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Abstract: Sports genetics research began in the late 1990s and over 200 variants have been reported
as athletic performance- and sports injuries-related genetic polymorphisms. Genetic polymorphisms
in the α-actinin-3 (ACTN3) and angiotensin-converting enzyme (ACE) genes are well-established for
athletic performance, while collagen-, inflammation-, and estrogen-related genetic polymorphisms are
reported as genetic markers for sports injuries. Although the Human Genome Project was completed
in the early 2000s, recent studies have discovered previously unannotated microproteins encoded in
small open reading frames. Mitochondrial microproteins (also called mitochondrial-derived peptides)
are encoded in the mtDNA, and ten mitochondrial microproteins, such as humanin, MOTS-c (mito-
chondrial ORF of the 12S rRNA type-c), SHLPs 1–6 (small humanin-like peptides 1 to 6), SHMOOSE
(Small Human Mitochondrial ORF Over SErine tRNA), and Gau (gene antisense ubiquitous in mtD-
NAs) have been identified to date. Some of those microproteins have crucial roles in human biology
by regulating mitochondrial function, and those, including those to be discovered in the future, could
contribute to a better understanding of human biology. This review describes a basic concept of
mitochondrial microproteins and discusses recent findings about the potential roles of mitochondrial
microproteins in athletic performance as well as age-related diseases.

Keywords: small open reading frame; microprotein; mitochondrial-derived peptide; MOTS-c; genetic
polymorphism; athletic performance; injury; age-related diseases

1. Introduction

The human genome is composed of nuclear and mitochondrial genomes. The human
nuclear genome consists of twenty-two autosomes and two sex chromosomes, which con-
tain approximately 3.3 billion DNA base pairs, while the mitochondrial genome (mtDNA)
is a circular DNA molecule containing 16,569 DNA base pairs. Differences in the DNA
sequence are called genetic polymorphism and there are several types of polymorphism:
single-nucleotide polymorphism (SNP), insertion/deletion, and copy number variation.
These polymorphisms partially or largely influence human phenotypes, such as height,
weight, intelligence, personality, susceptibilities to diseases, and other traits. Human traits
are influenced by both environmental and genetic factors, and heritability represents a
contribution of the genetic factors to the particular trait.

The heritability estimate of athlete status is calculated at around 66%, which means 66%
of the variance in athletic performance is explained by genetic factors while the remaining
34% is explained by environmental factors [1]. Furthermore, the heritabilities of athletic
performance-related phenotypes are relatively high; 45–99.5% for skeletal muscle fiber
composition [2,3], 49–56% for muscular strength [4], and 44–68% for cardiorespiratory
fitness [5]. In addition to these physiological phenotypes, an estimated heritability of
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injury is 60–80% [6]. These data suggest that unrevealed genetic factors play crucial roles
in determining athletic performance, and research about sports genetics to identify the
detailed genetic factors began in the late 1990s [7–9]. To date, over two hundred genetic
polymorphisms encoded in both the nuclear DNA and mtDNA were identified to be
associated with athlete status [10].

Although the Human Genome Project was launched in 1990 and completed in 2003, re-
cent studies are unraveling novel concepts hidden in the human genome: microRNA, long
non-coding RNA, and small open reading frames (smORFs). Open reading frames (ORFs)
are defined as DNA sequences between the start and stop codons and the term smORF is
used for the ORFs with less than 100 codons that are actually translated [11,12]. Indeed,
recent studies have demonstrated the existence of previously unannotated microproteins
translated from smORFs on both nuclear and mitochondrial genomes. Among them,
ten mitochondrial microproteins (also called mitochondrial-derived peptides: MDPs),
such as humanin [13–15], MOTS-c (mitochondrial ORF of the 12S rRNA type-c) [16],
SHLPs 1–6 (small humanin-like peptides 1 to 6) [17], SHMOOSE (Small Human Mitochon-
drial ORF Over SErine tRNA) [18], and Gau (gene antisense ubiquitous in mtDNAs) [19]
have been identified.

Those microproteins have the potential to give us a better understanding of hu-
man biology. For example, genetic variants in the mitochondrial microproteins humanin
and SHMOOSE coding region are associated with Alzheimer’s disease and cognitive de-
cline [18,20], while that of the MOTS-c coding region is associated with type 2 diabetes risk,
visceral fat area, and skeletal muscle property [21,22]. Since mitochondrial microproteins
are derived from mitochondria, those are expected to have crucial roles in organs with high
mitochondrial content, such as in skeletal muscle. However, little is known about the roles
of mitochondrial microproteins in skeletal muscle.

In this review, we will summarize the findings about athletic performance-related
genetic polymorphisms in both nuclear DNA and mtDNA, describe a basic concept of
mitochondrial microproteins, and discuss the potential roles of mitochondrial microproteins
in athletic performance and age-related diseases.

