Article

Efficient Video Watermarking Algorithm Based on
Convolutional Neural Networks with Entropy-Based
Information Mapper

Marta Bistron *

check for
updates

Citation: Bistron, M.; Piotrowski, Z.
Efficient Video Watermarking
Algorithm Based on Convolutional
Neural Networks with
Entropy-Based Information Mapper.
Entropy 2023, 25, 284. https://
doi.org/10.3390 /25020284

Academic Editors: Tzu Chuen Lu

and David Megias

Received: 19 December 2022
Revised: 30 January 2023
Accepted: 30 January 2023
Published: 2 February 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Zbigniew Piotrowski

Institute of Communication Systems, Faculty of Electronics, Military University of Technology,
00-908 Warsaw, Poland
* Correspondence: marta.bistron@wat.edu.pl

Abstract: This paper presents a method for the transparent, robust, and highly capacitive watermark-
ing of video signals using an information mapper. The proposed architecture is based on the use of
deep neural networks to embed the watermark in the luminance channel in the YUV color space.
An information mapper was used to enable the transformation of a multi-bit binary signature of
varying capacitance reflecting the entropy measure of the system into a watermark embedded in
the signal frame. To confirm the effectiveness of the method, tests were carried out for video frames
with a resolution of 256 x 256 pixels, with a watermark capacity of 4 to 16,384 bits. Transparency
metrics (SSIM and PSNR) and a robustness metric—the bit error rate (BER)—were used to assess the
performance of the algorithms.

Keywords: CNN; entropy; information mapping; neural networks; watermarking; video
watermarking; YUV

1. Introduction

The issue of copyright protection is a multi-billion-dollar problem affecting both
developed and developing countries. Related to this is the phenomenon of multimedia
piracy, i.e., the unauthorized distribution and redistribution of multimedia content such
as films, TV programs, or audio files [1]. One of the main drivers of this phenomenon is
the desire of consumers to watch new content as soon as it is released, without having to
pay for premium TV services. The most common method for the illegal use of films and
TV series is through stream ripping, while many consumers also illegally download and
stream content [2]. Multimedia piracy is a source of huge financial losses for both owners
and distributors of entertainment content and for consumers, as it is the source of many
restrictions and limitations on offering entertainment to end customers [3].

The solution to the problem is to embed an invisible, capacious, and robust watermark
in the media content, allowing the owner of the content to be identified and the source of
the data leak to be traced in the event of an unauthorized distribution occurring. Digital
Rights Management aims to develop systems to counteract the use of digital data in a
manner contrary to the will of the publisher. Digital watermarking is very often used in
this area [4-6].

A watermark embedded in the video content should comply with three basic paradigms
to implement the method in commercial applications:

e Transparency, i.e., the invisibility of the watermark to the human visual system
(HVS) [7]. The video viewer usually does not have access to the original video
(without the watermark), so seeing minor modifications is impossible, but despite this,
the watermark may not significantly affect the quality of the video, which is verified
in a measurable way based on metrics [8].

Entropy 2023, 25, 284. https:/ /doi.org/10.3390/e25020284

https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25020284
https://doi.org/10.3390/e25020284
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2875-8713
https://orcid.org/0000-0003-3556-0297
https://doi.org/10.3390/e25020284
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25020284?type=check_update&version=2

Entropy 2023, 25, 284

2 of 26

The bit capacity—the number of watermark bits that can be encoded in one video
frame—should be as high as possible to encode as much data as possible. Information
mappers are used to transform the binary signature into a watermark [9,10].

The robustness of the algorithm is determined by its ability to decode the correct
watermark from the material. Measurably, robustness is assessed based on the BER (bit
error rate) metric by comparing the original watermark and the watermark extracted from
the video [11].

The area of watermark embedding and extraction in video files has so far been dom-
inated by three main approaches—watermark embedding in the spatial domain [12-14];
the transform domain with the Discrete Cosine Transform (DCT) [15], Discrete Wavelet
Transform [16], Discrete Fourier Transform [17], or combined methods [18,19]; and the
compression domain [20,21]. Currently, classical methods are increasingly being supported
or replaced by the use of deep neural network algorithms [22], which have found appli-
cations in many areas, both civil and military [23]. Algorithms using neural networks are
characterized by much higher efficiency, but also high computational complexity, which
significantly increases the processing time of a single frame for watermark embedding [24].

This paper presents a modification of an algorithm using artificial neural network
architectures to embed a static image in a luminance channel in the YUV color space with
high transparency preserved. Modifications were made to the loss function and the model
training process, and the architecture was adapted to handle five-dimensional input data
(video sequences). In addition, an information mapper and a demapper have been imple-
mented to allow high-capacity binary signatures to be encoded in the video frame. The
main research problem addressed in the study was the selection of the algorithm’s hyper-
parameters to achieve the highest possible binary watermark capacity while maintaining
high transparency and robustness.

The main contributions of this work are as follows:

The implementation of an entropy-based information mapper and demapper enabling
the transformation of a binary signature into a watermark (and vice versa) for embedding
and extracting the watermark in a video signal.

The modification of the watermarking algorithm in terms of extending the loss function
and changing the learning procedure to ensure the high transparency and robustness of
the method.

The laboratory testing of the watermarking algorithm for watermark capacities from
4 to 16,384 bits with the individual selection of optimal algorithm hyperparameters to
confirm the efficiency and effectiveness of the method.

The remainder of the article is organized as follows: Section 2 presents the currently
employed approaches for watermarking static images and video signals, Section 3 describes
the method used and the modifications introduced, Section 4 presents the results of the
experiments performed, and Section 5 summarizes the results of this work and provides
directions for further research.

2. Related Works

Digital watermarking is aimed at embedding a piece of specific information (water-
mark) in a media file, often called a cover, as shown in the diagram in Figure 1.

In classical methods, the watermark is transformed so that it is embedded in a
selected domain, for example, the coefficients of a selected transform. The content with
the embedded watermark is then restored to the original domain [25]. Currently, this
approach is increasingly being supplanted by the use of deep neural networks, which
adjust the weight of each layer of the network in the training process, enabling the
creation of hierarchical representations of image features without the need to manually
create such representations [26], to embed the watermark in an invisible and noise-
resistant manner.

Entropy 2023, 25, 284

30f26

Secret
information
(Watermark)

Video file Watermarked

Watermark Coder)
video

Figure 1. Watermarking diagram.

In [27], the authors proposed combining the wavelet tree method with a neural
network. The luminance component in the YUV space is decomposed into wavelets
to find a meaningful wavelet tree [28]. The correlation between the nodes of the wavelet
tree is described by a non-linear relationship defined using a neural network. The solution
made it possible to increase the transparency and robustness of the algorithm against
typical attacks (rotation, Gauss filter, JPEG compression).

A similar approach to support the wavelet method through a neural network is
presented in [29]. In the preprocessing procedure, the Arnold transform [30,31] and spline
coding [32] were used, which were intended to make the watermark resistant and immune.
The cover is transformed using DWT, and a trained neural network allows the embedding
of the watermark in the wavelet domain to modify a small part of the input image and
ensure high transparency.

