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Abstract: Despite high diversity in the Oriental region, ticks of the genus Haemaphysalis have been
neglected regarding their genetic data and vector potential. This study aimed to genetically character-
ize three species of the genus Haemaphysalis: Haemaphysalis cornupunctata, Haemaphysalis kashmirensis,
and Haemaphysalis montgomeryi infesting goats and sheep, and Rickettsia spp. associated with these
tick species in the Hindu Kush Himalayan range of Pakistan. Altogether, 834 ticks were collected
by examining 120 hosts including goats (64/120, 53.3%) and sheep (56/120, 46.6%), in which 86
(71.6%) hosts were found to be tick-infested. The morphologically identified ticks were subjected to
DNA extraction and PCR for the amplification of partial 16S rDNA and cox fragments. Rickettsia spp.
associated with the collected ticks were detected through the amplification of gltA, ompA and ompB
partial fragments. The 16S rDNA of H. cornupunctata and H. montgomeryi showed a maximum identity
of 100% with the sequences of the same species, whereas the 16S rDNA of H. kashmirensis showed the
highest identity of 93–95% with Haemaphysalis sulcata. The cox sequence of H. montgomeryi displayed
100% identity with the same species. In comparison, the cox sequences of H. cornupunctata and
H. kashmirensis showed maximum identities of 87.65–89.22% with Haemaphysalis punctata and 89.34%
with H. sulcata, respectively. The gltA sequence of Rickettsia sp. from H. kashmirensis showed the
highest identity of 97.89% with Rickettsia conorii subsp. raoultii, while the ompA and ompB fragments
from the same DNA samples revealed 100% and 98.16% identity with Rickettsia sp. and “Candidatus
Rickettsia longicornii”, respectively. Another gltA sequence amplified from H. montgomeryi ticks
showed 100% identity with Rickettsia hoogstraalii, while the attempts to amplify ompA and ompB
for R. hoogstraalii were unsuccessful. In the phylogenetic tree, the 16S rDNA of H. cornupunctata
clustered with the corresponding species while its cox clustered with H. punctata. Both 16S rDNA
and cox sequences of H. kashmirensis clustered with H. sulcata. The gltA sequence of Rickettsia sp.
was clustered individually in the spotted fever (SF) group of Rickettsia, while the gltA sequence of R.
hoogstraalii was clustered with the same species in the transition group of Rickettsia. In the SF group,
the rickettsial ompA and ompB sequence clustered with undetermined Rickettsia sp. and “Candidatus
Rickettsia longicornii”, respectively. This is the earliest study regarding the genetic characterization
of H. kashmirensis. This study indicated that ticks belong to the genus Haemaphysalis have the potential
of harboring and/or transmitting Rickettsia spp. in the region.

Keywords: Haemaphysalis kashmirensis; Haemaphysalis cornupunctata; Haemaphysalis montgomeryi;
Rickettsia hoogstraalii
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1. Introduction

Ticks are notorious ectoparasites infesting the majority of terrestrial and semiterrestrial
vertebrates [1]. Ticks are cosmopolitan in distribution, particularly prevalent in tropical
and subtropical regions [1]. In addition to anemia, a reduction in dairy products and meat,
ticks can also transmit numerous infectious agents including viruses, bacteria, protozoa,
and helminths to vertebrate hosts [2].

Haemaphysalis (Acari: Ixodidae) is the second largest genus of ixodid ticks comprising
approximately 176 species [1]. Haemaphysalis ticks inhabit various landscapes mainly in
the Oriental, Afrotropical, and Palearctic regions, while some of its members have been
recorded in Australasia (Australia, New Zealand, and New Guinea), infesting a variety of
free-roaming and domestic animals [1,3]. Some species of Haemaphysalis have been identi-
fied as potential vectors for various protozoan, viral, and bacterial pathogens to humans,
domestic, and wild animals [4,5]. Haemaphysalis ticks such as Haemaphysalis longicornis,
Haemaphysalis concinna, Haemaphysalis qinghaiensis, and Haemaphysalis flava have been associ-
ated with various Rickettsia spp. including Rickettsia japonica, R. conorii, Rickettsia monacensis,
Rickettsia heilongjiangensis, and several undetermined Rickettsia spp. [6–9]. Moreover, the
number of Rickettsia spp. associated with Haemaphysalis ticks are continuously increasing
because of the advancement in molecular approaches [10].

