Table 4. Evaluation of models trained on the Oslo-CoMet dataset from finetuning the entire architecture.
Model | SSIM | NCC | DSC | HD | HD95 | TRE | Runtime |
---|---|---|---|---|---|---|---|
BL-N | 0.52±0.08 | 0.17±0.07 | 0.23±0.07 | 57.98±5.36 | 33.00±5.14 | 24.09±5.92 | 0.77±1.45 |
BL-NS | 0.61±0.09 | 0.16±0.07 | 0.14±0.03 | 82.91±6.96 | 59.94±6.41 | 34.41±13.03 | 0.77±1.46 |
SG-ND | 0.56±0.13 | 0.14±0.07 | 0.43±0.09 | 15.81±5.56 | 9.05±3.18 | 5.89±3.10 | 0.79±1.56 |
SG-NSD | 0.58±0.13 | 0.14±0.07 | 0.42±0.10 | 16.26±6.37 | 9.50±3.51 | 5.84±3.01 | 0.76±1.48 |
UW-NSD | 0.58±0.12 | 0.14±0.06 | 0.48±0.11 | 15.53±5.80 | 7.84±3.17 | 4.05±2.41 | 0.76±1.47 |
UW-NSDH | 0.59±0.12 | 0.14±0.06 | 0.47±0.10 | 15.29±5.65 | 7.91±2.82 | 3.95±2.09 | 0.78±1.51 |
Unregistered | 0.60±0.13 | 0.09±0.05 | 0.24±0.08 | 24.60±5.56 | 19.06±4.89 | 11.86±2.75 | - |
The best performing methods for each metric are highlighted in bold.