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Abstract

Background

People living with HIV (PLWH) have increased risks of non-communicable diseases, espe-

cially cardiovascular diseases. Current HIV clinical management guidelines recommend

regular cardiovascular risk screening, but the risk equation models are not specific for

PLWH. Better tools are needed to assess cardiovascular risk among PLWH accurately.

Methods

We performed a prospective study to determine the performance of automatic retinal image

analysis in assessing coronary artery disease (CAD) in PLWH. We enrolled PLWH with�1

cardiovascular risk factor. All participants had computerized tomography (CT) coronary

angiogram and digital fundus photographs. The primary outcome was coronary atheroscle-

rosis; secondary outcomes included obstructive CAD. In addition, we compared the perfor-

mances of three models (traditional cardiovascular risk factors alone; retinal characteristics

alone; and both traditional and retinal characteristics) by comparing the area under the

curve (AUC) of receiver operating characteristic curves.

Results

Among the 115 participants included in the analyses, with a mean age of 54 years, 89%

were male, 95% had undetectable HIV RNA, 45% had hypertension, 40% had diabetes,

45% had dyslipidemia, and 55% had obesity, 71 (61.7%) had coronary atherosclerosis, and
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23 (20.0%) had obstructive CAD. The machine-learning models, including retinal character-

istics with and without traditional cardiovascular risk factors, had AUC of 0.987 and 0.979,

respectively and had significantly better performance than the model including traditional

cardiovascular risk factors alone (AUC 0.746) in assessing coronary artery disease athero-

sclerosis. The sensitivity and specificity for risk of coronary atherosclerosis in the combined

model were 93.0% and 93.2%, respectively. For the assessment of obstructive CAD, mod-

els using retinal characteristics alone (AUC 0.986) or in combination with traditional risk fac-

tors (AUC 0.991) performed significantly better than traditional risk factors alone (AUC

0.777). The sensitivity and specificity for risk of obstructive CAD in the combined model

were 95.7% and 97.8%, respectively.

Conclusion

In this cohort of Asian PLWH at risk of cardiovascular diseases, retinal characteristics, either

alone or combined with traditional risk factors, had superior performance in assessing coro-

nary atherosclerosis and obstructive CAD.

Summary

People living with HIV in an Asian cohort with risk factors for cardiovascular disease had a

high prevalence of coronary artery disease (CAD). A machine-learning-based retinal image

analysis could increase the accuracy in assessing the risk of coronary atherosclerosis and

obstructive CAD.

Background

Effective and durable anti-retroviral therapy allows us to witness tremendous improvement in

life expectancy in people living with HIV (PLWH). However, substantial morbidity and mor-

tality in PLWH are due to non-communicable diseases, such as cardiovascular diseases.

PLWH had a two-fold increased risk of cardiovascular diseases [1]. The global burden of

cardiovascular diseases attributable to HIV has tripled since the 1990s, with sub-Saharan

Africa and Asia-Pacific regions being the most affected areas [1]. Despite significant improve-

ments in the management of HIV and its comorbidities over the last two decades. Recent pop-

ulation-based studies consistently showed that PLWH had higher cardiovascular and

cerebrovascular disease risks [2, 3]. PLWH also carries a higher prevalence of risk factors for

cardiovascular diseases, such as hypertension and diabetes [2]. Studies performed in Asia also

showed that PLWH had high risks of coronary artery disease (CAD), partly attributable to the

high prevalence of cardiovascular disease risk factors, suboptimal screening, and suboptimal

management of these risk factors, especially in general low- and middle-income settings [4].

Current HIV clinical management guidelines recommend regular cardiovascular risk

screening in PLWH; however, the best risk prediction model for PLWH is uncertain [5, 6].

Although various cardiovascular disease risk prediction functions are currently available.

These algorithms have primarily been developed in non-HIV-infected populations. There-

fore, they could not accurately predict risk in PLWH, possibly due to differences in patho-

genesis underlying cardiovascular disease [7]. Moreover, many of these functions, including

HIV-specific prediction models, have not been adequately validated in Asian populations of

PLWH [4].
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Retinal vascular characteristics have been recognized to encompass features associated with

systemic diseases, such as diabetes and hypertension. Recent research has demonstrated a

broader breadth of the application of retinal biomarkers for diagnostic, monitoring, and prog-

nostic purposes in a wide range of chronic diseases [8]. Recently, retinal image characteristics

have been shown to be closely linked with multiple cardiovascular risk factors and major car-

diovascular events [9]. In particular, several retinal vascular characteristics, including arteriolar

and venular calibre, curvature tortuosity, and branching complexity, were shown to have asso-

ciations with CAD [10, 11].