Important Haemaphysalis ticks such as H. kashmirensis, H. cornupunctata, and H. montgomeryi
belong to the subgenus Herpetobia, Aboimisalis, and Segalia, respectively [11]. These tick
species have been described by Hoogstraal and Varma (1962). Additionally, the H. kashmirensis
and H. cornupunctata ticks were collected from Kashmir, while H. montgomeryi from In-
dia [12]. Later on, life stages such as larva and nymph of these ticks were also de-
scribed [12,13]. Haemaphysalis kashmirensis, H. cornupunctata, and H. montgomeryi inhabit in
the Oriental and Palearctic regions [1]. In the Indian subcontinent, the H. cornupunctata,
H. kashmirensis, and H. montgomeryi have been reported from different regions of India,
Kashmir, Nepal, and Pakistan, particularly located in the Hindu Kush Himalayan (HKH)
range [14–18].

The livestock hosts in Pakistan are known to be infested by a variety of Haemaphysalis
ticks [16,19,20]. Genetic characterization of closely related Haemaphysalis ticks such as
H. kashmirensis and H. cornupunctata is important for the surveillance and control of these
ticks in the Oriental region including Pakistan, which is an epidemic hotspot for these
parasites [14,16,18]. The capabilities of Haemaphysalis ticks as a vector for Rickettsia spp.
have been neglected. These ticks need to be molecularly screened for associated Rick-
ettsia spp. This study was aimed to the molecular characterization of H. kashmirensis and
H. cornupunctata ticks infesting goats and sheep, and associated Rickettsia spp. in the HKH
range of Pakistan.

2. Materials and Methods
2.1. Study Sites

The present study was conducted in four districts, namely: Dir Lower (34◦52′12.1′′ N,
71◦49′00.8′′ E), Dir Upper (35◦12′30.06′′N, 71◦52′31.22′′ E), Bajaur (34◦44′4.95′′N, 71◦30′47.80′′ E),
and Swat (34◦45′0.8634′′ N, 72◦21′26.42′′ E) of the HKH ranges of Khyber Pakhtunkhwa
(KP), Pakistan. The geographical coordinates of the tick collection sites were noted by
Global Positioning System (GPS) and used for the designing of a map through ArcGIS
10.3.1 (ESRI, Redlands, CA, USA) (Figure 1).

2.2. Ethical Approval and Consent

The design of the present study was approved by the Advanced Study and Research
Board (Dir/A&R/AWKUM/2022/9396) and the Ethical Committee of the Faculty of Chem-
ical and Life Sciences, Abdul Wali Khan University Mardan, Pakistan. All animal owners
were informed verbally, and approval was taken before observing their hosts.
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Figure 1. Elevation-based map showing tick collection sites (black asterisk).

2.3. Tick Collection and Morphological Identification

Villages of the four selected districts were randomly visited between March 2021
to February 2022 for tick collection. Small ruminants including goats and sheep were
examined for ticks. When found, ticks from each host were separately collected in labeled
tubes using a fine tweezer. The necessary information regarding collection sites, host type
and gender, collection date, and environmental conditions (temperature and humidity)
were noted. Collected ticks were rinsed with distilled water followed by 70% ethanol to
remove contaminants. Subsequently, standard identification keys [12–14,21] were used
to identify tick species based on observation of morphological features such as shape of
capitulum, cornua and palp articles, cervical and lateral grooves, size and shape of coxa
spurs, number of festoons, and shape of genital aperture. These morphological observations
were performed under a stereomicroscope (SZ61, Olympus Corporation, Tokyo, Japan).

2.4. Statistical Analyses

Necessary tick data recorded from the four districts were compiled and arranged in
spreadsheets using Microsoft Excel V. 2016 (Microsoft Office 365®). Prevalence (no. of
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infested hosts×100/total no. of examined hosts), mean abundance (total no. of collected
ticks/total no. of examined hosts), and mean intensity (total no. of collected ticks/no. of
infested hosts) was determined. The necessary climate data for each month or seasonal
were obtained via mean temperature (◦C), relative humidity (%), and total rainfall (mm)
(climate-data.org; accessed on 15 November 2022).