One of the first approaches based solely on the use of deep neural networks is the
algorithm described by Baluja [33]. The approach he proposed is based on an autoencoder
architecture: one network (the encoder) is tasked with embedding the watermark, while
the other (the decoder) extracts it from the image. In addition, the author used yet a third
network (Prep Network), which prepares the watermark image for embedding. Preparation
involves matching the watermark to the dimensions of the cover and transforming the
image into a feature map using an edge and texture detector. All three architectures are
trained during a single training procedure designed to optimize the defined loss function.
The method allows the watermark to be embedded in all bits of the input image.

In [34], the authors added an adversary module to the autoencoder architecture. The
algorithm is based on the idea of generative adversarial networks (GANs) described in
2014 [35]. The autoencoder acts as a generator, and it is mainly used to generate images
with embedded watermarks and decode the image to obtain the watermark. The adversary
is used to judge whether the image in the input is the original image or an image with
an embedded watermark. They proposed a RivaGAN algorithm designed to embed a
watermark in a video signal. To ensure a high degree of transparency, the authors enriched
the generator and adversarial architecture with a custom attention mechanism that allows
individual bits of the 32- or 64-bit watermark to be embedded in optimal areas of the
cover. The attention mask produced by the encoder is also used by the decoder during
the watermark extraction process. The authors also verified the robustness of the method
against scaling, trimming, and MJPEG compression attacks.

Hao et al. [36] also proposed a solution based on the combination of an autoencoder
and GAN architecture. Their main innovation was the addition of a high-pass filter before
the discriminator to improve its sensitivity to high-frequency signal components. In
addition, based on the assumption that the vision system pays more attention to the central
area of the image, the penalty for the algorithm for modifying pixels in the central area was
increased. The authors verified the effectiveness of the method for 64 x 64 pixel images by
testing the robustness of the embedded watermark using basic attacks.

A significant disadvantage of marking algorithms based on neural networks is their
high computational complexity. In [37], the authors proposed a number of optimizations

Entropy 2023, 25, 284

4 0f 26

U/V channel

-
>

Y channel

L»

secret

&

concated

AR
e = . A raGGas-

to enable a learning procedure for high-resolution video signal marking algorithms. The
method involves algorithmic and memory optimization for four neural architectures: a
cover preparation network, a watermark preparation network, a watermark embedding
network, and a watermark decoding network. An optimization of the batch normalization
layer was applied, during which the number of calculations was reduced and the precision
of the intermediate calculations was optimized to match the bit width of the processor dedi-
cated to the calculations. The authors presented the effects of the hardware implementation
in the proposed configuration.

Thanks to various techniques enabling the optimization of the operation of neural
networks used to embed watermarks, a solution is presented in [38]. The authors used
an approach based on an autoencoder architecture in an application designed to embed a
watermark in screenshots taken with a mobile device. Instead of a preparatory network, the
authors used a cosine transform and an inverse cosine transform to embed and extract the
watermark in the DCT domain. The robustness of the method against basic attacks, such as
blurring, Gaussian noise, rotation, scaling, edge sharpening, and JPEG compression, was
shown through experiments.

3. Proposed Method
3.1. General Architecture of the Model

The algorithm proposed in this paper is based on the use of an autoencoder built
from convolution layers, combined with a discriminator to improve transparency and
robustness metrics. The use of generative models described in [39] mainly determines
the innovativeness of the described method and allows for the high performance of the
algorithm. The approach is based on the ISGAN architecture for embedding a static
image in another static image, described by Zhang, Dong, and Li [40]. The authors used
three convolutional networks—a watermark encoder responsible for embedding a static
grayscale image into the cover luminance channel, a watermark decoder to extract the
embedded image, and an autoanalyzer acting as a discriminator to verify whether the
image in the input is the original image or the embedded watermark image. A diagram of
the algorithm is shown in Figure 2.

. [i ”__[i ”:[i — Stego/Cover

Steganalyzer

Y channel stego Y channel Decoder secret

Encoder

Figure 2. Block diagram of the ISGAN model—reprinted from [40].

As part of the following work, the ISGAN architecture was extended with a mapper
module upstream of the encoder and a demapper module downstream of the decoder,
allowing a binary symbol with a certain number of bits to be converted into a static grayscale
image and embedded in each video frame delivered to the encoder. The demapper performs
the reverse operation: it converts the decoded grayscale image into a binary signature,
which allows the robustness of the method to be unambiguously determined from the BER
metric. In addition, the encoder, decoder, and discriminator architectures were adapted
to the video-processing capabilities, i.e., processing 5-dimensional data tensors as video
sequences. The block diagram of the proposed model with the modifications made is
shown in the following figures: Figures 3-5.

Entropy 2023, 25, 284 5 of 26

binary signature
[01000001001101 ..011]

Stegoanalyzer/
Discriminator

Cover/
Watermarked image

Information
mapper

Encoder Decoder

Watermark Watermarked image

Information

[01000001001101 ...011] demapper

decoded binary signature

Decoded watermark

Figure 3. Block diagram of the proposed model.

Watermark

Y channel

U, V channel

Watermarked image

Y Y

Concatenation

YUVtoRGB
transform

Output image

Figure 4. Block diagram of the encoder.

Y channel Decoded watermark

Decoder network
Watermarked image

U, V channel

Figure 5. Block diagram of the decoder.

Entropy 2023, 25, 284

6 of 26

When the data enter the encoder, the size of the feature map is verified. A frame with
dimensions of less than 1280 x 720 pixels is classified as standard definition (SD), while a
frame with larger spatial dimensions is classified as high definition (HD). Depending on
the dimensions, a transformation matrix is selected to convert the images from RGB space
to YUV space. Converting an image from RGB to YUV allows data to be hidden only in
the luminance channel, which does not carry any information about color. This makes it
necessary to embed the watermark only in shades of gray, but it makes it easier to achieve
the high transparency of the algorithm due to the modification of only one channel of the
input image.

1. The processing of high-definition video frames is dedicated mainly to television
broadcast applications; therefore, conversion to the appropriate color space should
be performed in accordance with the International Communication Union (ITU)
guidelines, which are described in the BT.709-6 standard. For this reason, there are
two variants of the transformation matrix defined below. For standard definition:

Y 0.299 0.587 0.114 R
U= -0.14713 —0.28886 0436 xG 1)
1% 0.615 —0.51499 -0.10001 B

2. For high definition (according to the BT.709-6 standard):

Y 0.2126 0.7152 0.0722 R
U= -0.09991 —-0.33609 0436 xG 2)
1% 0.615 —0.55861 —0.05639 B

The watermark prepared using the mapper is concatenated with the Y cover channel,
and the resulting image is then processed by the convolutional network so that the encoding
of the watermark is performed in an optimal way; i.e., taking into account transparency
and robustness requirements. The image with the embedded watermark is again summed
with the U and V chrominance components and then converted to RGB space using the
appropriate transformation matrix to produce an output image in the standard color space
used by end users.

1. For standard definition:

R 1 0 113983 Y
G=1 —039465 —0.5806 x U 3)
B 1 203211 0 1%

2. For high definition (according to the BT.709-6 standard):

R 1 0 128033 Y
G=1 -021482 —-0.38059 x U 4)
B 1 212798 0 14

In the decoder, the signal frame from RGB space is converted to YUV space, and the
luminance channel is then processed by a convolutional network terminated by a sigmoid
activation function. The resulting single-channel image is a decoded watermark.

