Skip to main content
. 2023 Jan 30;25(2):253. doi: 10.3390/e25020253
Algorithm 1 HELM Framework.
  • 1:

    Input: The matrix of the practice data X: (xi)|xi∈ Rd, i = 1, …, N;

  • 2:

    Function of a hidden node output: G(ai, bi, x);

  • 3:

    The number of hidden nodes: l;

  • 4:

    Size of iterations;

  • 5:

    Output: Hidden node matrix V: (ai, bi), i = 1, …, l; βi;

  • 6:

    Compute the H hidden layer output matrix;

  • 7:

    Calculate the matrix HTH;

  • 8:

    Determine the constant γ of the smooth convex function ∇, whose gradient relies on the largest eigenvalue;

  • 9:

    y1β0Rn and t11;

  • 10:

    for (i = 0; i < x; i++) do

  • 11:
        Calculate βk using Equations (12) and (13):
    βkpL(yk)Tα(yk21γHTH+21γHTX) (12)
    Tα(x)(|β|α+sng(β),α)λγ (13)
  • 12:
        Calculate t(k+1) using Equation (14):
    t(k+1)(1+1+4tk22) (14)
  • 13:
        Calculate y(k+1) using Equation (15)
    y(k+1)βk+(tk1tk+1(βkβ(k1))) (15)
  • 14:

    end for

  • 15:

    Return  βk