2.5. DNA Extraction and PCR Amplification

Altogether, 108 tick specimens (three males, three females, and three nymphs per
species per district) were randomly selected for molecular analysis. The morphologically
identified ticks were individually dissected with a sterile blade and ground with a hygienic
pestle in 1.5 mL Eppendorf tubes. The ground samples were individually subjected to the
phenol–chloroform protocol [22] for DNA extraction. The extracted genomic DNA was
quantified by using NanoDrop (Nano-Q, Optizen, South Korea).

The extracted DNA was subjected to conventional PCR to amplify 16S rDNA (460 bp)
and cox (710 bp) fragments of tick species and citrate synthase (gltA), outer membrane
protein subunit A (ompA), and outer membrane protein subunit B (ompB) fragment for
any Rickettsia spp. Each PCR reaction comprised 25 µL volume: 8.5 µL of PCR water
“nuclease free”, 1 µL of each primer at a concentration of 10 pmol/µL, 2 µL of extracted
DNA (50–100 ng/µL), and 12.5 µL DreamTaq green MasterMix (2X) (Table 1). In each
PCR reaction, PCR water was used as a negative control while Rhipicephalus microplus
and Rickettsia massiliae DNA were taken as positive control for ticks and Rickettsia spp.,
respectively. PCR products were analyzed by horizontal electrophoresis in 2% agarose gel
and examined under ultraviolet light of a Gel Documentation System (BioDoc-It™ Imaging
Systems, Upland, CA, USA).

Table 1. Primers and PCR conditions used in the current study.

Organisms/Genes Sequence (5′-3′) Amplicons
Size

Annealing
Temperatures References

Ticks/cox
HCO2198: TAAACTTCAGGGTGACCAAAAAATCA 710 bp 49 ◦C [23]LCO1490: GGTCAACAAATCATAAAGATATTGG

Ticks/16S rDNA
16S+1: CCGGTCTGAACTCAGATCAAG T 460 bp 54 ◦C [24]16S-1: GCTCAATGATTTTTTAAATTGCTGT

Rickettsia/gltA CS-78: GCAAGTATCGGTGAGGATGTAAT 401 bp 56 ◦C [25]CS-323: GCTTCCTAAAATTCAATAAATCAGGAT

Rickettsia/ompA Rr190.70: ATGGCGAATATTTCTCCAAAA 532 bp 55 ◦C [26]Rr190.701: GTTCCGTTAATGGCAGCATCT

Rickettsia/ompB 120-M59: CCGCAGGGTTGGTAACTGC 862 bp 50 ◦C [27]120-807: CCTTTTAGATTACCGCCTAA

2.6. Sequencing and Phylogenetic Analysis

Amplicons were purified with GeneClean II Kit (Qbiogene, Illkirch, France) following
the manufacturer’s protocol and sequenced bi-directionally (Macrogen, Inc., Seoul, South
Korea) via the Sanger-based sequencing method. The obtained sequences were trimmed
by removing the poor-quality regions followed by obtaining a consensus sequence in
SeqMan v 5.00 (DNASTAR, Inc., Madison, WI, USA). Maximum identity sequences were
retrieved from GenBank using the Basic Local Alignment Search Tool (BLAST) [28] on the
National Center for Biotechnology Information (NCBI) user interface. They were aligned
with the obtained sequences in BioEdit Sequence Alignment Editor v. 7.0.5 [29] using
CLUSTAL W multiple alignments [30]. The Neighbor-Joining method with the Kimura 2-
parameter model was applied to construct phylogenetic trees with 1000 bootstrap replicates
in Molecular Evolutionary Genetic Analysis (MEGA-X) software [31]. The coding (cox, gltA,
ompA, and ompB) nucleotide sequences were aligned by MUSCLE [32]. The final positions
in the dataset comprised the obtained sequence of each fragment.

climate-data.org
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3. Results
3.1. Ticks, Hosts, and Seasonal Data

Altogether, 834 tick specimens belonging to three tick species including H. cornupunctata
(258, 30.9%: 145 females, 86 males, 27 nymphs), H. kashmirensis (191, 22.8%: 102 females,
67 males, 22 nymphs), and H. montgomeryi (385, 46.2%: 202 females, 148 males, 35 nymphs)
were morphologically identified. The details about the ticks’ prevalence and their life stages
in each district are provided in Table 2.