2. Nuclear Genome Encoded Genetic Polymorphism in Athletes
2.1. Athletic Performance-Related SNPs

A large part of the reported genetic polymorphisms is encoded in the nuclear DNA,
and the R577X polymorphism (rs1815739) in the α-actinin-3 gene (ACTN3) is one of the
most studied genetic markers for athletic performance beyond ethnicity. The α-actinin-3
protein, a major component of the Z-line in the skeletal muscle, is expressed in fast-twitch
fibers and the ACTN3 R577X polymorphism causes α-actinin-3 deficiency [23]. The X allele
carriers of the ACTN3 polymorphism show reduced fast-twitch muscle fibers by regulating
calcineurin signaling and exhibit lowered muscle mass and strength [24–26]. Thus, the
connection between the ACTN3 polymorphism and athletic performance was observed in
several sports events, such as track and field [9,27–30], ball games (i.e., soccer, basketball,
volleyball, and handball) [31,32], martial arts [32], and gymnastics [33,34].

Another well-studied genetic polymorphism is an angiotensin-converting enzyme
(ACE) I/D (rs4341). This ACE I/D polymorphism was the first genetic marker associated
with physical performance [7,8]: Caucasians with the I and D alleles are associated with high
endurance and sprint/power performance, respectively [35–37]. On the other hand, the
association between the ACE I/D polymorphism and athletic performance may be the op-
posite in the Asian population. Several studies in sprint/power athletes, marathon runners,
and swimmers demonstrated that the I and D alleles were associated with sprint/power
and endurance performance, respectively [38–40]. Furthermore, it has been reported that
Japanese males with the D allele exhibited higher slow-twitch fibers than those with the II
genotype [25]. These results suggest that the influence of the ACE I/D polymorphism on
athletic performance is different among ethnicities.
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2.2. Genome-Wide Association Study (GWAS) for Athletic Performance

GWAS is an unbiased method used to examine the associations between several hun-
dred thousand genetic polymorphisms and a particular trait. In the “Sports genetics” field,
some studies have applied GWAS to identify novel variants associated with athletic perfor-
mance. For sprint performance, a GWAS was conducted by Pickering et al. [41] and a related
replication study by Guilherme et al. [42] identified CPNE5 (rs3213537) as significantly
associated with sprint/power athlete status. On the other hand, Ahmetov et al. [43], Ranki-
nen et al. [44], and Al-Khelaifi et al. [45] identified several genetic polymorphisms, such
as NFIA-AS2 (rs1572312), TSHR (rs7144481), RBFOX1 (rs7191721), GALNTL6 (rs558129),
and MYBPC3 (rs1052373) as significantly associated with endurance athlete status in both
GWAS discovery cohorts and replication cohorts. In addition to endurance exercise perfor-
mance, Harvey et al. have performed GWAS to discover novel genetic variants associated
with four weeks of high-intensity interval training (HIIT) response in the Gene SMART
(Skeletal Muscle Adaptive Response to Training) study. In their study, they focused on
nuclear-encoded mitochondrial proteins and identified eight polymorphisms in seven
genes, DIABLO (rs11061368), FAM185A (rs113400963), MTG2 (rs6062129 and rs6121949),
AFG3L2 (rs7231304), NDUFAF7 (rs2041840), TIMM23 (rs7085433), and SPTLC2 (rs1063271),
that were associated with a HIIT response [46].

2.3. Sports Injuries-Related SNPs

The incidence of sports injuries not only negatively influences athletic perfor-
mance [47,48], but also athletic carriers as well. The idea that genetic factors partially
explains the susceptibility to sports injuries was proposed a decade ago [49], and it has
been suggested that genetic polymorphisms could be biomarkers for sports injuries [49,50].
Recent studies demonstrated that certain genetic polymorphisms were associated with sports
injuries: IGF2 (rs3213221), CCL2 (rs2857656), ELN (rs2289360), COL1A1 (rs1107946), COL5A1
(rs12722), COL22A1 (rs11784270 and rs6577958), VDR (rs7975232), MCT1 (rs1049434), ACTN3
(rs1815739), HGF (rs5745697 and rs1011694), SOX15 (rs4227), ESR1 (rs2234693), CYP19A1
(rs936306), ACE (rs4341), MMP3 (rs679620), TNC (rs2104772), IL6 (rs1800795), NOS3
(rs1799983), HIF1A (rs11549465) for muscle injury [51–64], ELN (rs2289360), COL1A1
(rs1800012), COL5A1 (rs12722, rs71746744, rs16399, rs4919510), MIR608 (rs4919510) for
ligament or tendon injury [51,55,65–70], and RANK (rs3018362), RNAKL (rs1021188),
OPG (rs4355801), P2X7R (rs1718119 and rs3751143), VDR (rs10735810, rs731236), SOST
(rs1877632), CYP19A1 (rs936306), COL1A1 (rs1107946) for stress fracture [60,71–74]. There-
fore, these genetic polymorphisms might contribute to athletic performance by modifying
susceptibilities to sports injuries. However, the research on genetics in sports injuries
has just begun and the quality of the evidence might not be enough yet due to the small
sample size, lack of replication, and sampling biases. For example, the sample size in
most of the studies except some [59–61,70,72] were only a few hundred, and there was no
replication cohort or additional functional analysis. Thus, future studies that address these
limitations are necessary. Additionally, since these genetic polymorphisms were identified
using hypothesis-based approaches, unbiased GWAS and/or whole genome sequencing
for sports injuries in athletes are required to understand the details of the genetic factors
for sports injuries.