Traditionally, manual interpretation of retinal images was heavily operator-dependent

and time-consuming and was subjected to measurement error. Recently, the availability of

automated models has shown superior accuracy and has transformed the practicality of

adopting the assessment of retinal characteristics into routine clinical use [8, 12, 13]. How-

ever, most studies often involved a limited number of vascular characteristics [14]. In con-

trast, contemporary computing methods allow efficient and accurate measurements of a

broad spectrum of retinal microvasculature characteristics. The retinal characteristics

include vascular calibre, tortuosity, density, and branching complexity [15]. Retinal image

analysis also has the advantages of being a simple, non-invasive procedure, requiring mini-

mal operator training.

The application of retinal image analysis in assessing the risk of cardiovascular diseases has

not yet been evaluated in PLWH. Also, HIV infection per se and associated opportunistic dis-

eases cause various retinal abnormalities [16]. Therefore, studies showing a correlation

between retinal vascular characteristics and cardiovascular diseases performed in non-HIV-

infected populations might not be generalizable to PLWH. This study aimed to determine the

prevalence of CAD among high-risk PLWH in a predominantly Asian population and deter-

mine the performance of machine-learning-based retinal image analysis in assessing the risk

of CAD in PLWH compared to traditional risk prediction tools.

Methods

We performed a prospective study on CAD in an Asian population of PLWH with atheroscle-

rotic risk factors at the Prince of Wales Hospital Infectious Diseases clinic in Hong Kong from

February 2019 to February 2021. The primary outcome is coronary atherosclerosis; secondary

outcomes include the presence of any coronary artery calcium (CAC), significant CAC, and

obstructive CAD.

We enrolled PLWH aged 30 years or above with either chest pain or the presence of one or

more risk factors for cardiovascular disease. Cardiovascular disease risk factors included

hypertension, diabetes mellitus, dyslipidemia (defined by total cholesterol�6.2 mmol/L, HDL

cholesterol�0.9 mmol/L, triglyceride�2.3 mmol/L, or use of the lipid-lowering drug) [17],

current smoker, obesity (defined by body mass index�27 kg/m2) [18], and family history of

CAD (defined by a first-degree relative with myocardial infarction before age 50 years) [17].

Patients with previously diagnosed CAD, creatinine clearance < 60mL/min, allergy to intrave-

nous contrast, and pregnancy were excluded. All participants provided written informed con-

sent. The study was approved by the Joint Chinese University of Hong Kong-New Territories

East Cluster Clinical Research Ethics Committee.

We collected demographic and clinical information, including HIV-related clinical data

and comorbidities. We measured body weight, height, waist circumference, and blood pres-

sure. After at least 8 hours of fasting, we collected blood samples for glucose, HbA1c, insulin,

cholesterol, triglyceride, creatinine, C reactive protein, fibrinogen, D-dimer, sCD14, sCD163,

and adiponectin.
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We calculated cardiovascular risk using four cardiovascular risk prediction functions for

each participant. They included Framingham risk score for 10-year coronary heart disease risk

[19], QRISK3 [20], Pooled Cohort ASCVD risk equations [21], and 10-year cardiovascular dis-

ease risk using the Data-collection on Adverse Effects of Anti-HIV Drugs (D:A:D) study

(DAD) cohort risk prediction [22]. A prediction of<10% was considered a low risk of cardio-

vascular disease.

All participants underwent a coronary CT angiogram, which included a non-contrast CT

for calcium scoring and subsequently contrast-enhanced CT with cardiac gating for coronary

angiography. We obtained a CAC score from the non-contrast CT and quantified it using the

Agatston method [23]. The presence of any CAC was defined as Agatston score> 0, and sig-

nificant CAC was defined as Agatston score� 100. We assessed the coronary plaque burden,

including the presence, the site, composition (calcified, non-calcified, or mixed), and degree of

stenosis of the plaques following the Society of Cardiovascular Computed Tomography guide-

lines [24]. In brief, stenosis was categorized as normal or minimal (0–25%), mild (26% - 50%),

moderate (51% - 75%), severe non-subtotal occlusion (76% - 90%), and severe subtotal occlu-

sion (91–99%). Coronary atherosclerosis was defined as the presence of any plaques in one or

more coronary artery segments, while moderate to severe stenosis of the lumen was considered

as obstructive CAD.

A trained research nurse acquired digital fundus photographs using a Canon CR2-AF non-

mydriatic retinal camera from both eyes of each participant. We then assessed retinal charac-

teristics, for example, retinal vessel measurements, arteriole-venous nicking, arteriole occlu-

sion, haemorrhages, exudates, tortuosity, bifurcation coefficients, asymmetry of branches, and

bifurcation angles. The definitions of the retinal parameters were previously presented in detail

[11, 25].