Ticks were collected from 86 out of 120 examined hosts (goats and sheep) with an
overall 71.3% prevalence. Goats were observed with a high prevalence (49/64, 76.6%)
compared to sheep (37/56, 66.1%). An overall mean abundance of 7.0 ticks/examined
host was noted, while the mean intensity was 9.7 ticks/infested host. Goats were found
with higher mean abundance and mean intensity (8.1 and 10.6, respectively) compared to
sheep (5.6 and 8.6, respectively). Seasonal parameters, including temperature, humidity,
and rainfall with tick parameters such as the prevalence of infestation, mean abundance,
and mean intensity are shown in Figure 2.
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Figure 2. The graph shows the variation in prevalence, mean abundance, and mean intensity related
to mean temperature, mean relative humidity, and the total rainfall during this study.
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Table 2. Data on the number of ticks and hosts, and detection of Rickettsia spp. by polymerase chain reaction.

Districts

Host

Species

Life Stages

Total Tick
Subjected to PCR

PCR for Rickettsia spp.

Common
Name

Number
(Infested/

Total)
Females Males Nymphs

Rickettsia sp. R. hoogstraalii

ompA ompB gltA
Total Positive

Samples
(Infection Rates)

ompA ompB gltA
Total Positive

Samples
(Infection Rates)

Bajaur
Goats,
Sheep 5/8 H. cornupunctata 22 14 5 41 3M, 3F, 3N 0 0 0 0 0 0 0 0

Goats,
Sheep 4/7 H. kashmirensis 18 12 3 33 3M, 3F, 3N 2F 0 2N 4 (44.44%) 0 0 0 0

Goats,
Sheep 6/9 H. montgomeryi 25 28 6 59 3M, 3F, 3N 0 0 0 0 0 0 0 0

Dir Lower

Goats,
Sheep 6/8 H. cornupunctata 35 26 5 66 3M, 3F, 3N 0 0 0 0 0 0 0 0

Goats,
Sheep 5/7 H. kashmirensis 28 14 4 46 3M, 3F, 3N 0 0 2N 2 (22.23%) 0 0 0 0

Goats,
Sheep 12/16 H. montgomeryi 81 47 11 139 3M, 3F, 3N 0 0 0 0 0 0 2F, 2M 4 (44.44%)

Dir Upper
Goats,
Sheep 12/15 H. cornupunctata 74 35 14 123 3M, 3F, 3N 0 0 0 0 0 0 0 0

Goats,
Sheep 11/15 H. kashmirensis 45 29 12 86 3M, 3F, 3N 2F,

2N 2N 0 6 (66.66%) 0 0 0 0

Goats,
Sheep 12/16 H. montgomeryi 77 61 14 152 3M, 3F, 3N 0 0 0 0 0 0 2F, 2N 4 (44.44%)

Swat

Goats,
Sheep 4/6 H. cornupunctata 14 11 3 28 3M, 3F, 3N 0 0 0 0 0 0 0 0

Goats,
Sheep 4/6 H. kashmirensis 11 12 3 26 3M, 3F, 3N 2M 3F 0 5 (55.56%) 0 0 0 0

Goats,
Sheep 5/7 H. montgomeryi 19 12 4 35 3M, 3F, 3N 0 0 0 0 0 0 0 0

Total 86/120
(71.3%)

449
(53.8%)

301
(36%) 84 (10%) 834 108

4F,
2M,
2N

2N,
3F 4N 17 (15.74%) 0 0 4F, 2M,

2N 6 (5.56%)

M = male, F = female, and N = nymph.



