Skip to main content
. 2023 Feb 9;25(2):317. doi: 10.3390/e25020317
Algorithm 5 Pseudo-code for the SAGD algorithm.
  • Input: 

    RunGOA = 1; FES = ps + 1; gen = 0; K = 30; r: random values between 0 and 1;

  • Output: 

    Optimal solution and its fitness value;

  •   1:

    The solution space is initialized by Latin hypercube sampling;

  •   2:

    Use the real fitness function to calculate the fitness value for all individuals and the average individual;

  •   3:

    whileFES<FESmaxdo

  •   4:

          Initialize the population with the first ps samples in the SDB;

  •   5:

          if FES>ps+1 then

  •   6:

              Preserving the information of the local surrogate model and constructing the local surrogate model using Algorithm 3;

  •   7:

          else

  •   8:

              Putting populations and mean individuals and their true fitness values into a database;

  •   9:

          end if

  • 10:

          while gen<K do

  • 11:

             if RunGOA=1 then

  • 12:

                 for Xi do

  • 13:

                       if r>0.5 then

  • 14:

                          Execution of Equation (7);

  • 15:

                       else

  • 16:

                          Execution of Equation (16);

  • 17:

                       end if

  • 18:

                       A local RBF surrogate model is used to estimate the fitness values of the evolved individuals and the original individuals, and the individuals with high fitness values are retained;

  • 19:

                 end for

  • 20:

                 gen = gen + 1;

  • 21:

              else

  • 22:

                    for Xi do

  • 23:

                       Generation of a mutated individual by Equation (22);

  • 24:

                       Generation of test individuals by Equation (25);

  • 25:

                       A local RBF surrogate model is used to estimate the fitness values of the evolved individuals and the original individuals, and the individuals with high fitness values are retained;

  • 26:

                   end for

  • 27:

                   gen = gen + 1;

  • 28:

             end if

  • 29:

          end while

  • 30:

          if When the meta-heuristic algorithm updates the location of the population individuals that are all present in the SDB then

  • 31:

             then invert the value of RunGOA;

  • 32:

          else

      Calculating the true fitness value by selecting individuals using the add-point strategy of Algorithm 4 to update the SDB;

  • 33:

             if The meta-heuristic algorithm did not find a better solution then

  • 34:

                 Invert the value of RunGOA;

  • 35:

             else

  • 36:

                 Retain the value of RunGOA;

  • 37:

             end if

  • 38:

        end if

  • 39:

    end while