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Abstract: Translational Bioinformatics (TBI) is defined as the union of translational medicine and
bioinformatics. It emerges as a major advance in science and technology by covering everything,
from the most basic database discoveries, to the development of algorithms for molecular and
cellular analysis, as well as their clinical applications. This technology makes it possible to access the
knowledge of scientific evidence and apply it to clinical practice. This manuscript aims to highlight
the role of TBI in the study of complex diseases, as well as its application to the understanding and
treatment of cancer. An integrative literature review was carried out, obtaining articles through
several websites, among them: PUBMED, Science Direct, NCBI-PMC, Scientific Electronic Library
Online (SciELO), and Google Academic, published in English, Spanish, and Portuguese, indexed
in the referred databases and answering the following guiding question: “How does TBI provide a
scientific understanding of complex diseases?” An additional effort is aimed at the dissemination,
inclusion, and perpetuation of TBI knowledge from the academic environment to society, helping the
study, understanding, and elucidating of complex disease mechanics and their treatment.

Keywords: Translational Bioinformatics (TBI); complex diseases; cancer; omics; big data

1. Introduction

Computational biology, in recent decades, has gradually become more relevant in
biological sciences [1], due to the significant decrease in cost of next-generation technologies
and the progressive insertion of bioinformatics in medicine and translational research,
playing a significant role in enhancing various biological studies [1,2].

These technologies have been adopted worldwide by numerous research groups and
are being used to identify new Mendelian disease genes, while next-generation sequencing
(NGS) is reaching routine clinical diagnostics [2]. However, translating the genome to the
clinic depends on cross-referencing large amounts of data and various omics, as well as
considering the environmental influence in these processes. Translational Bioinformatics’s
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(TBI) main objective is to translate results obtained from data processing into clinical prac-
tice. This requires the effort of a multidisciplinary team and the creation of computational
models capable of enabling such a task [3].

Although its precise origin is uncertain, bioinformatics emerged from two main devel-
opments: (i) the increased understanding of the form and function of biological molecules,
starting from results obtained from 1930s electrophoresis technique, and the consecutive
discoveries involving DNA, RNA and protein structure; (ii) parallelly, the increase in
computational power, such as mainframe applications (in the 1950s) and, later, modern
workstations, as well as a continuous growth in the number of bioinformatics professionals,
allowing for the understanding of numerous biological problems [4].

The identification of genes associated with human diseases is a determining factor
for disease diagnosis in medicine [5]. In recent years several high-throughput techniques
have been used to search for genes that cause common diseases, such as gene expression
profiling, single nucleotide polymorphism (SNP) typing, whole genome sequencing, exome,
total RNA sequencing (RNAseq), and protein sequencing [6]. However, there is a deadlock
related to the use of such techniques, as they usually produce hundreds of candidate
genes related to the disease being investigated [6]. To solve this problem, computational
approaches, particularly network-based approaches, have been developed to efficiently
determine disease-associated genes from existing biomedical networks [5], enabling data
clustering and integration in order to build an accurate understand how cells work [4].

The creation of databases with biological information was the most important devel-
opment to support the emergence of Bioinformatics. In the 1970s, structural biologists,
using X-ray crystallography techniques, built the Protein Data Bank (PDB) specifying the
Cartesian coordinates of the structures they elucidated, and made the PDB available to
the public. As the ability to sequence DNA molecules became more affordable, DNA
databases increased in number and quality. In the mid-1980s, the GenBank database was
developed as a gene sequence information repository from the National Institutes of Health,
an annotated collection of all publicly available DNA sequences [4].

Advances in research methods have resulted in experiments that generate vast amounts
of data, which pose new challenges for researchers in storing, analyzing, and sharing data
efficiently and appropriately [4]. In this context, the concept of Big Data arises, referring to
a complex and large amount of data defined by: (i) large volume; (ii) diversity: stored data
format can be unstructured and structured text, images, metadata, among others; (iii) speed
of analytical processing; and (iv) data veracity or uncertainty: very large data collections
can often combine several sources of varying reliability and trustworthiness [7]. In biolog-
ical sciences, Big Data has been employed in enhancing curation, efficient analysis, and
accurate interpretation, as well as accurate modeling and prediction of complex data [1].

In the age of Big Data, TBI can produce new methods and research knowledge about
complex diseases, most notably cancer. To enable accurate and interpretable predictions,
computational models based on protein structure analysis, methylation, expression, and
activity of cancer hallmark signaling pathways are increasingly becoming the focus of
current studies [8].

