge with the corresponding nodes

of other visits, and the data of visits 2 and 3 were interdependent with one another, yet not

connected to the BN. Possibly, motor deficits were either not (yet) apparent in some partici-

pants or motor deficits may have been confounded with non-PD related arthritic, tendon,

bone or muscle complications at the first visit.

The present study has several limitations that need to be discussed. 1) Despite an excellent

retention rate in the TREND study, participant attrition as well as missing data for single visits

were observed in the longitudinal data. 2) Inter-visit dependency of markers, such as ratings of

motor deficits, might in part be lowered due to changes of investigators between different

waves of TREND data collection and assessment. 3) While a directionality of edges between

markers is proposed by our BN approach, alternative directions between risk and prodromal

markers as well as clinical features of (prodromal) PD may be observed in different models

[30]. However, indeed directions not predefined by constraints were largely expected.

Conclusion

In conclusion, the present study used a BN to disentangle the relationships of various estab-

lished risk and prodromal markers in a large prospective cohort and showed that many of

these markers are interdependent. Interdependencies of these predictive markers have not

been accounted for in current PD prediction approaches, such as the MDS research criteria for

prodromal PD [1, 2], hence raising concerns about their statistical validity. The BN of the

TREND cohort contained data of a large sample of PD-free individuals, yet only a small sample

of incident PD cases were available. Hence, an accurate PD prediction accounting for the

interdependencies in marker profiles could not be derived from the given data. Overall, this

work demonstrates the potential of modern AI approaches to advance our understanding of

prodromal PD.
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