3. Mitochondrial Genome Encoded Variants in Athletes

The mtDNA, a double-stranded circular DNA, consists of 16,569 base pairs and con-
tains thirteen protein-coding genes, two ribosomal RNAs (rRNAs), and twenty-two transfer
RNAs (tRNAs). One of the most important roles of the mitochondria is energy production.
The adenosine triphosphate (ATP), necessary for skeletal muscle contraction during ex-
ercise, is produced most efficiently by the oxidative phosphorylation (OXPHOS) system
in the mitochondria. Because of their roles in cellular energy production, mitochondria
have been closely examined in the exercise/sports field. For example, it is well known
that endurance exercise training increases mitochondrial content in the skeletal muscle
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and leads to enhanced exercise endurance through improving ATP production [75,76].
The 13 mtDNA-encoded proteins in the mtDNA constitute a part of the OXPHOS, and
they are essential for the OXPHOS function. Indeed, it has been reported that mtDNA
depletion is closely connected to the abolished OXPHOS system [77] and the sequence
variations of mtDNA influence OXPHOS function in mice [78]. Therefore, it is plausible that
mitochondrial single nucleotide polymorphisms (mtSNPs) regulate exercise performance
in human subjects.

Several studies have demonstrated that mtSNPs influence aerobic-exercise capacity
and training response to exercise training. Dionne et al. reported that three restriction
fragment-length polymorphisms, such as BamHI-morph 3 in the ND5 gene (m.13470A>G),
MspI-morph 4 in the gene for threonine tRNA (m.15925C>T), and NciI-morph 2 in the ND5
gene (m.13365C>T) were cross-sectionally associated with maximal oxygen uptake. Addi-
tionally, they also demonstrated that the HincII-morph 1 in the ND5 gene (m.12406G>A)
was associated with a maximal oxygen-uptake response to a 20-week exercise training [79].
Nevertheless, Rivera et al. reported there were no differences in the frequencies of these
mtSNPs between 125 elite endurance athletes and 65 controls (Rivera et al. 1998). A recent
study by Harvey et al. applied whole-mtDNA sequencing and high-throughput genotyp-
ing arrays to identify genetic polymorphisms that are associated with exercise training
responses in 62 subjects who participated in the GeneSMART study [46]. Although none of
the mtSNPs passed the false discovery rate < 0.05, they found that four mtSNPs, such as
m.8701A>G, m.10873T>C, m.12705C>T, and m.15043G>A, were associated with an exercise
training response assessed via a change in the lactate threshold (p< 0.05) [46]. Addition-
ally, Vellers et al. have suggested that several mtSNPs are associated with trainability in
maximal oxygen uptake (VO2 max) to an aerobic exercise training program [80]. They
sequenced the complete mtDNA sequence in the 15 highest responders and 15 lowest
responders in the VO2 max response distribution of the HERITAGE (HEalth, RIsk factors,
Exercise Training And Genetics) Family Study. In the lowest responders, the frequencies of
the m.185G>A, m.228G>A, m.295C>T, m.462C>T, m.489T>C, m.4215T>C, m.10397A>G,
m.11250A>G, m.13707G>A, m.14797T>C, m.15451C>A, m.16068C>T, and m.16125T>C
were higher than the highest responders [80].

Mikami et al. analyzed the entire mtDNA sequence in 185 elite Japanese athletes
and 672 controls. They found that a total of 17 mtSNPs were associated with the elite en-
durance/middle power or sprint/power athletes. Specifically, the m.152T>C, m.4343A>G,
m.11215C>T, m.15518C>T, and m.15874A>G were associated with the elite endurance/middle-
power athlete status, whereas m.151C>T, m.204T>C, m.4833A>G, m.5108T>C, m.5601C>T,
m.7600G>A, m.9377A>G, m.13563A>G, m.14200T>C, m.14569G>A, m.15314G>A, and
m.16278C>T were associated with the elite sprint/power athlete status.

The development of GWAS dramatically improved the detection of the genetic variants
that associate with human traits. However, the mtDNA variants were exceptions to this: ex-
isting genomic pipelines are primarily designed for the nuclear DNA variants and mtDNA
variants are excluded from the GWAS analysis because it does not undergo recombination
or follow the Hardy–Weinberg equilibrium. Recently, PLINK, a commonly used GWAS tool,
was updated for mitochondrial GWAS (MiWAS) and Miller et al. have demonstrated that
including mitochondrial principal components as regression covariates could be useful for
identifying mtDNA variants that associate with phenotypes in MiWAS [81,82]. Although
there is no gold standard method for MiWAS yet, these improvements in the analytics
pipelines will accelerate mitochondrial genetics.