This review aims to guide, inform, and disseminate the understanding of TBI as a
means to advance modern medicine. It highlights the benefits of understanding complex
diseases, enabling training, specialization and abilities needed by various health profes-
sionals. We hope to answer the question: “How does TBI apply to and provide scientific
understanding of complex diseases?”, and serve as a guide for those interested in this area.

2. TBI: From Definition to Application

TBI is a discipline that has come to the forefront of science in recent years because
of the many beneficial results in solving and treating complex diseases. According to
Tenenbaum [9], TBI has become an important discipline in the era of personalized medicine,
broadening the insights and hypotheses about previously untestable foci of study.
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TBI is considered a hybrid field of study incorporating basic and clinical research, also
being called biomedical informatics. Other fields also bridge basic and clinical research,
such as imaging informatics, clinical informatics and public health informatics. As stated
by Sarkar [10], these fields supported the transfer and integration of knowledge in the main
domains of translational medicine, ranging from molecules to populations.

According to the American Medical Informatics Association (AMIA), TBI has suc-
ceeded in developing storage, analytical, and interpretive methods capable of optimizing
the transformation of increasingly voluminous biomedical and genomic data into predictive
data for the development of preventive medicine [9].

TBI is crucial for moving basic biological discoveries from the research bench to the
patient care setting (clinical research), using clinical information to understand basic biology.
Likewise, TBI focuses on patient care, including the creation of new diagnoses, prognoses,
prevention strategies, and therapies based on biological discoveries (Table 1) [11].

Systems biology is a modern and advanced field of study, focusing on understanding
the behavior of entire biological systems, not just individual components. It uses methods
ranging from qualitative network diagrams that link molecular and phenotypic entities, to
formal quantitative models based on differential equations [11].

TBI research has started to develop Translational Biomedical knowledge in order to
form a common language among researchers from different fields, connecting genomic in-
formation with phenotypic correlation analysis, enabling this increasingly transdisciplinary
field [10].

In the last two decades, along with TBI and systems biology, the analysis and modeling
of biomedical data with a network structure has emerged, supported by numerous network-
based learning methods that have been developed in order to select one that learns and
adapts to clinical application, resulting in highly meaningful, accessible, low-cost, and less
time-consuming data analysis (Table 1) [12].

Table 1. TBI application in complex diseases.

Authors Study Description

Ahmed [13]; Kang; Ko;
Mersha [14]; Savoska;
Ristevski; Trajkovik [15].

Integration of collective and individualized clinical data with
patient-specific multi-omic data, AI algorithms and cloud electronic
health record databases.

Baruah; Deka; Mahanta
[16].

Multidisciplinary cooperation between laboratory and clinical
researchers, aiming to meet community needs.

Bellazzi et al. [17].
Clinical bioinformatics (CBI) seeks to integrate molecular and clinical
data, using bioinformatics to understand molecular mechanisms and
potential therapies.

Bruggemann et al. [18]. Pharmacogenomics provides personalized patient care by selecting
specific drugs for diseases, such as non-small cell lung cancer.

Han; Liu [19]. AI unravelling latent data behavior and generating new insights and
optimal strategies in decision-making.

Liu et al. [20]. TBI used in reproductive medicine.

Liu; Wang; Lai [21].
Single-cell total RNA sequencing (scRNA-seq) and bulk total RNA
sequencing (RNA-seq) associated with machine learning for detection
of tumor origin.

Lussier; Butte;
Hunter [22].

TBI effects on: (i) availability and cost reduction of molecular
measurements; (ii) accessibility to measurements of health and
disease status; (iii) sharing data and molecular tools; (iv)
interpretation of new clinical molecular discoveries; (v)
research funding.
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Table 1. Cont.

Authors Study Description

Mitra et al. [23].
In silico analysis of acquired, archived, and retrieved biological data,
as well as dynamic molecular docking experiments affecting
pharmacology, biotechnology, bioengineering and education.

Sheikh; Ramlal;
Khan [24].

Predictive modeling of antineoplastic drugs through computational
analysis of microarrays.

Tang et al. [25].

TBI encompassing issues of equity and inclusion, by means of
phenotyping applications, characterization of disease subtypes,
predictive modeling, biomarker discovery and selection of
better treatments.

Torkamannia; Omidi;
Ferdousi [26].

Combined pharmacotherapy with synergistic/additive effect as a
powerful treatment strategy for complex diseases.