Statistical methods

We performed these measurements using R (University of Auckland, Auckland) and Matlab

(MathWorks, Massachusetts, USA) computer software. The methods included fractal analysis,

high-order spectra analysis, and statistical texture analysis [25].

We presented descriptive statistics for the baseline characteristics. We compared demo-

graphic, clinical, and retinal characteristics between those with and without primary and sec-

ondary outcomes using an independent two-sample Student t-test and Mann Whitney U test

for continuous variables and a chi-square test for categorical variables. Using stepwise logistic

regression analyses, we determined the associations of traditional cardiovascular risk factors

and retinal characteristics with the primary and secondary outcomes. Three different models

were evaluated: Model 1 included clinical characteristics regarded as traditional cardiovascular

risk factors in PLWH; model 2 included retinal characteristics only; model 3 included both the

traditional cardiovascular risk factors and retinal characteristics. All covariates with a p-value

less than 0.1 were kept in the final model. We compared the performances of different models

by comparing the area under the curve (AUC) of receiver operating characteristic (ROC)

curves using the Delong method [26] The sensitivity and specificity of the models will also be

calculated.

For the classification analysis, we used machine learning and deep learning techniques.

Using Matlab, we first applied transfer deep network ResNet50 convolutional neural network

with retinal images as input, and the outputs were features generated at the layer of

‘’fc1000_softmax’’, based on pixels associated with the specific outcome status [27]. We also

extracted the texture/spectrum/fractal-based features that are associated with the specific out-

come by using the automatic retinal image analysis (ARIA) algorithm written in Matlab [28].
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We then used the Glmnet approach to select significant features based on the penalised maxi-

mum likelihood by using R and Matlab [29, 30]. These refined features are highly associated

with the specific outcome. Finally, we translated the features extracted from the aforemen-

tioned machine learning approaches to commonly used retinal characteristics measured from

the images using ImageJ. This part of the analysis helped enhance our understanding of retinal

characteristics that contribute to the classification and identification of the specific outcome

and was performed with SPSS. For the validation, we applied a 10-fold cross-validation

method by using a support vector machine (SVM) algorithm for testing datasets that were not

used in the training of the model [30, 31]. This was performed by partitioning the dataset and

using a subset to train the algorithm, and the remaining subset of data for testing. Each time

we ran the cross-validation analysis, we used 10% of the data for testing that were not used at

all in the training data. The advantage of this method is that the data used for testing in each

run were excluded from the specific training models for the purpose of validation to reduce

the problem of overfitting and overestimation of the sensitivity and specificity. Because cross-

validation does not use all of the data to build a model, it is a commonly used method to pre-

vent overfitting during training. Fig 1 shows the flowchart of the described methodology.

Results

This study enrolled 120 participants during the recruitment period. Five participants were

excluded from the analyses. Among them, 3 participants were excluded due to the unavailabil-

ity of good quality retinal images, 1 participant was deceased, and 1 participant was lost to fol-

low-up after recruitment without completing all study procedures. Among the 115

participants included in the analyses, the mean (±standard deviation) age was 54±10 years,

89% were male, the median (interquartile range/IQR) duration of HIV diagnosis was 12 (7–

17) years, 95% had undetectable serum HIV RNA, and the median (IQR) CD4 count was 632

(451–840) cells/mm3. Among this cohort, 45% had hypertension, 40% had diabetes, 45% had

dyslipidemia, and 55% had obesity. In addition, chest pain and dyspnea were present in 17%

and 18% of participants. Their detailed demographic and clinical characteristics are shown in

Tables 1 and 2.

Seventy-one participants (61.7%) had coronary atherosclerosis; also, these 71 participants

were found to have a presence of any CAC. Thirty-five participants (30.4%) had significant

CAC, and 23 (20.0%) had obstructive CAD. Coronary atherosclerosis was associated with

male gender, older age, dyslipidemia, hypertension, lower CD4:CD8 ratio, lower HDL choles-

terol, and higher triglyceride (Table 1). Obstructive CAD was associated with older age, dys-

pnea, lower total cholesterol, lower LDL cholesterol, and higher sCD163 (Table 2). Significant

CAC was associated with older age, dyslipidemia, and lower LDL cholesterol (S1 Table).