Genes 2023, 14, 360 7 of 16

3.2. Molecular Analysis

Altogether, 72 sequences were obtained (one 16S rDNA and one cox for one fe-
male, one male, and one nymph of each tick species) for ticks. Trimmed sequences for
H. cornupunctata, H. kashmirensis, and H. montgomeryi were 16S rDNA (395 bp) and cox
(654 bp). The 16S rDNA of H. cornupunctata showed 100% identity with the same species
from Pakistan. In contrast, its cox showed 87.65–89.22% identity with the same subgenus
species: H. (Aboimisalis) punctata from Portugal, Iran, France, China, Hungary, and Roma-
nia. The BLAST outcome for the 16S rDNA of H. kashmirensis revealed 93–95% identity with
the same subgenus species: H. (Herpetobia) sulcata reported from France, Turkey, China, and
Pakistan, compared to cox which showed 89.34% identity with H. sulcata reported from
China and Iran. The sequences obtained for H. montgomeryi were 100% identical to the
sequences of the same species reported from Pakistan [16]. Thus, such sequences were
excluded from further analysis.

For Rickettsia spp., bidirectional sequences were obtained for each amplified fragment.
The consensus sequences of gltA (380 bp), ompA (504 bp), and ompB (449 bp) were amplified
from H. kashmirensis, while gltA (340 bp) was amplified from H. montgomeryi. Rickettsial gltA
sequence (380 bp) amplified from H. kashmirensis showed 97.89% identity with R. conorii
subsp. raoultii from Brazil, China, and France, while another rickettsial gltA consensus
sequence from H. montgomeryi displayed 100% identity with R. hoogstraalii reported from
Italy. The ompA amplified from the same samples of H. kashmirensis showed 100% identity
with Rickettsia sp. from China and Algeria. The ompB sequence of the corresponding sample
showed 98.16% identity with “Candidatus Rickettsia longicornii” reported from China. The
rate of infection was 15.74% (17/108) recorded for Rickettsia sp. (based on gltA, ompA,
and ompB) followed by 5.56% (6/108) for R. hoogstraalii (based only on gltA). The details
regarding the infection rate and the number of sequences obtained for each Rickettsia spp.
are shown in Table 2.

The obtained 16S rDNA sequences were submitted to GenBank under the accession
numbers: OQ024373 (H. cornupunctata) and OQ024650 (H. kashmirensis); cox sequences
under the accession numbers: OQ096502 (H. cornupunctata) and OQ096625 (H. kashmiren-
sis); rickettsial gltA sequences under the accession numbers: OQ160793 (Rickettsia sp.)
and OQ160792 (R. hoogstraalii); rickettsial ompA sequence under the accession number:
OQ108505 (Rickettsia sp.), while rickettsial ompB sequence under the accession number:
OQ055189 (Rickettsia sp.).

3.3. Phylogenetic Analysis

In a phylogenetic tree based on 16S rDNA, the H. cornupunctata sequence clustered
with the same species reported from Pakistan (ON911369), whereas this species grouped
in a sister clade with the species of the same subgenus: H. punctata reported from China
(NC062064, MF002566, and MG021187) and Turkey (KR870978) (Figure 3). The 16S rDNA
sequence of H. kashmirensis clustered with the species of the same subgenus: H. (Herpeto-
bia) sulcata reported from France (KX576650), Turkey (MZ463298 and KR870979), China
(NC062063), and Pakistan (MT799947) (Figure 3). In a phylogenetic tree based on cox, the
H. cornupunctata sequence clustered with the species of the same subgenus: H. punctata re-
ported from Portugal (LC508354), Iran (MH532298), France (ON387756), China (NC062064
and MZ596002), Hungary (MW193894-MW193895), and Romania (JX394187) (Figure 4).
Whereas the obtained cox sequence of H. kashmirensis sequence clustered with the species
of the same subgenus: H. (Herpetobia) sulcata reported from China (MN836696-MN836698
and NC062063) and Iran (MH532303) (Figure 4).