Yang et al. [27]. High-throughput technologies/TBI in the biological interpretation of
Big Data, uncovering mechanistic landscapes of complex diseases.

3. Translational Biomedical Knowledge

Translational Biomedical Knowledge and TBI have been shown to be highly efficient
in developing new insights and proposing new hypotheses that were previously untestable.
The 2019 Yearbook of the International Medical Informatics Association (IMIA) demon-
strates TBI trends, on various aspects of bioinformatics methods and techniques to advance
clinical care [28,29].

This translational knowledge has enabled work to be done at a low cost and in less time,
because much of the recent discussion from bench to bedside research has been focused on
how to allocate limited resources in support of science, in order to generate transformative
clinical impact [30]. According to Shameer et al. [31], by characterizing health status
through individual translational knowledge, earlier identification of true and personalized
pathological changes can occur, avoiding unnecessary testing after accidental findings.

This knowledge can turn genomic data into clinically actionable knowledge, allowing
for the understanding of complex drug interactions. Shameer et al. [31] explain that by
integrating data from deep molecular profiling technologies (genomic, transcriptomic,
proteomic or metabolomic), collectively defined as multi-omics data with clinical informa-
tion, authors were able to explain some of the clinical variations between individuals and
improve the use of health monitoring data for prediction, diagnosis, and development of in-
telligent clinical decision support systems, helping a more comprehensive understanding of
clinical pharmacodynamics, pharmacokinetics, and the molecular mechanisms underlying
drug effects, achieving relevant clinical utility and lower treatment side effects [32].

4. Precision Medicine and TBI

The objective of precision medicine is to use genetic data to improve health care
decision-making [33,34]. Considering the growing volume of data and information gen-
erated, TBI can contribute considerably to the evolution of precision medicine. Since
the primary goal of precision medicine is to find a dynamic treatment regimen that
works well in future patients, Kosorok and Laber [34] highlight the usefulness of ma-
chine learning methods.

Recent studies have pointed to omics data importance and the potential in precision
medicine. Xiao and colleagues [35] demonstrated how combined omics data from triple
negative breast cancer (TNBC) has linked its metabolome and genomics. Authors pointed
out the importance of TNBC metabolomic data for its precision treatment [35]. Milluzzo
and collaborators [36], in a review paper addressing the clinical management of patients
with diabetes and cancer, highlight the importance of a personalized, patient-centered,
multidisciplinary and shared approach in the treatment of complex diseases, leading to the
optimization of human and financial resources, and obtaining better clinical results [36].
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Complex and voluminous datasets can be used through TBI to provide information
that will enable better clinical outcomes. Qazi and Raza [37] point out that TBI has the
potential to evolve traditional domains of biomedical sciences to improve health care
infrastructure management and regulation [37].

5. Omics Revolution in Complex Diseases

The revolution in molecular biology caused the need to analyze previously unprece-
dented large amounts of data, requiring biology to make a transition from a more qualitative
science to a true data science [38]. Organizing, integrating, and understanding have be-
come the watchwords for multi-omics studies associated with understanding the biology of
complex diseases. While the number of multi-omics studies has increased rapidly in recent
years, the diversity of methods for integrating these data remains limited, being purely
data driven. In order to advance in this field, there is a need to capitalize on the extensive
prior knowledge about component interactions, and create a mechanistic understanding
tool [39].

With the integration of omics approaches, the unbiased analysis of the whole genome
(genomics), transcriptome (transcriptomics), proteome (proteomics), and metabolome
(metabolomics) from different types of samples has been achieved [40]. The integration
of the genome and transcriptome has offered an unprecedented opportunity to determine
unambiguous genotype-phenotype correlation, such as the integration of genomic varia-
tion (e.g., single nucleotide polymorphism–SNP) and transcriptional alteration in single
cells [41].

The integration of transcriptome with proteome has allowed phenotypes to be fully
defined based on gene expression, cellular metabolism, structural dynamics, and signal
transduction [41]. In the case of metabolomics integration, it was possible to perform
targeted or unbiased identification of endogenous metabolites from body fluids, correlating
metabolism, epigenomic changes, and proteomics [40]. There has been a transition from
focusing on a small number of genes at a time, to simultaneously measuring as many
of these cellular components as possible, significantly elevating the biological datasets
collected simultaneously [38].

According to Subramanian et al. [42], the addressable biological questions on the
vision of multi-omics data integration are broadly categorized into three different case
studies: (i) disease subtyping and classification; (ii) predicting biomarkers for various
applications, including diagnostics; (iii) gaining insights into disease biology.