The input and output data for the neural networks in the form of video sequences
were defined as follows:

1. For the encoder:
Input:

cover = [N, C =3, L, H, W], where N—batch size; C—number of channels; L—length
of the video sequence (number of frames); H—height; W—width.

watermark = [N, C =1, H, W]

Entropy 2023, 25, 284

7 of 26

Output:
watermarked image = [N, C =3, L, H, W]

2. For the decoder:

Input:

watermarked image =[N, C =3, L, H, W]
Output:

decoded watermark = [N, C =1, H, W]

3. For the discriminator:

Input:

cover/watermarked image =[N, C =3, L, H, W]

Output:

out =[N, 1]

The fundamental architecture of the individual neural networks that make up the
algorithm has not been changed. Adjustments were only made to adapt the model to work
with the mapper and to process 5-dimensional sequences. Diagrams of the individual
neural networks presented in symbolic notation according to [41] are shown in Figures 6-8.

7
U—|€ ¢ € C € P E PE
f 1yixld 1yixid p 3y3xid 1Iylxid p 5x5yid m 3y3xid p 3 m 2 1yixid

c7 7 7 7 7 7 7 7

' ¢ UUUUUUUUE" C°

HyWxL 52014 32 64 128 256 128 64 32 16 P 3y3xid P lylxid

Figure 6. Encoder in symbolic notation.

1 64 128 256 128 64 1
C* G G* G™ G C

HyWxL p™3y3x1d p 3y3xid p 3y3x1d p 3y3xid p 3y3xid P 3y3xid

Figure 7. Decoder in symbolic notation.

1

16 32 128 1

I' G E° E* C* C* P € F
HyWxL p5usx1d p 3y3x1d p 3v3xid p 3v3xid p 3vy3x1d a Sysxid P 3v3xid

Figure 8. Discriminator in symbolic notation.

3.2. Mapper and Demapper of Information

In practical applications of video watermarking, the embedded watermark is intended
to carry a certain amount of information, e.g., about the owner of the media content.
Information about the owner of the media content is stored in a database and assigned to a
particular binary signature. To embed such information, mapper and demapper modules
were implemented. The mapper maps a binary signature of a specific length, identical to
the binary capacity of the watermark, to a static image in the form of a 256 x 256 pixel
mosaic. In the implemented algorithm, the length of the binary signature must be a power
of 4 with an exponent from 0 to 8 multiplied by a number n representing the number of
bits encoded in one binary symbol. It allows 1 X 7 to 65,536 X n bits to be embedded in a
single 256 x 256 pixel signal frame. The idea of how the mapper algorithm works is shown
in the diagram in Figure 9.

Entropy 2023, 25, 284

8 of 26

[.o,100110901010,0,0101,1,1,1,1,1,0,
1,1,0,0,0,0,0,1,0,0,0,1,0,0,1,1,0,0,0,0,0,1,1, 0]
binary signature, | = 48 bits n=3
MAPPER
INPUT
division of the
MAPPER binary signature
OUTPUT into symbols
[o,0,1] [0, 0, 1* [1,0,0] [1,0,1]
mappingthe .
symbol to the pixel
Y alues in the [1,0,0] [1,0,0] [0,0,0] [1,1,0]
mosaic N=16

A v

values for each

determination of

ppropriate pixel parameters y, H, X

combination

assigning the 1

1

determination of all determination of conversion binary
combinations of the number of signature to empty
binary symbols compartments ¢ mosaic

Figure 9. Diagram of the information mapper.

The module takes two parameters as input—a binary signature of length 1 and a
number n defining how many bits of the binary signature are to be dedicated to encoding
one symbol. Based on the value of 1, the algorithm divides the sequence of bits into symbols
to be encoded. Depending on the number of symbols N, the mosaic area is divided into
squares of y X y pixels, where y is the spatial dimension of a single square in the mosaic,
y = H/x; H is the spatial dimension of the image watermark, H = 256; and x is the number
of squares along one side of the mosaic, x = v/N.

An example of the conversion of a binary signature to a mosaic divided into squares is
shown in Figure 10.

Depending on the number 1, the number of compartments c to which each symbol
will be assigned is determined, defined as follows:

c=2" (5)

All possible combinations of 0 and 1 for a given value of n are determined using the
Cartesian product and then sorted. For each combination, a pixel value is defined that will
be assigned to the symbol in the given mapping. A value of 0 will always be assigned to the
first symbol, and a value of 255 will always be assigned to the last symbol, corresponding to
black and white pixel values. For more compartments, pixel values are defined according
to the algorithm shown in the diagram in Figure 11.

Entropy 2023, 25, 284

9 of 26

[00001101010011111110011010111000]

1=32 n=2
N=16
H =256
N=16
x=4
y = 256/4 = 64

Figure 10. Conversion of a binary signature to a mosaic divided into squares.

set combination_num =2

for combination_num do

x = all_combination_num -1

pixel value = 1/x x combination_num = 255
increment combination_num

Figure 11. The idea behind the algorithm is that it assigns pixel values to individual bit symbols.

The demapper works in reverse: it converts the decoded mosaic watermark into a
binary signature. The next steps performed by the demapper module are described in the
diagram in Figure 12.

DEMAPPER
OUTPUT

mapping the pixel
value to the binary
symbol

Y JV

DEMAPPER
INPUT

watermark, | = 48 bits

determination of
parameters y, H, x

[0,0,1]

R

[0,0,1]

[1,0,0] \ 4
division of the
mosaic into

—_—[1, 1, 0] squares of specific
dimensions

1]

. . . . determination the
mapping the pixel matching pixel
: average of the
value to the binary values from ixels in each
symbol defined ranges P

square

—
—
—

Figure 12. Diagram of the information demapper.

The module takes two parameters as input—a watermark and a value defining the
number of bits per symbol n. By analogy with the mapper, the y, H, and x values are
determined. Based on the determined parameters, the mosaic is divided into squares, and
then each square is separately decoded into a binary symbol. In the decoding process, the
average pixel value for the area is determined, and then the nearest pixel value according

Entropy 2023, 25, 284

10 of 26

to the predefined ranges is searched for based on this value. This ensures that it is not
necessary for the decoder to decode the watermark without error, as it is possible to average
out the interference that occurs in order for the mapper to decode the watermark correctly,
as shown in the diagram in Figure 13.

Decoded watermark Visualisation of

Figure 13. Three different examples of watermark signatures after decoding with various artifacts
visible, and the results of averaging the pixel values during the decoding process to remove artifacts
and error-free decoding.

A reverse mapping is then carried out. The mapper transforms the binary symbol into
the pixel value in the given mosaic square, while the demapper transforms the decoded
pixel value in the mosaic square into the binary symbol according to the adopted key. The
sum of the symbols from all squares of the mosaic forms the final decoded binary signature.

The proposed information mapper and demapper are based on entropy. According to
information theory, entropy (also called Shannon entropy) is a measure of the uncertainty
associated with a random variable. The Shannon entropy equation estimates the average
minimum number of bits needed to encode a sequence of symbols based on the frequency
of the symbols:

H(x) =—-K 25\501 pilogap; (6)
where K is a positive constant.