4. Mitochondrial Microproteins: Mitochondrial-Derived Peptides (MDPs)

Although the Human Genome Project identified that there are over 20,000 genes en-
coding functional proteins, recent bioinformatics analyses have suggested that the human
genome contains previously unannotated smORFs that might be translated into micro-
proteins [83,84]. The term smORF was introduced to identify the ORFs with less than
100 codons that are actually translated, and the term “microprotein” refers to biologically
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active proteins shorter than 100 amino acids encoded in the smORFs [11,12]. Bioinformatics
analysis predicts that there may be millions of theoretical microproteins in the human
genome, and ribosome profiling experiments identified that there are tens of thousands of
potential microprotein mRNAs [83–85]. However, most of them have not been detected via
mass spectrometry yet because of their size, low abundance, or hydrophobicity.

Currently, human mtDNA is annotated with 37 genes in total: thirteen protein-coding
genes, two rRNAs, and twenty-two tRNAs. However, it has been demonstrated that there
are dozens of previously uncharacterized cleavage sites and small RNAs derived from tR-
NAs with unknown functions [86], implying the existence of mitochondrial microproteins
(Figure 1). Indeed, recent in silico analyses discovered that mtDNA contains nearly 400 pu-
tative microproteins between 9 and 40 amino acids length in both strands [87–90] (Figure 2).
These microproteins are called mitochondrial microprotein or mitochondrial-derived pep-
tides and nine mitochondrial microproteins, such as humanin [13–15], MOTS-c [16], SHLPs
1–6 [17], and SHMOOSE [18] have been identified (Figure 2). Among these mitochondrial
microproteins, Humanin and MOTS-c have been studied deeply after their identification.
These discoveries provided a paradigm-shifting concept in mitochondrial biology and
genetics because they were previously unannotated mtDNA-encoded microproteins found
to exist and have biological activities. Additionally, some of the MDPs are encoded in the
mtDNA, but their translation occurs in the cytoplasm using the standard genetic code, not
the mitochondrial genetic code. For example, the MOTS-c smORF is encoded within the
12S rRNA and is translated into a 16-amino acid microprotein using the standard genetic
code [16]. If the MOTS-c smORF is translated using the mitochondrial genetic code, the
second codon becomes the termination codon, and only the first amino acid methionine
is translated. Thus, although the detailed mechanisms are not clarified yet, this suggests
that a polyadenylated transcript is exported from the mitochondria and is translated in
the cytoplasm. These discoveries provided novel concepts in mitochondrial biology and
genetics and will give us a better understanding of human biology.
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4.1. MOTS-c
4.1.1. MOTS-c as a Metabolic Regulator

MOTS-c is a 16-amino acid microprotein encoded by a mitochondrial sORF within
the 12S rRNA [16] and is expressed in several tissues including the skeletal muscle [16,91].
The first study reported by Lee et al. demonstrated that MOTS-c prevented weight gain
in high-fat diet-fed mice and improved insulin sensitivity in old mice through increasing
endogenous AICAR levels and activating AMPK [16]. Likewise, a separate study by Zempo
and Kim et al. also reported that MOTS-c treatment and overexpression increased glucose
uptake in myotubes and human embryonic kidney cells, respectively [21]. Additionally,
three weeks of MOTS-c administration prevented increased body fat mass and impaired
glucose uptake in high-fat diet-fed male mice, but not female mice [21]. On the other hand,
it has also been suggested that MOTS-c increases the thermogenesis of white and brown fat,
which also contributes to weight reduction [92,93]. Taken together, these studies suggest
that MOTS-c regulates energy metabolism by improving insulin resistance in the skeletal
muscle and thermogenesis in the fat [94,95].

4.1.2. MOTS-c and Exercise-Related Phenotypes

Insulin resistance is not only a leading cause of obesity and type 2 diabetes but also
a cause of skeletal muscle wasting and weakness. Recent studies have suggested that
insulin resistance accelerates the loss of skeletal muscle mass and strength in people with
type 2 diabetes [96–98]. Therefore, MOTS-c could prevent skeletal muscle wasting and
its related signaling pathways in the skeletal muscle caused by insulin resistance. Three
weeks of MOTS-c administration significantly prevented skeletal muscle loss and myo-
statin mRNA expression, one of the strongest negative regulators of the skeletal muscle, in
high-fat diet-fed mice [99]. Additionally, the study observed that MOTS-c regulated the
CK2/PTEN/AKT/FOXO1 signaling pathway in the skeletal muscle, and a negative correla-
tion between plasma MOTS-c and myostatin levels in human plasma [99]. Supporting this
observation, Reynolds et al. demonstrated that long-term MOTS-c-treated middle-aged and
old mice exhibited higher lean mass and muscular strength than the control groups [100].
Taken together, MOTS-c could be a potential target for regulating skeletal muscle mass
through modifying classical muscle atrophy signaling and myostatin expression.