The retinal characteristics associated with coronary atherosclerosis, obstructive CAD, and

significant CAC are shown in S2 and S3 Tables. Several retinal vascular characteristics were

associated with coronary atherosclerosis. They include narrower arterioles, wider venules, and

a lower degree of arteriolar branching,

The associations between traditional cardiovascular risk factors and retinal characteristics

with coronary atherosclerosis are shown in Table 3. We further improve the classification

using a machine-learning approach. The model, including traditional cardiovascular risk fac-

tors and retinal characteristics, had 93.0% sensitivity and 93.2% specificity (area under the

ROC curve (AUC) was 0.987, 95% CI 0.973–1.00). The performance is similar to the model

with retinal characteristics alone, with 91.5% sensitivity and 88.6% specificity (AUC 0.979,

95% CI 0.960–0.998). However, both models with retinal characteristics were better than the

model with traditional cardiovascular risk factors alone, with 81.7% sensitivity and 54.5%

PLOS ONE Coronary artery disease risk estimation for HIV patients using retinal images

PLOS ONE | https://doi.org/10.1371/journal.pone.0281701 February 24, 2023 5 / 17

https://doi.org/10.1371/journal.pone.0281701


specificity (AUC 0.746, 95% CI 0.652–0.841) in assessing the risk of coronary atherosclerosis

(Fig 2A).

The models showing the associations between traditional cardiovascular risk factors plus

retinal characteristics for obstructive CAD are shown in Table 4. For assessing the risk of

obstructive CAD, the model including retinal variables combined with traditional risk factors

had a sensitivity and specificity of 95.7% and 97.8%, respectively (AUC 0.991, 95% CI 0.978–

Fig 1. Flowchart of the method for the development of the classification models.

https://doi.org/10.1371/journal.pone.0281701.g001
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Table 1. Demographic and clinical characteristics in participants with and without coronary atherosclerosis1.

Characteristics All participants (N = 115) No coronary atherosclerosis (N = 44) Coronary atherosclerosis (N = 71) P-value

