Skip to main content
. 2023 Feb 24;18(2):e0282110. doi: 10.1371/journal.pone.0282110

Table 4. Evaluation of models trained on the Oslo-CoMet dataset from finetuning the entire architecture.

Model SSIM NCC DSC HD HD95 TRE Runtime
BL-N 0.52±0.08 0.17±0.07 0.23±0.07 57.98±5.36 33.00±5.14 24.09±5.92 0.77±1.45
BL-NS 0.61±0.09 0.16±0.07 0.14±0.03 82.91±6.96 59.94±6.41 34.41±13.03 0.77±1.46
SG-ND 0.56±0.13 0.14±0.07 0.43±0.09 15.81±5.56 9.05±3.18 5.89±3.10 0.79±1.56
SG-NSD 0.58±0.13 0.14±0.07 0.42±0.10 16.26±6.37 9.50±3.51 5.84±3.01 0.76±1.48
UW-NSD 0.58±0.12 0.14±0.06 0.48±0.11 15.53±5.80 7.84±3.17 4.05±2.41 0.76±1.47
UW-NSDH 0.59±0.12 0.14±0.06 0.47±0.10 15.29±5.65 7.91±2.82 3.95±2.09 0.78±1.51
Unregistered 0.60±0.13 0.09±0.05 0.24±0.08 24.60±5.56 19.06±4.89 11.86±2.75 -

The best performing methods for each metric are highlighted in bold.