In terms of the association between MOTS-c and exercise, several studies have demon-
strated that MOTS-c is an exercise-induced and exercise-mimetic microprotein. Reynolds
et al. examined the effect of acute cycling exercise on the MOTS-c level in the skeletal mus-
cle and plasma and observed that acute high-intensity interval exercise increased MOTS-c
expression in both the skeletal muscle and plasma in young male subjects [100]. Although
it was not statistically significant, Walden et al. also observed that acute aerobic exercise
increased plasma MOTS-c levels by around 30–40% compared to prior to exercise [101].
Dieli-Conwright et al. demonstrated that a 16-week combination training of aerobic and
resistance exercise increased plasma MOTS-c levels in Non-Hispanic breast cancer sur-
vivors [102]. An increased MOTS-c expression by exercise training was also observed in
animal experiments [103,104]. Hyatt J.K. and Kang et al. reported that running exercise
training increased MOTS-c expression in the rat skeletal muscle and mouse hypothala-
mus, respectively [103,104]. On the other hand, however, Ramanjaneya et al. showed that
MOTS-c did not increase after 8-week aerobic exercise training in women with polycystic
ovarian syndrome [105]. Differences in a study subject, exercise protocol, detection method,
and/or sampling timing may cause these different observations. Although more research
is necessary to confirm these observations, exercise likely increases MOTS-c expression in
not only skeletal muscle but also in other tissues (Table 1 and Figure 3).
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It has been suggested that MOTS-c has an exercise-mimetic effect and improved
aerobic exercise performance. Reynolds et al. have demonstrated that a long-term MOTS-c
administration into young and old mice significantly increased the running time and
distance compared to the control mice [100]. Hyatt J.K. has confirmed this observation by a
single MOTS-c administration experiment with a cross-over design [103]. Consistent with
the findings reported by Reynolds et al., the running time and distance were significantly
higher in the MOTS-c-administrated trial than the saline-administrated trial, and all of
the examined mice exhibited an improvement in their exercise performance compared to
the saline-administrated trial [103]. These studies suggest that MOTS-c clearly increases
aerobic exercise performance, and a long-term administration has an aerobic exercise
training-like effect in mice. Additionally, since MOTS-c is induced by exercise, MOTS-c
may also be associated with a response to exercise stress. Indeed, although MOTS-c mainly
localizes in the mitochondria, MOTS-c translocates from mitochondria to the nucleus
following metabolic stress and regulates the nuclear DNA-encoded genes involved in
oxidative stress response by interacting with the nuclear-factor erythroid 2-related factor 2
(NRF2) [106]. Therefore, MOTS-c is an exercise-induced and exercise-mimetic microprotein
and contributes to aerobic exercise performance (Table 1 and Figure 3).

A recent study showed that a MOTS-c analogue has the potential to prevent cog-
nitive decline induced by the amyloid beta (Aβ) or LPL [107]. Although the peripheral
administration of MOTS-c did not cross the blood–brain barrier, administration of the cell-
penetrating MOTS-c analogue significantly prevented memory impairment by suppressing
neuroinflammation [107]. Since Kang et al. demonstrated that exercise training increased
MOTS-c expression in the hypothalamus, upregulation of MOTS-c in the brain could be
one of the underlying mechanisms of improvement in cognitive function by exercise.

4.1.3. Genetic Polymorphism in the MOTS-c Coding Region

In the MOTS-c coding region, there is an East Asian-specific genetic variant m.1382A>C
(rs111033358), and this mutation causes amino acid replacement, from positively charged
lysine (K) to neutral glutamine (Q) at the 14th residue of the MOTS-c (K14Q). Zempo and
Kim et al. conducted a series of experiments to understand the biological function of this
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K14Q mutation [21]. A meta-analysis in 11,224 Japanese males demonstrated that the
males with the K14Q mutation exhibited a 1.34 times higher risk of type 2 diabetes mellitus
(T2DM) as well as higher visceral fat area than the wild type (WT) carriers [21] (Figure 4).
Additionally, the WT MOTS-c administration prevented impaired glucose metabolism in
high-fat diet-fed mice, while K14Q failed to improve impaired glucose metabolism induced
by a high-fat diet, suggesting that K14Q-MOTS-c is a bio-inactive form of MOTS-c [21]
(Table 1). Interestingly, this amino acid replacement is predicted to change the charge and
hydrophobicity of the MOTS-c, which could substantially alter the interactions with its
binding partners [21]. Although the functional direct molecular target of MOTS-c has not
been identified yet, it is expected that the WT MOTS-c and K14Q MOTS-c differentially
interact with the binding partners and show different biological functions.
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This K14Q mutation is one of the genetic markers for athletic performance in the
East-Asian population. Among the Japanese population, the frequency of the K14Q muta-
tion is 2.9% in endurance athletes, 5.1% in non-athlete controls, and 6.5% in sprint/power
athletes, suggesting that the K14Q is more beneficial for sprint/power performance than
the WT carriers [22] (Figure 4). To confirm this observation, additional analyses in two
independent Japanese cohorts were conducted and they demonstrated that the K14Q
mutation carriers exhibited higher muscular strength as well as a higher proportion of
myosin heavy chain (MHC)-IIX than the WT carriers [22]. Furthermore, mice treated with
the MOTS-c neutralizing antibody, mimicking the K14Q carriers, exhibited a significantly
higher protein expression of MHC-fast than the control mice [22] (Table 1). The possible
underlying mechanisms are the proliferation-activated receptor co-activator 1 (PGC-1α)
and FOXO1 expression levels because they partially regulate muscle fiber-type compo-
sition. It has been demonstrated that overexpression and knock-out of PGC-1α in mice
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increase slow- and fast-twitch fibers, respectively [108,109]. Additionally, muscle-specific
overexpression of FOXO1 decreased slow-twitch fiber-related gene expression levels [110].
Interestingly, recent studies demonstrated that MOTS-c treatment increased PGC-1α pro-
tein expression in the C2C12 myotube [111] and decreased FOXO1 protein expression
in the mouse skeletal muscle [99]. These studies suggest that MOTS-c could regulate
muscle-fiber composition by modifying PGC-1α and FOXO1 expression levels. Taken
together, the m.1382A>C polymorphism causing K14Q amino acid replacement of MOTS-c
contributes to sprint/power performance by regulating skeletal muscle fiber composition
in the East-Asian population (Figure 4).