Phylogenetic tree based on rickettsial gltA, the Rickettsia sp. detected in H. kashmirensis
clustered individually with the sequence of Rickettsia spp. of the spotted fever group.
In contrast, the R. hoogstraalii detected in H. montgomeryi was clustered with the same
species reported from Italy (KY418024-KY418025) (Figure 5). The rickettsial ompA fragment
detected in H. kashmirensis clustered with the Rickettsia sp. reported from China (MT361020,



Genes 2023, 14, 360 8 of 16

MG228270, and MN644903) and Algeria (MZ064523-MZ064524 and JN943296) (Figure 6)
and grouped in a sister clade with “Candidatus Rickettsia longicornii” and “Candidatus
Rickettsia jingxinensis”, while the rickettsial ompB fragment clustered with “Candidatus Rick-
ettsia longicornii” reported from China (MN026546, MK620854, MG906675, and MT511089)
(Figure 7).
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Figure 3. Neighbor-Joining phylogenetic tree based on 16S rDNA of H. cornupunctata and
H. kashmirensis. The 16S rDNA sequence of Haemaphysalis inermis was employed as an outgroup.
All sequences have been denoted by their GenBank accession numbers, followed by species name
and country name. The bootstrap values (1000-replications) are shown at each node. The sequences
(OQ024373 and OQ024650) of the present study have been marked with bold and underlined fonts.
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Figure 4. Neighbor-Joining phylogenetic tree based on cox of H. cornupunctata and H. kashmirensis.
The cox sequence of H. inermis was employed as an outgroup. All sequences have been denoted
by their GenBank accession numbers, followed by species name and country name. The bootstrap
values (1000-replications) are shown at each node. The sequences (OQ096502 and OQ096625) of the
present study have been marked with bold and underlined fonts.
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Figure 5. Neighbor-Joining phylogenetic tree based on gltA sequences of Rickettsia sp.
and R. hoogstraalii. The gltA sequences of Rickettsia australis and Rickettsia akari were employed
as an outgroup. All sequences have been denoted by their GenBank accession numbers, followed by
species name and country name. The bootstrap values (1000-replications) are shown at each node.
The sequences (OQ160793 and OQ160792) of the present study have been marked with bold and
underlined fonts.
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Figure 6. Neighbor-Joining phylogenetic tree based on ompA sequences of a Rickettsia sp. The ompA
sequences of R. australis were employed as an outgroup. All sequences have been denoted by their
GenBank accession numbers, followed by species name and country name. The bootstrap values
(1000-replications) are shown at each node. The sequence (OQ108505) of the present study has been
marked with bold and underlined fonts.
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Figure 7. Neighbor-Joining phylogenetic tree based on ompB sequences of a Rickettsia sp. The ompB
sequences of R. australis and R. akari were employed as an outgroup. All sequences have been denoted
by their GenBank accession numbers, followed by species name and country name. The bootstrap
values (1000-replications) are shown at each node. The sequence (OQ055189) of the present study has
been marked with bold and underlined fonts.
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4. Discussion

As the geo-climatic conditions of the Oriental region including Pakistan suit the flour-
ishment of Haemaphysalis ticks, the largest diversity of these ticks has been reported in
this region [16]. The second most diverse genus of hard ticks (Ixodidae), Haemaphysalis
comprises ~173 tick species globally. In Pakistan, 13 Haemaphysalis spp. have been reported;
however, genetic data of these ticks are limited [16]. Despite the huge diversity, genetic data
regarding the genus Haemaphysalis ticks and associated Rickettsia spp. have been largely ne-
glected. For this purpose, Haemaphysalis ticks were collected from goats and sheep in north-
ern Pakistan, where several species of this genus are considered endemic [16,18,19]. Herein,
the collected ticks were morpho-molecularly identified as H. cornupunctata, H. kashmirensis,
and H. montgomeryi. The genetic characterization based on 16S rDNA and cox partial se-
quences of H. kashmirensis, and cox sequence for H. cornupunctata was achieved for the
first time. An undetermined Rickettsia sp. based on gltA, ompA, and ompB sequence was
molecularly characterized in H. kashmirensis, whereas R. hoogstraalii based on only gltA
sequence was detected in H. montgomeryi.