It follows from the equation that any operation to increase the number N and equalize
the values of the probabilities p results in an increase in entropy [42]. In the implemented
mapper, regardless of the number of bits per symbol 7, the probability of the occurrence of
each symbol is always equal for a given n. For example, if n =1, p = 0.5 for symbol 0 and
p = 0.5 for symbol 1, and if n = 2, p = 0.25 for each of the symbols: 00, 01, 10, and 11.
This means that as the number of bits in the binary signature N and the number of bits
per symbol n increase, the entropy of the watermark increases. As shown in [43], the
background of images influences human visual perception. A single texture feature can
be easily noticed by the viewer, but when the texture concerns a more complex image,
it can be difficult to detect. The complexity and uncertainty of the original image alter
the visual perception threshold of the target image, a phenomenon described in 1997 by
Watson et al. [44] and termed entropy masking. Entropy is higher where the complexity
and uncertainty of the image are greater. This leads to a reduction in the sensitivity of these
areas, so the threshold for their perception increases accordingly, facilitating the transparent
embedding of the watermark. On this basis, the following paper assumes that with the
increase in the entropy of a watermark signature, its transparent embedding will be easier

Entropy 2023, 25, 284 11 of 26

to obtain than in the case of watermarks with much lower entropy, which is verified in
Chapter 4.

Below are examples of watermarks with increasing entropy obtained using the imple-
mented mapper for different values of the parameters N and n (Figure 14).

N=4;n=1

m

N=32;n=2

N=1024;n=1

Figure 14. Examples of generated watermarks for all tested values of N and n.

3.3. Algorithm Training Procedure

Based on a literature review of watermark embedding in static images and video sig-
nals [34,36], it was decided to use a two-step training procedure to achieve higher algorithm
performance. One training epoch of the discriminator was performed first, followed by one
training epoch of the generator (watermark encoder and decoder). The implementation of
the learning process for both modules used the Adam optimizer [45] with a learning rate of
Ir = 0.0001, which is often used in the literature to optimize multivariate objective functions.

A standard approach used in generative adversarial networks was used to optimize
the discriminator:

Laiscriminator = min[—[log(D(x)) +log(1 — D(G(x;5)))]])

where

D is the discriminator;

G is the generator (watermark encoder and decoder);
x is the cover; s is the watermark;

and G(x, s) is the watermarked image.

Entropy 2023, 25, 284

12 of 26

An aggregate loss function taking into account the generator error, encoding error, and
decoding error using appropriate weighting factors was used to optimize the watermark
encoder and decoder module. The generator loss function was defined as follows:

Lgenarator = min[log(1 — D(G(x, s)))] 8)

The optimization of the encoder is based on the use of a loss function described in [40],
taking into account 3 measures of image similarity, i.e., the mean square error (MSE),
similarity index (SSIM), and multi-scale structure similarity index (MS-SSIM), which allows
the high transparency of the watermarked image:

Lenocoder = Aa(1— SSIM(x, x')) + (1 — A4) (1 — MSSSIM(x, x')) + AcMSE(x, x') (9)

where x and x’ are the cover and watermarked cover;
Aq and A, are weighting factors for similarity metrics.

The above function was also used to optimize the decoder but supplemented with
a lossy mapper, taking into account that the watermark is not required to decode the
binary signature without error. The sum of both start functions gives the final decoder
start function:

Laecocoder visual = Aa(1— SSIM(s,s")) 4+ (1 — Aq) (1 — MSSSIM(s,s")) + AcMSE(s,s) (10)
Ldecocoder_mapper = MSE(Seq/ Seq’) (11)

Liecocoder = Ldecocoder?visual + Adeecocoderfmapper (12)

L= Lenocoder +)‘deecocoder + /\eLgenerator (13)

where s and s’ are the watermark and decoded watermark;

seq and seq are the binary signature and decoded binary signature;

and Ay, A4, and A, are weighting factors taking into account the contribution of individual
elements to the final loss function coding and decoding modules.

4. Results and Discussion
4.1. Metrics

The efficiency of the algorithm was tested for the value of the number of bits embedded
in the image N in the range from 4 to 16,384 bits at various values of the number of bits
per one symbol n. For each variant, training and validation of the developed neural
network algorithm were carried out together with the selection of the optimal values of
hyperparameters and weighting factors. The purpose of selecting the parameters was
to obtain an algorithm that would allow the embedding of a specific number of binary
signature bits in the image in a transparent and robust manner at the same time. The
fulfillment of the conditions was verified during the validation epochs using the PSNR
and SSIM metrics for transparency and the BER metric for robustness. The metrics are
defined below:

e Luminance comparison function: x and y represent the two images being compared,

while u represents the average value. C; is the stability constant when the denominator
is 0, calculated as C; = 0.012%:

2 C
l(x,y) _ “HxHy + (1

_ by T 14
pe+ui+C 14

e Contrast comparison function: ¢ is the standard deviation for a given image, while C;
is a constant value, equal in calculations to C, = 0.03?:

2 C
() = X L2 (15)

St +G

Entropy 2023, 25, 284

13 of 26

e Structure comparison function: C3 is a constant whose value in the calculations was
assumed to be equal to C3 = C»/2:

Oxy + G

— 16

s(xy) =

e SSIM—structural similarity index: coefficients &, B, and -y are weighting factors for
each defined function; « = § = v = 1 was assumed in the calculations:

SSIM(x,y) = [1(x,y)]*[e(x,y))P-[s(x, y)]" (17)

e MSE—mean square error: m and # are the row and column numbers in the image:

1 N M 2
MSE = TN Yo) (x(n,m) —y(n, m)) (18)
e PSNR—Peak Signal-to-Noise Ratio: in the calculations, the value R? = 2 was assumed:

2

R

e BER—Dbit error rate: the ratio of the number of bits decoded incorrectly bit, to all
decoded bits bit;:

bitery

BER =
bit gy

(20)

4.2. Results

The Pascal VOC Dataset [46] with over 17,000 training samples was used to train the
algorithms. Each training of the algorithm consisted of 25 or 30 epochs. The algorithms
were developed using Python and the PyTorch deep learning framework. During training,
two Nvidia GeForce RTX 3090 graphics processors were used to speed up the learning
process. The following table (Table 1) shows all training variants that were started and
successfully completed.

In the case of variants with one bit per encoding of each symbol, the values of weight-
ing factors were universal and correct for all values of N. For larger values of the parameter
n, it was necessary to individually select the value of A}, for each case and to reduce the
value of A; to 0.6. The values were selected in an empirical way: training was carried out
with the modification of the coefficients until optimal results were obtained. The changes
resulted from the need to place more emphasis on optimizing the decoder start function in
order to obtain the required algorithm robustness.

Changes in the parameter values were not intended to affect the results of individual
algorithms. The modification of the loss function coefficients was necessary due to the
impossibility of obtaining convergent training with incorrectly selected parameters. Each
variant of the number of bits is a separate algorithm that requires the individual selection
of parameters.

The number of epochs was initially set at 25, and during the research, it was decided to
increase it to 30 due to the need to check whether there is any deterioration of transparency
during training, which appeared with the increase in the epoch number with poorly selected
training parameters (coefficients for the loss function).

The maximum number of bits that could be encoded was 16,384 bits; in the case of
higher values, it was impossible to obtain the transparency of the algorithm regardless of
the choice of weighting factors (Figure 15).