Table 1. Summary of published mitochondrial microprotein studies-related to exercise and mus-
cle function.

Stimulation Term Observation Tissue Reference

MOTS-c

MOTS-c Chronic Improves insulin
resistance Mouse muscle Lee et al. [16]

MOTS-c Chronic Improves glucose
metabolism Mouse muscle Zempo and Kim et al. [21]

K14Q MOTS-c Chronic No difference Mouse muscle Zempo and Kim et al. [21]

MOTS-c Acute Increases exercise
endurance Mouse muscle Hyatt. [103]

MOTS-c Chronic Increases exercise
endurance Mouse muscle Reynolds et al. [100]

MOTS-c Chronic Prevents muscle wasting Mouse muscle Reynolds et al. [100]
MOTS-c Chronic Improves muscle strength Mouse muscle Reynolds et al. [100]

MOTS-c Chronic Supresses myostatin
expression Mouse muscle Kumagai et al. [99]

MOTS-c Chronic Prevents muscle wasting Mouse muscle Kumagai et al. [99]

MOTS-c antibody Chronic Increases myosin heavy
chain-fast Mouse muscle Kumagai et al. [22]

AEx Chronic Increases MOTS-c Mouse hypothalamus Kang et al. [104]
AEx Chronic Increases MOTS-c Rat muscle Hyatt. [103]
HIIT Acute Increases MOTS-c Human muscle and blood Reynolds et al. [100]
AEx Acute No difference Human blood and muscle von Walden et al. [101]
REx Acute No difference Human blood and muscle von Walden et al. [101]
AEx and REx Chronic Increases MOTS-c Human blood Dieli-Conwright et al. [102]
AEx Chronic No difference Human blood Ramanjaneya et al. [105]

Humanin

Humanin Chronic Improves rotarod
performance Mouse muscle Kim et al. [112]

Contraction Acute Increases humanin Isolated mouse muscle Woodhead et al. [113]
HIIT Acute Increases humanin Human muscle and blood Woodhead et al. [113]
AEx Acute Increases humanin Human blood von Walden et al. [101]
REx Acute No difference Human blood and muscle von Walden et al. [101]

REx Chronic Increases humanin in
muscle Human muscle and blood Gidlund et al. [114]

HIIT Chronic No difference Human muscle and blood Woodhead et al. [113]
AEx Chronic No difference Human muscle and blood Gidlund et al. [114]

SHLP2
HIIT Acute No difference Human blood Woodhead et al. [113]
HIIT Chronic No difference Human blood Woodhead et al. [113]

SHLP6
HIIT Acute Increases SHLP6 Human blood Woodhead et al. [113]
HIIT Chronic No difference Human blood Woodhead et al. [113]

MOTS-c Ab: MOTS-c neutralizing antibody, AEx: aerobic exercise, REx: resistance exercise, HIIT: high-intensity
interval training.

4.2. Humanin
4.2.1. Biological Functions of Humanin

The first MDP to be discovered was humanin. Humanin is a 24-amino acid micro-
protein encoded within the 16S rRNA region of mtDNA and it was discovered by three
independent groups in the early 2000s [13–15]. Hashimoto et al. initially identified humanin
during a screening for genes protective against Aβ toxicity [13,115]. Also, Ikonen et al.
and Guo et al. found that humanin bound IGFBP3 and BAX, and reduced Aβ toxicity and
cell apoptosis, respectively [14,15]. After the identification, a trimeric receptor consisting
of WSX-1, GP130, and CNTFR as well as a separate FRPL1 were identified as Humanin’s



Genes 2023, 14, 286 10 of 18

receptors [116,117], and it was demonstrated that humanin modified mitochondrial biology,
cell proliferation, and cell survival by activating downstream STAT3 and ERK1/2 [118].
Hundreds of additional studies are published so far and humanin has been described as a
cytoprotective and neuroprotective factor [87–90]. Since humanin modifies mitochondrial
function, humanin also has beneficial effects on energy metabolism, such as preventing
high-fat diet-induced weight gain, fat accumulation, increasing insulin sensitivity, and
glucose stimulated-insulin release [119–121].