The surveyed areas are part of the HKH mountain range, which has been considered
as one of the most important biodiversity hotspots [18,33]. Previously, H. kashmirensis,
H. cornupunctata, and H. montgomeryi have been reported from many locations of the HKH
range, which spans different territories of the Indian subcontinent, including Pakistan [15,17,18],
Kashmir and India [14], and Afghanistan [34]. These findings suggest that HKH mountain
regions have a great diversity of the Haemaphysalis ticks owing to the abundance of suitable
hosts and conducive climate conditions.

Haemaphysalis kashmirensis was found less in number than H. cornupunctata and
H. montgomeryi, which could be due to the association of the later species with hosts other
than goats and sheep in the family Bovidae [1]. Moreover, the adult ticks (female and male)
were outnumbered by the immature ticks (nymphs), while no larval stage of any tick species
was found on goats and sheep. Previous studies suggested that Agama tuberculata (Kashmir
Rock Agama) is the main host of the nymphal and larval stages of H. kashmirensis, which is
found in the HKH range [21]. Similarly, animals belonging to the Muridae, Herpestidae,
Erinaceidae, Cricetidae, and Soricidae families have been recorded as the main hosts for
the nymphal and larval ticks of H. cornupunctata and H. montgomeryi [1].

Haemaphysalis ticks have been reported as vectors for Rickettsia spp. including R. hoogstraalii
and Rickettsia rhipicephali [5,35]. Herein, Rickettsia sp. was detected through gltA, ompA, and
ompB, whereas R. hoogstraalii was detected only through gltA. The genetic characterization
of R. hoogstraalii was also attempted through ompA and ompB; however, the amplifications
of these fragments were unsuccessful. Amplification failures are common in the case of
ompA, ompB that might be the lack of targeted genes, as shown in the transition group
Rickettsia or due to primer mismatching [36–38]. Rickettsia hoogstraalii has been detected in
ticks of the genus Haemaphysalis such as H. sulcata (Cyprus and Italy), H. punctata (Italy),
and Haemaphysalis parva (Turkey) [39–41]. The pathogenicity of R. hoogstraalii is poorly
known [42].

Genetic analyses based on molecular markers such as 16S rDNA and cox genes are
extremely helpful in unveiling the systematics of ticks and phylogenetic positioning [43–49].
In the phylogenetic tree based on 16S rDNA and cox of H. cornupunctata, this species
appeared in a monophyletic branch with H. punctata from Turkey, France, China, Iran,
Romania, Portugal, and Hungary. Previously, these two tick species (H. cornupunctata and
H. punctata) have been assigned to the same subgenus (Aboimisalis) on a morphological
basis [11]. In a phylogenetic tree based on 16S rDNA and cox of H. kashmirensis, this specie
clustered in a monophyletic clade with H. sulcata previously reported from Pakistan, China,
Turkey, France, and Iran. On a morphological basis, H. sulcata and H. kashmirensis have been
placed in the same subgenus, Herpetobia [11]. A phylogenetic clustering of these species
with different closest species of the same subgenus could be associated with the missing
genetic data of corresponding species in the GenBank. The phylogenetic analysis based on
rickettsial gltA showed that the Rickettsia sp. detected in H. kashmirensis belonged to the SF
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group, whereas R. hoogstraalii detected in H. montgomeryi belonged to the transition group.
The phylogenetic tree based on ompA and ompB, obtained from the same sample in which
Rickettsia sp. was detected, validated the gltA-based phylogenetic analysis for Rickettsia sp.

5. Conclusions

This study contributes to the missing information regarding the genetic data of some
Haemaphysalis ticks, especially H. kashmirensis, which was genetically characterized for the
first time. The relationship of H. cornupunctata with subgenus Aboimisalis and H. kashmirensis
with subgenus Herpetobia established on a morphological basis was confirmed through
molecular-based phylogenetic analysis. Furthermore, a Rickettsia sp. was molecularly
assessed in H. kashmirensis, whereas R. hoogstraalii was detected in H. montgomeryi. This
study may assist in understanding the identification, evolutionary history, and molecular
epidemiology of Haemaphysalis ticks and associated Rickettsia spp. Further studies should
genetically characterize and evaluate the pathogenicity of these Rickettsia spp.
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