When increasing the value of the parameter , it was necessary to increase the mini-
mum value of the number of bits N (increasing the entropy of the watermark), because it

Entropy 2023, 25, 284 14 of 26

was impossible to obtain the required resistance of the watermark regardless of the choice
of weighting factors (Figure 16).

Table 1. Variants used during model training.

. Number of Bits Value of Value of
Number of Binary - - Number of
Signature Bits N to Encode One Weighting Weighting Epochs
Symbol n Factor Ay, Factor A,
4 1 0.8 0.7 25
16 1 0.8 0.7 30
64 1 0.8 0.7 25
256 1 0.8 0.7 25
1024 1 0.8 0.7 25
4096 1 0.8 0.7 25
16,384 1 0.8 0.7 11+
32 2 0.95 0.6 25
128 2 0.9 0.6 30
512 2 0.75 0.6 30
2048 2 0.75 0.6 30
8192 2 0.65 0.6 30
192 3 0.96 0.6 14*
768 3 0.93 0.6 30
3072 3 0.85 0.6 30
12,288 3 0.8 0.6 30
256 4 0.97 0.6 30
1024 4 0.93 0.6 30
4096 4 0.8 0.6 30
16,384 4 0.8 0.6 30

* Early termination of the training due to a failure or a very long calculation time while obtaining results that meet
the assumed criteria.

The table below presents the values of the loss function and the BER metrics obtained
during the training of individual variants (Table 2).

Table 2. Values of the loss function while training the algorithm.

Training Discriminator Encoder Mapper Decoder Decoder Generator Loss BER
Variant N_n Loss Loss Loss Visual Loss Loss Loss
41 0.023 0.095 0.007 0.027 0.032 0.011 0.130 0.008
16_1 0.015 0.065 0.001 0.000 0.001 0.011 0.076 0.002
64_1 0.028 0.071 0.001 —0.002 —0.001 0.012 0.080 0.001
256_1 0.021 0.073 0.001 0.003 0.004 0.011 0.087 0.000
10241 0.011 0.078 0.001 0.007 0.008 0.013 0.096 0.000
4096_1 0.013 0.075 0.003 0.013 0.015 0.010 0.096 0.002
16384 _1 0,030 0.091 0.003 0.009 0.012 0.010 0.110 0.002
32_2 0.019 0.074 0.004 —0.001 0.002 0.010 0.086 0.004
128_2 0.010 0.077 0.001 —0.004 —0.004 0.027 0.098 0.001
512 2 0,018 0.070 0.001 0.002 0.003 0.013 0.083 0.001
2048 2 0.017 0.079 0.005 0.018 0.021 0.011 0.105 0.005
8192 2 0.021 0.068 0.006 0.014 0.018 0.011 0.090 0.006
192_3 0.024 0.091 0.026 0.005 0.020 0.013 0.123 0.026
768_3 0.022 0.093 0.015 0.014 0.024 0.020 0.133 0.015
3072_3 0.015 0.082 0.044 0.043 0.070 0.010 0.151 0.044
12288_3 0.014 0.067 0.024 0.013 0.027 0.010 0.098 0.024
256_4 0.012 0.102 0.085 0.013 0.064 0.026 0.187 0.085
1024_4 0.019 0.075 0.080 0.018 0.066 0.010 0.145 0.080
4096_4 0.023 0.059 0.076 0.017 0.062 0.010 0.118 0.076

16384_4 0.015 0.072 0.113 0.018 0.086 0.011 0.150 0.113

Entropy 2023, 25, 284 15 of 26

Cover image Watermarked image

Decoded watermark Decoded

i ETCN,

signature Residual
SO

Figure 15. Failure to embed 32,768 bits. The following images show the cover, watermark, watermarked image, decoded watermark, visualization of decoded
signature, and the picture of the difference between cover and watermarked images (Residual).

Cover image Watermark Watermarked image Decoded watermark Decoded_signature Residual

Figure 16. Failure to embed 64 bits when encoding one symbol using 4 bits.

Entropy 2023, 25, 284 16 of 26
When binary signatures were encoded using 1 bit per symbol, it was possible to obtain
BER values close to 0 (about 0.002), except for the first case, where only 4 bits were encoded.
With the increase in the n parameter, it was more difficult to maintain the high robustness
of the algorithm. The BER value during the training increased to about 0.005 for n = 2, from
0.015 to 0.044 for n = 3, and from 0.080 to even 0.113 for n = 4. The value of the encoder
loss function, which determines the final transparency of the method, decreased with the
increasing resolution of the mosaic of the watermark. The lowest results were achieved for
resolutions of 4x4 forn =1, 64 x 64 for n =2 and for n = 3, and 32 x 32 for n = 4. In the case
of the very low resolution of the mosaic, transparent watermark embedding was difficult
or impossible, as described at the beginning of the chapter.
The results confirming the described dependencies were also obtained during the
validation of the models for individual variants, which are presented in Table 3 and in
Figures 17-19.
Table 3. Summary of the SSIM, PSNR, and BER metrics and the value of the decoder loss function
during the validation of individual variants.
Trainin,
Variant N n SSIM PSNR BER
4.1 0.930 30.256 0.000
16_1 0.944 31.223 0.001
64_1 0.947 31.738 0.002
256_1 0.948 33.962 0.000
1024_1 0.935 32.047 0.000
4096_1 0.937 32.040 0.000
16384_1 0.931 31.983 0.000
322 0.933 30.550 0.002
128_2 0.943 33.409 0.001
512_2 0.949 32.958 0.000
2048_2 0.931 31.498 0.000
8192_2 0.942 32.554 0.001
192_3 0.935 32.694 0.005
768_3 0.934 32.512 0.003
3072_3 0.945 31.856 0.005
12288_3 0.948 32.136 0.032
256_4 0.942 31.882 0.033
1024_4 0.937 31.338 0.041
4096_4 0.942 32.294 0.083
16384_4 0.937 30.328 0.168
SSIM Comparison of SSIM values for a different number of binary
0.950 signature bits N
0.945
0.940 e
0.935 i
n=3
0.930 ¢
n=4
0.925

0

2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000 bits

Figure 17. Comparison of SSIM metric values.

Entropy 2023, 25, 284

17 of 26

PSNR

35

34

33

32

31

30

BER

0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

0.00 &+t

0

r/
[]
!
b
=
Il

Comparison of PSNR values for a different number of binary

signature hits N

|

=
Il
B o I

2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000 bits

Figure 18. Comparison of PSNR metric values.

Comparison of BER values for a different number of binary

signature bits N

——n=1

e — .

2000 4000 6000 8000 10,000 12,000 14,000 16,000 18,000 bits

Figure 19. Comparison of BER metric values.

The values of the SSIM and PSNR transparency metrics are similar for all tested
variants and range from 0.93 to 0.95 for SSIM and from 30 to 34 for PSNR, which proves
the achievement of the high transparency of the algorithms, which ensures the condition of
the watermark being invisible to the recipient. In the case of BER metrics, the values for
n=1and n = 2 oscillate around 0, which proves that the watermark was correctly decoded.
With the increase in the parameters n and N, the BER value increases, reaching a value of
0.168 for the variant N = 16,384 bits and n = 4. This means that almost 17% of the bits, i.e.,
about 2785 bits in the signature, are incorrectly decoded, which means the disqualification
of the marking algorithm or the need to use redundant coding.

