Algorithm 1 HELM Framework. |
-
1:
Input: The matrix of the practice data X: ()|∈ Rd, i = 1, …, N;
-
2:
Function of a hidden node output: G(, , x);
-
3:
The number of hidden nodes: l;
-
4:
Size of iterations;
-
5:
Output: Hidden node matrix V: (, ), i = 1, …, l; ;
-
6:
Compute the H hidden layer output matrix;
-
7:
Calculate the matrix ;
-
8:
Determine the constant of the smooth convex function ∇, whose gradient relies on the largest eigenvalue;
-
9:
∈ and ;
-
10:
for (i = 0; i < x; i++) do
-
11:
Calculate using Equations (12) and (13):
-
12:
Calculate using Equation (14):
-
13:
Calculate using Equation (15)
-
14:
end for
-
15:
Return
|