Age (years) 53.7±9.5 49.9±9.7 56.1±8.7 0.001

Male 102 (88.7%) 35 (79.6%) 67 (94.4%) 0.030

Current smoker 27 (23.7%) 14(31.82) 13(18.31) 0.105

Family history of premature myocardial infarction 3 (2.6%) 2(4.55) 1(1.41) 0.557

Diabetes mellitus 46 (40.0%) 16 (36.4%) 30(42.3%) 0.530

Hypertension 52 (45.2%) 15 (34.1%) 37 (52.1%) 0.059

Dyslipidemia 52 (45.2%) 12 (27.3%) 40 (56.3%) 0.002

Obesity 63 (54.8%) 24 (54.6%) 39 (54.9%) 0.968

Hepatitis B 9 (7.8%) 5 (11.4%) 4 (5.6%) 0.450

Hepatitis C 3 (2.6%) 2 (4.6%) 1 (1.4%) 0.557

Chest pain 20 (17.4%) 6 (13.6%) 14 (19.7%) 0.403

Dyspnoea 21 (18.3%) 8 (18.2%) 13 (18.3%) 0.986

Duration of HIV diagnosis (years) 12 (7–17) 12 (8–5) 13 (7–17) 0.928

History of AIDS 24 (20.9%) 11 (25.0%) 13 (18.3%) 0.391

Duration of antiretroviral therapy (years) 9 (5–13) 9 (6–13) 9 (5–13) 0.714

Current anti-retroviral drugs

Tenofovir 78 (67.8%) 29 (65.9%) 49 (69.0%) 0.729

Abacavir 31 (27.0%) 13 (29.5%) 18 (25.4%) 0.622

NNRTI 27 (23.5%) 10 (22.7%) 17 (23.9%) 0.881

Protease inhibitor 19 (16.5%) 6 (13.6%) 13 (18.3%) 0.512

Integrase strand transfer inhibitor 74 (64.3%) 29 (65.9%) 45 (63.4%) 0.783

Body weight (kg) 74.0±13.9 75.4±15.1 73.1±13.2 0.381

Body mass index (kg/m2) 26.5±7.2 27.9±10.3 25.6±4.3 0.366

Waist circumference (cm) 91.6±11.6 91.9±12.8 91.4±10.8 0.805

Systolic blood pressure (mmHg) 133±18 130±16 136±19 0.247

Diastolic blood pressure (mmHg) 86±11 86±12 87±11 0.67

CD4 count (cells/mm3) 632 (451–840) 666 (496–840) 615 (419–865) 0.295

CD4:CD8 ratio 0.83±0.36 0.95±0.36 0.76±0.35 0.003

HIV RNA <50 copies/mL 109 (94.8%) 42(95.45) 67(94.37) 1.000

Total cholesterol (mmol/L) 4.70±1.08 4.77±1.03 4.65±1.12 0.559

HDL (mmol/L) 1.19±0.38 1.25±0.37 1.15±0.39 0.063

LDL (mmol/L) 2.55±0.89 2.71±0.87 2.44±0.89 0.120

Triglycerides (mmol/L) 1.9 (1.4–2.8) 1.8 (1.2–2.4) 2.2 (1.5–3.0) 0.057

Glucose (mmol/L) 5.9 (5.2–6.8) 5.6 (5.1–6.5) 6.1 (5.3–7.1) 0.124

HbA1C (mmol/L) 5.9 (5.6–6.7) 5.9 (5.6–6.5) 6.0 (5.6–6.7) 0.274

HOMA-IR 2.3 (1.2–4.4) 2.2 (1.1–3.1) 2.3 (1.3–4.8) 0.156

Creatinine (μmol/L) 88.2±16.5 85.6±16.2 89.7±16.6 0.195

D-dimer (ng/mL) 259 (177–353) 224 (164–328) 263 (177–351) 0.405

Fibrinogen (g/L) 2.99±0.58 3.02±0.56 2.96±0.59 0.591

C reactive protein (mg/L) 1.4 (0.6–3.0) 1.7 (0.6–3.6) 1.4 (0.6–2.3) 0.224

sCD163 (ng/mL) 626±144 622±150 629±141 0.943

sCD14 (pg/mL) 2228 (2131–2371) 2232 (2077–2402) 2226 (2139–2344) 0.820

Adiponectin (ng/mL) 1305 (674–3277) 1591 (744–3529) 1233 (587–3115) 0.299

1Data are presented as number (percentage), mean ± standard deviation, or median (interquartile range), as appropriate

https://doi.org/10.1371/journal.pone.0281701.t001
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Table 2. Demographic and clinical characteristics in participants with and without obstructive coronary artery disease (CAD)#.

Characteristics All participants (N = 115) No obstructive CAD (N = 92) Obstructive CAD (N = 23) P-value

Age (years) 53.7±9.5 52.09±9.13 60.22±8.40 <0.001

Male 102 (88.7%) 81(88.04) 21(91.3) 0.941

Current smoker 27 (23.7%) 23 (25.3%) 4 (17.4%) 0.427

Family history of premature myocardial infarction 3 (2.6%) 2 (2.2%) 1 (4.4%) 0.491