4.3. Comparison with Other Algorithms

Most of the watermarking algorithms based on neural networks described in the
literature deal with the problem of embedding a static image in another static image or
in a video signal frame, which makes it impossible to compare the effectiveness of the
algorithm at a given binary capacity. Below is a comparison of the method described in
this article with the RivaGAN algorithm [34], which also distinguishes various variants of
the embedded binary sequence (Table 4).

Table 4. Comparison of the described method with another algorithm.

RivaGAN Our Model RivaGAN Our Model Our Model
32 Bits 32 Bits 64 Bits 64 Bits 512 Bits

SSIM 0.960 0.933 0.950 0.947 0.949
accuracy 0.992 0.998 0.983 0.998 1.000

Entropy 2023, 25, 284

18 of 26

The accuracy of the model was determined as the inverse of BER, i.e., the ratio of the
number of bits decoded correctly to all embedded bits. For both variants studied by the
authors, i.e., 32 bits and 64 bits, our algorithm is characterized by worse transparency but
higher accuracy. In the case of 64 bits, the SSIM metric values are similar (0.950 for RivaGAN
and 0.947 for our algorithm). The table also shows a variant for which transparency was
achieved at a level almost equal to the RivaGAN algorithm (SSIM = 0.949) with a precision
of 1.0 and a much higher watermark capacity—512 bits. Our main goal was to find a
balance between the transparency and resistance of the character with the largest capacity
of the embedded binary sequence.

4.4. Discussion

The research results show that with the increase in watermark entropy, it is easier to
obtain the high transparency of the method; however, with too high a complexity of the
binary signature (over 16,384 bits), transparency is impossible to maintain. Meeting the
robustness criterion is not possible with very low entropy of the watermark, especially when
increasing the value of the parameter #; however, in the case of very complex watermarks
encoded using many shades of gray, it is also not possible to decode the watermark without
errors, which is caused by errors during the rounding of decoded bit values to the nearest
interval defining the specified binary symbol. The use of the parameter n = 1 allows these
errors to be limited to 0. However, the coding of very complex binary signatures using 1 bit
is very computationally expensive. With the increase in the resolution of the watermark,
the time required for the training and evaluation of individual algorithms is significantly
longer due to the longer time required for mapping and demapping binary signatures.
Table 5 compares the training times of algorithms with 1-bit symbols for different lengths
of binary signatures.

Table 5. Comparison of training time of algorithms.

Number of Bits Training Time
4 9h5min50s

16 9h14min34s

64 9h39minl4ds

256 11h20min7s

1024 22h23min7s

4096 44h12min34s

16,384 54 h 38 min 41 s for 10 epochs

To train the algorithm embedding 4096 bits, it was necessary to conduct the learning
process for almost two days, while the training of the algorithm embedding the same
number of bits when coding 4 bits per symbol lasted less than 20 h. It is necessary to
find a compromise between the parameter 1, which is the number of bits used to encode
one symbol, and the efficiency of the algorithm, which will enable the development of a
method characterized by efficiency and relatively low computational complexity. Encoding
a larger number of bits is important for practical reasons because it allows an increase in
the information capacity, which allows the encoding of a large amount of data regarding,
for example, the owner of the content or the creation of a larger number of unique binary
signatures, enabling the recording of a large number of various types of content.

4.5. Visualization of the Operation of the Model

The figures below show visualizations of the operation of each trained algorithm,
showing the efficiency of watermark embedding and extraction for various video frames
from the validation dataset (Figures 20-39).

Entropy 2023, 25, 284

19 of 26

Cover image Watermark Watermarked image Decoded watermark Decoded_signature Residual

Figure 20. Visualization of the algorithm for the binary signature variant N =4, n = 1.

Cover image Watermark Watermarked image Decoded watermark Decoded_signature Residual

Figure 21. Visualization of the algorithm for the binary signature variant N =16, n = 1.

Cover image Watermark Watermarked image Decoded watermark Decoded_signature Residual

Figure 22. Visualization of the algorithm for the binary signature variant N = 64, n = 1.

Cover image

o

Watermark Watermarked image Decoded watermark Decoded_signature Residual
u u u

DT VIt L

Figure 23. Visualization of the algorithm for the binary signature variant N = 256, n = 1.

Entropy 2023, 25, 284

20 of 26

Cover image Watermark Watermarked image Decoded watermark Decoded_signature Residual
”] = []

L | e I

Residual

Figure 25. Visualization of the algorithm for the binary signature variant N = 4096, n = 1.

Cover image Watermark
. -

Watermarked image Decoded watermark Decoded_signature Residual
bt T v | = i " !

e b

Figure 26. Visualization of the algorithm for the binary signature variant N = 16384, n = 1.

Residual

Cover image Watermark Watermarked image Decoded watermark Decoded_signature

Figure 27. Visualization of the algorithm for the binary signature variant N =32, n = 2.

Entropy 2023, 25, 284 21 of 26

Cover image Watermark Watermarked image Decoded watermark Decoded_signature Residual

Figure 28. Visualization of the algorithm for the binary signature variant N = 128, n = 2.
Decoded watermark Decoded_signature Residual

Cover image Watermark Watermarked image

Figure 29. Visualization of the algorithm for the binary signature variant N =512, n = 2.

Cover image Watermarked image

Watermark Residual
.

Decoded watermark
- i

Figure 30. Visualization of the algorithm for the binary signature variant N = 2048, n = 2.

Watermarked image Residual

Cover image Watermark
N S

Figure 31. Visualization of the algorithm for the binary signature variant N = 8192, n = 2.

Entropy 2023, 25, 284

22 of 26

Watermark

Eb

Cover image Watermarked image Decoded_signature

i

Watermark Decoded watermark Deccded_signature

% &

Figure 33. Visualization of the algorithm for the binary signature variant N = 768, n = 3.

Decoded watermark
[

Figure 32. Visualization of the algorithm for the binary signature variant N =192, n = 3.

Cover image Watermarked image

Cover image Watermarked image Decoded watermark
- un

Decoded_signature
" - s

Figure 34. Visualization of the algorithm for the binary signature variant N = 3072, n = 3.

Cover image Watermark Watermarked image Decoded watermark

H ey 3 2

Figure 35. Visualization of the algorithm for the binary signature variant N = 12,288, n = 3.

Residual

Residual

Residual

Residual

Entropy 2023, 25, 284

23 of 26

Decoded watermark Residual

Watermark

£

Figure 36. Visualization of the algorithm for the binary signature variant N = 256, n = 4.

Decoded_signature

Ty

Watermarked image

Watermark

il

Watermarked image

Cover image Decoded watermark Decoded_signature Residual

Figure 37. Visualization of the algorithm for the binary signature variant N = 1024, n = 4.

Cover image Watermark Watermarked image Decoded watermark Decoded_signature Residual

Figure 38. Visualization of the algorithm for the binary signature variant N = 4096, n = 4.

Cover image Watermark Residual

Watermarked image

Figure 39. Visualization of the algorithm for the binary signature variant N = 16,384, n = 4.

Entropy 2023, 25, 284 24 of 26

5. Conclusions

The problem of copyright protection in multimedia content, both audio and video, is
currently a very popular issue analyzed by both researchers and commercial institutions
developing ready-made DRM systems. Among the solutions used, watermarking is the
dominant strategy, especially with the use of neural network algorithms, enabling the im-
provement of key watermarking paradigms, i.e., transparency, resistance, and bit capacity,
to values impossible to achieve when using only classical methods of watermarking.