4.2.2. Humanin and Exercise-Related Phenotypes

Regarding the association between humanin and skeletal muscle function, Kim et al.
have demonstrated that humanin administration into aged mice improved the average
running time during the rotarod performance test by increasing autophagy in the skeletal
muscle [112]. Although the experimental model was the aged mouse, this study proposed
that increasing humanin levels had a beneficial effect on skeletal muscle function in vivo.
On the other hand, several studies have examined the effects of exercise stimulation
on humanin expression in skeletal muscle and blood samples. Woodhead et al. have
demonstrated that muscle contraction in isolated mouse skeletal muscle dramatically
increased humanin levels four-fold, suggesting that exercise-induced muscle contraction,
not exercise-induced metabolites, induces humanin expression [113]. Inconsistent with
this observation, acute high-intensity interval exercise and aerobic exercise upregulated
humanin expression in human skeletal muscle and/or plasma, while acute resistance
exercise did not change plasma humanin levels [101,113]. In terms of chronic exercise
training, although Gidlund et al. observed that resistance exercise training increased
humanin expression only in the skeletal muscle, other studies did not observe increased
humanin expression [113,114]. A possible explanation for these inconsistent findings is
baseline humanin levels. Humanin levels are downregulated in people with metabolic
disorders [114,122], and the study subjects in Gidlund et al. were males with impaired
glucose metabolism [114], suggesting that baseline humanin levels were lower compared to
other subjects. Another explanation is sampling timing. Because of the amino acid length,
the half-life of humanin is shorter than 30 min [123]. Thus, sampling timing is also an
important factor that needs to be considered. These could be possible explanations for the
inconsistent results in the exercise response. Altogether, acute aerobic exercise upregulates
humanin expression, while chronic exercise training may not change humanin expression.
Further studies are required to identify humanin regulation by exercise.

4.2.3. Genetic Polymorphism in the Humanin Coding Region

A naturally occurring m.2706A>G polymorphism (rs2854128) on the humanin coding
region is associated with decreased circulating humanin levels [20]. Furthermore, this
mutation accelerates cognitive aging in African Americans [20]. Although this genetic
variant does not change the amino acid sequence of humanin, these data suggest that this
mutation is functional and influences phenotypes in human subjects. Interestingly and
on the other hand, one of the humanin receptors is CNTFR, and Miyamoto-Mikami et al.
have demonstrated that the genetic variant in the CNTFR (rs41274853) was associated
with sprint/power exercise performance [124]. Thus, there may be an interaction between
genetic polymorphisms in humanin and CNTFR. Therefore, it might be interesting to
examine the association of this humanin variant and exercise performance as well as the
interaction between humanin and CNTFR.

4.3. SHLPs

After the discovery of humanin, six additional mitochondrial microproteins encoded
around humanin smORF were identified and named small humanin-like peptides 1 to 6
(SHLPs 1–6) because they were encoded from the 16S rRNA region and share some bi-
ological features with humanin, modulating mitochondrial function and decreasing Aβ

toxicity [17]. SHLP2, one of the SHLPs, shows protection against Aβ-induced toxicity



Genes 2023, 14, 286 11 of 18

similar to that of humanin [125]. It has also been suggested that both SHLP2 and hu-
manin analog have chaperone-like activity by targeting the misfolding of islet amyloid
polypeptide (IAPP), a critical pathogenic step in T2DM, and inhibit IAPP misfolding [126].
The effect of SHLP2 on metabolic function has been examined in vitro and in vivo [17].
SHLP2 treatment promotes mitochondrial biogenesis, reduces reactive oxygen species, and
decreases mtDNA oxidation. In addition, in the presence of insulin, SHLP2 accelerates the
differentiation of 3T3-L1 pre-adipocyte by supposedly increasing insulin sensitivity [17].
Furthermore, intracerebroventricular (ICV) infusion of SHLP2 increases insulin respon-
siveness as assessed by the exogenous glucose infusion rate and suppression of hepatic
glucose production and peripheral glucose uptake under systemic pancreatic insulin clamp
and physiologic hyperinsulinemic-euglycemic clamp studies [17]. Therefore, these studies
suggest that SHLP2 has potential as a metabolic therapeutic as well as a regulator of exercise
training response.

Regarding the effect of exercise on SHLP levels, one study examined the effect of
acute high-intensity interval exercise and HIIT on SHLP2 and SHLP6 levels [113]. They
observed that acute high-intensity interval exercise increased plasma SHLP6 levels, while
HIIT decreased plasma SHLP6 levels. SHLP2 did not show any differences before and after
the exercise [113]. Further studies are necessary to discuss about exercise and SHLPs.