Diabetes mellitus 46 (40.0%) 36 (39.1%) 10 (43.5%) 0.703

Hypertension 52 (45.2%) 39 (42.4%) 13 (56.5%) 0.223

Dyslipidemia 52 (45.2%) 39 (42.4%) 13 (56.5%) 0.223

Obesity 63 (54.8%) 53 (57.6%) 10 (43.5%) 0.223

Hepatitis B 9 (7.8%) 9 (9.8%) 0 (0%) 0.259

Hepatitis C 3 (2.6%) 3 (3.3%) 0 (0%) 1.000

Chest pain 20 (17.4%) 15 (16.3%) 5 (21.7%) 0.758

Dyspnoea 21 (18.3%) 12 (13.0%) 9 (39.1%) 0.010

Duration of HIV diagnosis (years) 12 (7–17) 12 (7–16) 13(6–19) 0.661

History of AIDS 24 (20.9%) 20 (21.7%) 4 (17.4%) 0.863

Duration of antiretroviral therapy (years) 9 (5–13) 9 (6–13) 9 (3–14) 0.875

Current anti-retroviral drugs

Tenofovir 78 (67.8%) 61 (66.3%) 17 (73.9%) 0.485

Abacavir 31 (27.0%) 27 (29.3%) 4 (17.4%) 0.248

NNRTI 27 (23.5%) 23 (25.0%) 4 (17.4%) 0.441

Protease inhibitor 19 (16.5%) 15 (16.3%) 4 (17.4%) 1.000

Integrase strand transfer inhibitor 74 (64.3%) 59 (64.1%) 15 (62.5%) 0.922

Body weight (kg) 74.0±13.9 75.1±13.9 69.3±13.4 0.119

Body mass index (kg/m2) 26.5±7.2 26.9±7.7 24.8±4.4 0.231

Waist circumference (cm) 91.6±11.6 91.9±11.4 90.4±12.4 0.605

Systolic blood pressure (mmHg) 133±18 133±16 136±23 0.534

Diastolic blood pressure (mmHg) 86±11 86±12 86±9 0.952

CD4 count (cells/mm3) 632 (451–840) 623(455–839.5) 686(427–865) 0.729

CD4:CD8 ratio 0.83±0.36 0.85±0.38 0.78±0.3 0.418

HIV RNA <50 copies/mL 109 (94.8%) 87 (94.6%) 22 (95.7%) 1.000

Total cholesterol (mmol/L) 4.70±1.08 4.81±1.04 4.25±1.14 0.027

HDL (mmol/L) 1.19±0.38 1.21±0.4 1.12±0.32 0.317

LDL (mmol/L) 2.55±0.89 2.64±0.86 2.16±0.93 0.021

Triglycerides (mmol/L) 1.9 (1.4–2.8) 1.9 (1.4–2.9) 2.2 (1.1–2.8) 0.997

Glucose (mmol/L) 5.9 (5.2–6.8) 5.9 (5.2–6.9) 5.9 (5.4–6.3) 0.761

HbA1C (mmol/L) 5.9 (5.6–6.7) 5.9 (5.6–6.7) 5.9 (5.7–6.6) 0.718

HOMA-IR 2.3 (1.2–4.4) 2.2 (1.2–3.9) 2.9 (1.1–5.3) 0.246

Creatinine (μmol/L) 88.2±16.5 88.61±16.94 86.3±14.65 0.551

D-dimer (ng/mL) 259 (177–353) 240.0(164.0–333.5) 267.5 (190.0–448.0) 0.146

Fibrinogen (g/L) 2.99±0.58 2.99±0.54 2.98±0.71 0.965

C reactive protein (mg/L) 1.4 (0.6–3.0) 1.4(0.6–3.0) 1.4(0.6–3.1) 0.960

sCD163 (ng/mL) 626±144 611±146 686±119 0.024

sCD14 (pg/mL) 2228 (2131–2371) 2232 (2127–2392) 2212 (2139–2321) 0.756

Adiponectin (ng/mL) 1305 (674–3277) 1378 (696–3444) 1094 (369–2799) 0.277

#Data are presented as number (percentage), mean ± standard deviation, or median (interquartile range), as appropriate

https://doi.org/10.1371/journal.pone.0281701.t002
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1.000). The model with retinal characteristics alone had sensitivity and specificity of 87.0% and

96.7%, respectively (AUC 0.986, 95% CI 0.970–1.000). Both models, including retinal charac-

teristics, performed significantly better than the model with traditional risk factors alone and

had sensitivity and specificity of 34.3% and 93.5%, respectively (AUC 0.777, 95% CI 0.672–

0.883) (Fig 2B).

Likewise, models including retinal characteristics alone or those combined with traditional

cardiovascular risk factors performed significantly better than those with traditional risk fac-

tors alone in assessing the risk of significant CAC (S4 Table and S1 Fig). An example of retinal

vascular characteristics and their related measurements is shown in Fig 3.

All conventional cardiovascular disease risk prediction functions had limited performance

in assessing the risk of coronary atherosclerosis and obstructive CAD. Among those partici-

pants with coronary atherosclerosis, 45.1%, 57.7%, 52.1% and 42.3% were categorized as hav-

ing low risk using Framingham risk score, QRISK3, Pooled Cohort ASCVD risk equations,

and 10-year DAD cohort risk prediction, respectively. The corresponding figures for obstruc-

tive CAD among these groups were 30.4%, 52.2%, 34.8% and 34.8%, respectively. Moreover,

ROC curve analyses showed that all of the prediction functions had AUC <0.7, with QRISK3

having the highest AUC for assessing both coronary atherosclerosis (AUC 0.667, 95% CI

0.566–0.767) and obstructive CAD (AUC 0.663, 95% CI 0.545–0.780) (S5 Table). For fairness

in comparison, we used only the logistic regression model as a method for the comparison

without using the machine-learning classification method. The models adopting the retinal

characteristics alone (AUC 0.902, 95% CI 0.810–0.995) or in combination with the QRISK3

Table 3. Stepwise logistic regression analysis showing factors associated with coronary atherosclerosis in different models.

Odds Ratio (OR) 95% CI for OR P-value

Lower Upper

Model 1: Inclusion of traditional cardiovascular risk factors only

Dyslipidemia 3.30 1.41 7.77 0.006

CD4:CD8 ratio 0.21 0.07 0.68 0.009

Hypertension 2.56 1.09 6.04 0.031

AUC: 0.7465 (95%CI: 0.6514–0.8416)

Model 2: Inclusion of retinal characteristics only

Left MBCA 0.69 0.46 1.04 0.079

Right CRVE 2.16 1.10 4.24 0.025

Right adjusted CRAE 0.32 0.15 0.65 0.002

Right MV asymmetry 0.58 0.36 0.92 0.020

AUC: 0.7298 (95%CI: 0.6356–0.8241)

Model 3: Inclusion of traditional cardiovascular risk factors and retinal characteristics retinal characteristics

Dyslipidemia 3.27 1.31 8.17 0.011

CD4:CD8 ratio 0.23 0.07 0.79 0.019

Hypertension 2.23 0.88 5.62 0.089

Left MBCA 0.66 0.42 1.04 0.075

Right CRVE 2.04 0.98 4.24 0.057

Right adjusted CRAE 0.34 0.16 0.74 0.007

Right MV asymmetry 0.61 0.38 1.00 0.049

AUC: 0.8073 (95%CI: 0.7216–0.893)

Abbreviations: CRAE, central retinal arteriolar equivalent; CRVE, central retinal venular equivalent; MBCA, bifurcation coefficient of artery; MV asymmetry, venous

asymmetry index.

https://doi.org/10.1371/journal.pone.0281701.t003

PLOS ONE Coronary artery disease risk estimation for HIV patients using retinal images

PLOS ONE | https://doi.org/10.1371/journal.pone.0281701 February 24, 2023 9 / 17

https://doi.org/10.1371/journal.pone.0281701.t003
https://doi.org/10.1371/journal.pone.0281701


score (AUC 0.912, 95% CI 0.829–0.994) had a significantly better performance than QRISK3

score alone in assessing the risk of obstructive CAD (S6 and S7 Tables and S2 and S3 Figs).