This article presents an algorithm for marking video signals based on the architecture
of convolutional networks and the architecture of the GAN network, characterized by high
transparency (SSIM above 0.93 and PSNR above 30) and robustness (BER metric value at
the level of several percent for almost all analyzed variants). The main advantage of the
presented algorithm is the use of an information mapper based on entropy that allows
the embedding of complex, multi-bit binary signatures of up to 16,384 bits. Increasing the
entropy of the watermark made it possible to obtain the high transparency of the algorithm,
with a very high capacity at the same time. Each variant of the watermark signature (each
pair of parameters N and n) was treated as a separate algorithm, for which the appropriate
values of the weighting coefficients of the complex loss function were empirically selected,
which allowed optimal results to be obtained.

The capacity of the tagging algorithm is important in the context of the commercial
application of the method. The protection of copyright or content distribution rights
requires marking the content with a complex watermark containing information about
both the content and the owner. To encode such complex information, it is necessary to
send a large number of bits.

The developed algorithm is the basis for further work in the field of watermarking. The
next stage of work will be devoted to making the algorithm resistant to lossy compression
using the latest video codecs, i.e., H.264 and H.265.

Author Contributions: Investigation, M.B.; Methodology, M.B. and Z.P.; Resources, M.B.; Software,
M.B.; Visualization, M.B.; Supervision, Z.P; Validation, Z.P.; Writing—original draft, M.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Centre for Research and Development, grant
number CYBERSECIDENT/381319/11/NCBR/2018 on “The federal cyberspace threat detection
and response system” (acronym DET-RES) as part of the second competition of the CyberSecIdent
Research and Development Program—Cybersecurity and e-Identity.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository The PASCAL Visual
Object Classes (VOC).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Danaher, B.; Smith, M.D.; Telang, R. Piracy and Copyright Enforcement Mechanisms. Innov. Policy Econ. 2021, 14, 26-61.
[CrossRef]

2. Borja, K,; Dieringer, S.; Daw, J. The effect of music streaming services on music piracy among college students. Comput. Hum.
Behav. 2015, 45, 69-76. [CrossRef]

3. Greenberg, M. The Economics of Video Piracy. PIT |. 2015, 6.

4. Thomas, T.; Emmanuel, S.; Subramanyam, A.V.; Kankanhalli, M.S. Joint Watermarking Scheme for Multiparty Multilevel DRM
Architecture. IEEE Trans. Inf. Secur. 2009, 4, 758-767. [CrossRef]

5. Macq, B.; Dittmann, J.; Delp, E.J. Benchmarking of image watermarking algorithms for digital rights management. Proc. IEEE
2004, 92, 971-984. [CrossRef]

6. Wolf, P; Steinebach, M.; Diener, K. Complementing DRM with digital watermarking: Mark, search, retrieve. Online Inf. Rev. 2007,
31, 10-21. [CrossRef]

7. Stein, T,; Kaiser, D.; Fahrenfort,].].; van Gaal, S. The human visual system differentially represents subjectively and objectively

invisible stimuli. PLoS Biol. 2021, 19, €3001241. [CrossRef]

http://doi.org/10.1086/674020
http://doi.org/10.1016/j.chb.2014.11.088
http://doi.org/10.1109/TIFS.2009.2033229
http://doi.org/10.1109/JPROC.2004.827361
http://doi.org/10.1108/14684520710731001
http://doi.org/10.1371/journal.pbio.3001241

Entropy 2023, 25, 284 25 of 26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

Nguyen, P.B.; Luong, M.; Beghdadi, A. Statistical Analysis of Image Quality Metrics for Watermark Transparency Assessment. In
Advances in Multimedia Information Processing—PCM 2010; Lecture Notes in Computer Science; Qiu, G., Lam, K.M., Kiya, H., Xue,
X.Y., Kuo, C.CJ., Lew, M.S,, Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6297, pp. 685-696. [CrossRef]

Nasir, M.N.; Hisham, S.I.; Razak, M.EA. An Improved Mapping Pattern for Digital Watermarking using Hilbert-Peano Pattern.
In Proceedings of the 6th International Conference on Software Engineering & Computer Systems, Pahang, Malaysia, 25-27
September 2019. [CrossRef]

Wang, Y.; Li, Z.; Lu, H,; Liu, F. Image fragile watermarking algorithm based on deneighbourhood mapping. IET Image Process.
2022, 16, 2652-2664. [CrossRef]

Thuneibat, S.; Al Issa, H.; Ijjeh, A. A Simplified Model of Bit Error Rate Calculation. Comput. Inf. Sci. 2016, 9, 41-46. [CrossRef]
Lancini, R.; Mapelli, E; Tubaro, S. A robust video watermarking technique in the spatial domain. In Proceedings of the
International Symposium on VIPromCom Video/Image Processing and Multimedia Communications, Zadar, Croatia, 16-19 June
2002; pp. 251-256. [CrossRef]

Abraham, J.; Paul, V. An imperceptible spatial domain color image watermarking scheme. J. King Saud Univ.—Comput. Inf. Sci.
2019, 31, 125-133. [CrossRef]

Chen, G,; Kang, C.; Wang, D.S.; Zhao, X.; Huang, Y. A Robust Video Watermarking Algorithm Based on Spatial Domain. In
Proceedings of the 2018 7th International Conference on Energy and Environmental Protection (ICEEP 2018), Shenzhen, China,
14-15 July 2018; pp. 412-419. [CrossRef]

Carli, M.; Mazzeo, R.; Neri, A. Video watermarking in 3D DCT domain. In Proceedings of the 2006 14th European Signal
Processing Conference, Florence, Italy, 4-8 September 2006; pp. 1-5.

Campisi, P; Neri, A. Video watermarking in the 3D-DWT domain using perceptual masking. In Proceedings of the IEEE
International Conference on Image Processing 2005, Genova, Italy, 14 September 2005; pp. 1-997. [CrossRef]

Lee, Y.Y,; Jung, H.S.; Lee, S.U. 3D DFT-based video watermarking using perceptual models. In Proceedings of the 2003 46th
Midwest Symposium on Circuits and Systems, Cairo, Egypt, 27-30 December 2003; pp. 1579-1582. [CrossRef]

Kulkarni, T.S.; Dewan,].H. Digital video watermarking using Hybrid wavelet transform with Cosine, Haar, Kekre, Walsh, Slant
and Sine transforms. In Proceedings of the 2016 International Conference on Computing Communication Control and automation
(ICCUBEA), Pune, India, 12-13 August 2016; pp. 1-5. [CrossRef]

Panyavaraporn, J.; Horkaew, P. DWT/DCT-based Invisible Digital Watermarking Scheme for Video Stream. In Proceedings of the
2018 10th International Conference on Knowledge and Smart Technology (KST), Chiang Mai, Thailand, 31 January-3 February
2018; pp. 154-157. [CrossRef]

Ding, H.; Tao, R;; Sun, J.; Liu, J.; Zhang, F; Jiang, X,; Li, J. A Compressed-Domain Robust Video Watermarking Against
Recompression Attack. IEEE Access 2021, 9, 35324-35337. [CrossRef]

Lee, MJ,; Im, D.H.; Lee, H.Y;; Kim, K.S.; Lee, HK. Real-time video watermarking system on the compressed domain for
high-definition video contents: Practical issues. Digit. Signal Process. 2012, 22, 190-198. [CrossRef]

El'arbi, M.; Amar, C.B.; Nicolas, H. Video Watermarking Based on Neural Networks. In Proceedings of the 2006 IEEE International
Conference on Multimedia and Expo, Toronto, Canada, 9-12 July 2006; pp. 1577-1580. [CrossRef]

Bistron, M.; Piotrowski, Z. Artificial Intelligence Applications in Military Systems and Their Influence on Sense of Security of
Citizens. Electronics 2021, 10, 871. [CrossRef]

Orponen, P. Computational complexity of neural networks: A survey. Nord.]. Comput. 1994, 1, 94-110.