4.4. SHMOOSE

A mitochondrial microprotein called SHMOOSE was identified using several detection
methods [18]. Two unique SHMOOSE fragments were identified in mitochondria fractions
using mass spectrometry. In addition, SHMOSE was detected in human cerebrospinal
fluid using ELISA, and its levels correlated to age and the Alzheimer’s disease biomarker
phosphorylated tau. SHMOOSE was targeted because its smORF contains a common
single nucleotide polymorphism towards the 3’ region (m.12372G>A, rs2853499), causing a
missense mutation at the 47th amino acid (SHMOOSE.D47N). Individuals with rs2853499
had a 30% greater risk for AD and accelerated brain atrophy and hypometabolism in
regions in brain vulnerable regions. SHMOOSE.D47N affects the predicted disordered
C-terminus of SHMOOSE, leaving its predicted amphipathic alpha helical feature unaf-
fected. Many other microproteins also have highly disordered regions that promote a
higher assembly of protein complexes, such as proteins within mitochondria. Indeed,
SHMOOSE binds the inner mitochondrial membrane mitofilin, increases mitochondrial
spare capacity, and reduces mitochondrial superoxide production. When mitofilin is
knocked down with siRNA, the effect of SHMOOSE on mitochondrial superoxide is muted.
Furthermore, neuronal cells stressed with amyloid beta oligomers and simultaneously
exposed to SHMOOSE confer protection, while SHMOOSE.D47N did not confer protection.
Altogether, SHMOOSE could be involved in AD pathology via its biological effects within
the inner mitochondrial membrane.

4.5. Gau

Gau is an approximately 100-amino acid mitochondrial microprotein encoded within
the MT-CO1 region [19]. The Gau protein sequence is relatively well conserved in pro-
tist, fungal, plant, and animal mtDNAs, suggesting that Gau has a possible conserved
biological function. However, to date, its biological function has not been clarified yet.
Immunohistochemical analysis using an anti-Gau antibody demonstrated that Gau mainly
localized in the mitochondria. Thus, although those observations suggest that Gau has
crucial biological roles in the mitochondria, further studies are necessary to address a
biological function of Gau.

5. Implication of Sports Genetics in Age-Related Diseases

Although the genetics in athletes and aging-related diseases and disorders do not seem
to be related at a glance, studies have suggested a connection between them. For example,
skeletal muscle fiber composition, largely influenced by genetic factors, affects glucose up-
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take [127,128] because each fiber type has specific characteristics; slow-twitch fibers contain
high levels of oxidative enzymes and low levels of glycolytic enzymes, whereas fast-twitch
fibers contain high levels of glycolytic enzymes and low levels of oxidative enzymes [129].
The fast-twitch fibers are suitable for sprint/power performance [130], while the proportion
of fast-twitch fiber is negatively correlated to glucose uptake [127,128]. Indeed, a high
proportion of fast-twitch fibers causes metabolic disorders, such as obesity and metabolic
syndrome [131,132]. One example is the MOTS-c polymorphism (m.1382A>C, rs111033358).
The K14Q mutation carriers of the MOTS-c polymorphism exhibit a higher proportion of
fast-twitch fibers than those with WT, and the frequency of this mutation is higher in the
sprint/power athletes than others [22], while the risk of T2DM is significantly higher in the
K14Q mutation carriers than the WT carriers [21]. Thus, although people with the MOTS-c
variant have an advantage in sprint/power performance, the risks of metabolic disorders
are also high in mutation carriers. Similar to metabolic disorders, muscle fiber composition
also influences blood pressure [133,134]. A 19-year follow-up study demonstrated that
the proportion of slow-twitch fibers is negatively associated with systolic and diastolic
blood pressure [134], implying that muscle fiber composition-related genetic variants are
candidates for genetic biomarkers for hypertension. Taken together, future studies that
connect the findings between sports science and medicine are interesting and necessary.

6. Perspective: Future Directions of mtDNA and Microproteins

mtDNA sequences are more varied among ethnicities compared to the nuclear DNA
due to its high mutation rate [81]. Thus, mtDNA variants could be an ethnicity-specific
genetic marker for athletic performance as well as age-related diseases. Given the improve-
ments in the analytics pipelines for mtDNA, future studies will identify ethnicity-specific
mtDNA variants that could explain health disparities in ethnicities as well as exercise per-
formance. In addition, although mtDNA has been considered to encode 13 protein-coding
genes, it may encode hundreds of uncharacterized mitochondrial microproteins, and these
microproteins could be easily accessible biomarkers and therapeutic targets [87–90]. Over
twenty years have passed since the first mitochondrial microprotein humanin was discov-
ered, but this field is still developing and additional microproteins have been identified
these days. Although there will still be technical challenges, such as identification and de-
tection, this novel field is one of the most promising topics [135] and should be investigated
to unravel hidden human biology.

7. Conclusions

In summary, mitochondrial microproteins are encoded in the smORF within the
mtDNA, and ten mitochondrial microproteins, such as humanin, MOTS-c, SHLPs 1-6,
SHMOOSE, and Gau have been identified to date. Among them, MOTS-c is a leading
mitochondrial microprotein in terms of a regulator of skeletal muscle function, and genetic
variant in the MOTS-c coding region is associated with athletic performance as well as
type 2 diabetes by modulating skeletal muscle properties. Future studies are expected
to identify the roles of mitochondrial microproteins in human biology, including skeletal
muscle biology.
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