Discussion

In this study, we evaluated machine-learning-based retinal imaging analysis to assess the risk

of CAD in PLWH. In this cohort of Asian PLWH at risk of developing cardiovascular diseases,

retinal characteristics, either alone or combined with traditional risk factors, enhanced the per-

formance in assessing the risk of coronary atherosclerosis and obstructive CAD. In contrast,

the performance of traditional cardiovascular risk prediction functions has a lot of room to

improve.

This study showed that 62% of at-risk PLWH had coronary atherosclerosis, and 20% had

obstructive CAD. The most extensive cohort study involving PLWH in Asia had recently dem-

onstrated that traditional cardiovascular risk factors, including older age, hypertension, dysli-

pidemia, and high body mass index, were the major contributing factors for the development

of cardiovascular disease diseases among PLWH in the region [32]. Our study further con-

firmed the high prevalence of CAD and its contributing risk factors among PLWH, highlight-

ing the importance of prevention and treatment of these risk factors among PLWH. Moreover,

an accurate tool to predict cardiovascular risk in these at-risk individuals is highly

recommended.

Fig 2. a. AUC comparison between different models for the prediction of coronary atherosclerosis. (Model 1: Inclusion of traditional cardiovascular risk

factors only; Model 2: Inclusion of retinal information only; Model 3: Inclusion of traditional cardiovascular risk factors and retinal information). b. AUC

comparison between different models for the prediction of obstructive coronary artery disease. (Model 1: Inclusion of traditional cardiovascular risk factors

only; Model 2: Inclusion of retinal information only; Model 3: Inclusion of traditional cardiovascular risk factors and retinal information).

https://doi.org/10.1371/journal.pone.0281701.g002
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We demonstrated that all of the evaluated cardiovascular risk prediction functions had lim-

ited accuracy in assessing the risks of coronary atherosclerosis and obstructive CAD in Asian

PLWH. Evidence from current literature suggests that currently available cardiovascular risk

prediction functions have suboptimal performance among PLWH. For example, Framingham

risk scores tended to underestimate the prevalence of CAD and other atherosclerotic cardio-

vascular diseases among PLWH in the United States across all risk groups [33] while overesti-

mating cardiovascular risk in European [34] and Asian [35] populations of PLWH. The

available HIV-specific DAD cohort risk-prediction model was developed in a primarily Euro-

pean cohort [6]. It predicted a lower proportion having a high risk of cardiovascular disease

among Asian PLWH than other prediction functions [35–37]. However, to the best of our

knowledge, it had not yet been validated in any Asian populations of PLWH. Better tools to

accurately assess the risk of CAD and other cardiovascular diseases among Asian PLWH are

preferred.

Currently available studies performed in general HIV-uninfected populations have demon-

strated the association of retinal vascular characteristics with multiple cardiovascular risk fac-

tors, including body mass index, smoking, hypertension, diabetes, and dyslipidemia [12, 13,

38, 39]. To supplement, these studies included multi-ethnic populations, including China [12],

Britain [13], and the Middle East [38, 39]. In particular, smaller arteriolar widths, larger venu-

lar widths, and increased arteriolar and venular tortuosity were associated with cardiovascular

risk factors [13]. Furthermore, using deep learning on retinal images, it was able to predict the

Table 4. Stepwise logistic regression analysis showing factors associated with obstructive coronary artery disease

in different models.

OR 95% CI for OR P-value

Lower Upper

Model 1: Inclusion of traditional cardiovascular risk factors only

Age�55 years 7.39 2.28 24.01 0.001

Dyspnea 3.20 1.04 9.79 0.042

AUC: 0.7774 (95%CI: 0.6777–0.8771)

Model 2: Inclusion of retinal characteristics only

Left MBCV 2.60 1.30 5.20 0.007

Left AVR 1.11 1.03 1.20 0.006

Right MBCA 0.14 0.05 0.42 < .001

Right AF 2.97 1.03 8.54 0.044

Right Tortuosity 0.39 0.17 0.92 0.030

Right A occlusion 2.91 1.17 7.27 0.022

AUC: 0.9022 (95%CI: 0.8098–0.9946)