Li, Y.; Wang, H.; Barni, M. A survey of deep neural network watermarking techniques. Neurocomputing 2021, 461, 171-193.
[CrossRef]

Courville, A.; Goodfellow, I.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

Hu, X; Lian, X.; Chen, L.; Zheng, Y. Robust blind watermark algorithm of color image based on neural network. In Proceedings
of the 2008 International Conference on Neural Networks and Signal Processing, Nanjing, China, 7-11 June 2008; pp. 430—433.
[CrossRef]

Grossi, R.; Vitter,].S.; Xu, B. Wavelet Trees: From Theory to Practice. In Proceedings of the 2011 First International Conference on
Data Compression, Communications and Processing, Palinuro, Italy, 21-24 June 2011; pp. 210-221. [CrossRef]

Chen, Y.; Chen, J. A novel blind watermarking scheme based on neural networks for image. In Proceedings of the 2010 IEEE
International Conference on Information Theory and Information Security, Bejing, China, 17-19 December 2010; pp. 548-552.
[CrossRef]

Wu, L.; Zhang, J.; Deng, W.; He, D. Arnold Transformation Algorithm and Anti-Arnold Transformation Algorithm. In Proceedings
of the 2009 First International Conference on Information Science and Engineering, Nanjing, China, 26-28 December 2009;
pp. 1164-1167. [CrossRef]

Ye, J.; Deng, X.; Zhang, A.; Yu, H. A Novel Image Encryption Algorithm Based on Improved Arnold Transform and Chaotic
Pulse-Coupled Neural Network. Entropy 2022, 24, 1103. [CrossRef] [PubMed]

Sidorenko, V.; Li, W.; Giinlii, O.; Kramer, G. Skew Convolutional Codes. Entropy 2020, 22, 1364. [CrossRef] [PubMed]

Baluja, S. Hiding Images in Plain Sight: Deep Steganography. In Proceedings of the Advances in Neural Information Processing
Systems 30 (NIPS 2017), Long Beach, CA, USA, 24 January 2018.

Zhang, K.A,; Xu, L.; Cuesta-Infante, A.; Veeramachaneni, K. Robust Invisible Video Watermarking with Attention. arXiv 2019,
arXiv:1909.01285.

http://doi.org/10.1007/978-3-642-15702-8_63
http://doi.org/10.1088/1757-899X/769/1/012009
http://doi.org/10.1049/ipr2.12515
http://doi.org/10.5539/cis.v9n1p41
http://doi.org/10.1109/VIPROM.2002.1026664
http://doi.org/10.1016/j.jksuci.2016.12.004
http://doi.org/10.2991/iceep-18.2018.71
http://doi.org/10.1109/ICIP.2005.1529921
http://doi.org/10.1109/MWSCAS.2003.1562600
http://doi.org/10.1109/ICCUBEA.2016.7860055
http://doi.org/10.1109/KST.2018.8426150
http://doi.org/10.1109/ACCESS.2021.3062468
http://doi.org/10.1016/j.dsp.2011.08.001
http://doi.org/10.1109/ICME.2006.262846
http://doi.org/10.3390/electronics10070871
http://doi.org/10.1016/j.neucom.2021.07.051
http://doi.org/10.1109/ICNNSP.2008.4590387
http://doi.org/10.1109/CCP.2011.16.Yonghong
http://doi.org/10.1109/ICITIS.2010.5689534
http://doi.org/10.1109/ICISE.2009.347
http://doi.org/10.3390/e24081103
http://www.ncbi.nlm.nih.gov/pubmed/36010767
http://doi.org/10.3390/e22121364
http://www.ncbi.nlm.nih.gov/pubmed/33276694

Entropy 2023, 25, 284 26 of 26

35.

36.
37.
38.
39.
40.
41.

42.
43.

44.

45.

46.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial nets. In
Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8-13 December
2014; pp. 2672-2680.

Hao, K,; Feng, G.; Zhang, X. Robust image watermarking based on generative adversarial network. China Commun. 2020, 17,
131-140. [CrossRef]

Lee, J.-E.; Kang,].-W.; Kim, W.-S.; Kim, J.-K.; Seo, Y.-H.; Kim, D.-W. Digital Image Watermarking Processor Based on Deep
Learning. Electronics 2021, 10, 1183. [CrossRef]

Bai, R.; Li, L.; Zhang, S.; Lu, J.; Chang, C.-C. SSDeN: Framework for Screen-Shooting Resilient Watermarking via Deep Networks
in the Frequency Domain. Appl. Sci. 2022, 12, 9780. [CrossRef]

Goodfellow, I.; Bengio, Y.; Courville, A. Deep Generative Models. In Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
Zhang, R.; Dong, S.; Liu, J. Invisible Steganography via Generative Adversarial Networks. arXiv 2018, arXiv:1807.08571. [CrossRef]
Skarbek, W. Symbolic Tensor Neural Networks for Digital Media: From Tensor Processing via BNF Graph Rules to CREAMS
Applications. Fundam. Inform. 2019, 168, 89-184. [CrossRef]

Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech.]. 1948, 27, 379-423. [CrossRef]

Yang, Q.; Zhang, Y.; Yang, C.; Li, W. Information Entropy Used in Digital Watermarking. In Proceedings of the 2012 Symposium
on Photonics and Optoelectronics, Shanghai, China, 21-23 May 2012; pp. 1-4. [CrossRef]

Watson, A.B.; Borthwick, R.; Taylor, M. Image quality and entropy masking. In Proceedings of the SPIE Conference on Human
Vision and Electronic Imaging, San Jose, CA, USA, 3 June 1997; pp. 2-12. [CrossRef]

Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International
Symposium on Quality of Service IWQoS), Banff, AB, Canada, 4-6 June 2018; pp. 1-2.

Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int.].
Comput. Vis. 2010, 88, 303-338. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.23919/JCC.2020.11.012
http://doi.org/10.3390/electronics10101183
http://doi.org/10.3390/app12199780
http://doi.org/10.1007/s11042-018-6951-z
http://doi.org/10.3233/FI-2019-1827
http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://doi.org/10.1109/SOPO.2012.6270549
http://doi.org/10.1117/12.274501
http://doi.org/10.1007/s11263-009-0275-4

	Introduction
	Related Works
	Proposed Method
	General Architecture of the Model
	Mapper and Demapper of Information
	Algorithm Training Procedure

	Results and Discussion
	Metrics
	Results
	Comparison with Other Algorithms
	Discussion
	Visualization of the Operation of the Model

	Conclusions
	References