Model 3: Inclusion of traditional cardiovascular risk factors and retinal characteristics retinal characteristics

Dyspnoea 5.82 1.03 32.95 0.047

Left MBCV 2.36 1.14 4.87 0.020

Left AVR 1.11 1.03 1.21 0.011

Right MBCA 0.16 0.05 0.50 0.001

Right AF 3.27 1.05 10.17 0.041

Right Tortuosity 0.34 0.13 0.86 0.023

Right A occlusion 2.96 1.17 7.49 0.022

AUC: 0.9168 (95%CI: 0.8420–0.9917)

Abbreviations: MBCA, bifurcation coefficient of artery; MBCV, bifurcation coefficient of venule; AF, atrial

fibrillation; Tortuosity, Tortuosity; A occlusion, Arteriole occlusion; AVR, Arteriole-venule ratio.

https://doi.org/10.1371/journal.pone.0281701.t004

PLOS ONE Coronary artery disease risk estimation for HIV patients using retinal images

PLOS ONE | https://doi.org/10.1371/journal.pone.0281701 February 24, 2023 11 / 17

https://doi.org/10.1371/journal.pone.0281701.t004
https://doi.org/10.1371/journal.pone.0281701


presence of CAC and stratify cardiovascular disease risk in multi-ethnic populations [40]. In

addition, the retinal vascular density and vessel branching complexity were able to predict

higher mortality incidents in populations with high rates of hypertension and diabetes [15].

Regarding the prediction models of CAD, longitudinal studies showed that arteriolar nar-

rowing, venular widening and fractal dimension accurately predicted incident CAD and CAD

mortality in population-based studies [14, 41]. Patients hospitalized with acute coronary syn-

drome had lower retinal inner vessel length density and perfusion density than controls with

lower cardiovascular risk [42]. In another study from China, patients with stable CAD had

lower vessel density in superficial capillary plexus and deep capillary plexus; vessel density was

also associated with CAD severity [43]. To further understand the pathogenesis of retinal ves-

sel disease, recent genome-wide association analyses identified loci associated with retinal

microvascular architecture, including genes associated with inflammatory, chemokine and

angiogenesis pathways [15]. Such associations suggested that the retina may provide a window

for identifying pathogenic processes underlying cardiovascular diseases in both HIV-unin-

fected populations and PLWH.

Our study further showed that a machine-learning-based retinal image analysis could

improve the accuracy of assessing CAD risk among PLWH. In addition, it enhanced the per-

formance of several widely adopted cardiovascular risk prediction functions in PLWH. This

observation further supports that the retinal vessels provide an in-vivo examination of vascular

sequelae secondary to CAD risk factors, including hypertension and diabetes. In studies per-

formed in HIV-uninfected populations, retinal image analysis, when coupled with risk predic-

tion functions, had better performance than risk prediction models alone in cardiovascular

risk stratification [40] and prediction of cardiovascular mortality [44]. Retinal image analysis

can potentially enhance the current risk prediction functions in cardiovascular disease risk

stratification among PLWH.

The performance of retinal image analysis was best in assessing the risk of obstructive CAD

in our cohort. While retinal characteristics can act as systemic biomarkers [8], the results from

our study supported that retinal characteristics would be most helpful in identifying at-risk

PLWH with obstructive CAD. This group of patients may benefit from more stringent cardio-

vascular risk factor control and coronary interventions.

Fig 3. a & b show the retinal images of two participants with coronary artery disease. White arrow indicates arteriole occlusion. Black arrow indicates a venous

vessel with significant vascular tortuosity. The dashed white arrow indicates a venous bifurcation; θ1 and θ2 specify the bifurcation coefficients of the two

branching venules (MBCV).

https://doi.org/10.1371/journal.pone.0281701.g003
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Our study has several limitations. First, we had a relatively small sample size and involved

only PLWH with cardiovascular risk factors from Asia. The cross-sectional study design pre-

cluded the evaluation of prediction of incident cardiovascular events by retinal image analysis.

Future studies should evaluate the performance of retinal image analysis in predicting CAD in

a more diverse population of PLWH with different ethnicities and levels of cardiovascular risk.

Previous studies have shown differences in vascular calibre and fractal dimension among

Asian ethnic groups [45]. Finally, this study has not involved the use of optical coherence

tomography angiography (OCTA), which can provide more detailed retinal and choroidal

characteristics analyses, which have also been shown to be associated with CAD [46].

In conclusion, we have demonstrated that machine-learning-based retinal image analysis

accurately assesses the risk of coronary atherosclerosis and obstructive CAD among PLWH

with risk factors for cardiovascular diseases. This tool should be further validated in more

diverse populations of PLWH for the adoption in clinical practice for CAD risk stratification.
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