The subtyping and classification of samples based on their omics profiles, especially
cancer, are heterogeneous due to the remarkable differences in disease progression in af-
fected individuals. Therefore, identifying the underlying subtypes of a disease or classifying
samples into known subgroups makes it possible to understand disease etiology and iden-
tify appropriate interventions for patients belonging to different subgroups. Biomolecules
are tightly interconnected, providing the flow of information of biological processes. Un-
derstanding the mechanistic details of disease biology is critical to the diagnosis and
development of new therapeutic interventions [42].

Among the complex diseases addressed in this manuscript, cancer stands out as the
main purpose of our review. To achieve this goal, we have searched https://clinicaltrials.
gov (accessed on 9 January 2023) and 109 studies were found for the terms “Omics” and
“Cancer”. Figure 1 shows the distribution of clinical trials around the globe (Asia, Europe
and the United States). The most relevant trials are shown in Table 2.

https://clinicaltrials.gov
https://clinicaltrials.gov
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and studies with multiple locations are included in all corresponding regions.

Table 2. Most relevant clinical trials using the terms Omics” and “Cancer”.

Study Title Study Purpose Conditions Interventions Locations Study
Number

Preliminary Study
on Plasma Markers
for Early Diagnosis

of Lung Cancer

Molecular features of liquid
biopsy and clinical data from

lung cancer patients using
multi-omics assays, validated a
Machine Learning method able

to discriminate lung cancer
patients from healthy subjects.

Lung Cancer

Diagnostic test: A
machine-learning

tool to detect
early-stage lung

cancer.

China NCT04558255

Advanced
Therapies for Liver

Metastases

State-of-the-art omics used to
characterize the immune and

non-immune microenvironment
of primary tumor and liver
metastases, correlating with

activation status of peripheral
blood leukocytes.

Pancreatic Ductal
Adenocarci-

noma, Colorectal
Cancer, Liver

Metastasis

Not provided. Italy NCT04622423
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Table 2. Cont.

Study Title Study Purpose Conditions Interventions Locations Study
Number

AI used to
optimize

early-stage
hepatocellular

carcinoma
treatment based on

multi-modal
imaging.

AI omics imaging, traditional
omics imaging and clinical
information used to predict

prognosis of different treatment
options for early liver cancer.

Hepatocellular
Carcinoma

Method: Contrast-
enhanced

ultrasound (CEUS)
and Contrast-

enhanced MRI
examination

(CEMRI).

China NCT05627297

Electronic
cigarettes cancer

risk

Integrative multiomics
approach used to determine the
carcinogenic potential of e-cig,
relative to cigarette smoking in

oral epithelium.

Cigarette
Smoking

Device: NIDA
Standard Research
E-cigarette (SREC)

United
States NCT03750825

Artificial
Intelligence system
for assessment of

tumor risk,
diagnosis, and

treatment

AI used to establish a medical
database of standardized and
structured clinical diagnosis

based on multiomics
information.

Lung, Stomach,
and Colon

Cancer
Not provided China NCT05426135

Liquid Biopsy
early detection of

Gastric cancer

Prospective, observational,
multiomics study focused on
detection of gastric cancer by
combined assays using serum
protein markers, cfDNA deep
sequencing, ctDNA mutation

and circulating RNA.
Bioinformatics tools like PEAR
and Bismark are used to process

FASTQ files.

Gastric Cancer
Diagnostic test:

blood-based
biomarkers

China NCT05224596

Liquid biopsy
early detection of
pancreatic cancer

(ASCEND-
PANCREATIC)

Multiomic prospective study
aims to detect early pancreatic
cancer using combined assays

for cfDNA methylation
biomarkers, circulating tumor

DNA (ctDNA) mutations,
serum protein and miRNA

markers using bioinformatics
tools PEAR and Bismark.

Pancreatic
Cancer Not provided China NCT05556603

Breast Cancer,
Omics, and

Precision Medicine
(BR(E)2ASTOME)

To evaluate the clinical utility of
the early use of

network-oriented
BR(E)2ASTOME algorithm

which combines the power of
liquid-based assays, advanced

epi-genomics, and network
analysis to improve

personalized therapies in BC.

Breast Cancer

Biological:
Next-generation
sequencing and

network analysis

Italy NCT04996836

Comprehensive
Omics Analysis of
Pediatric Solid Tu-
mors/Repository

for Related
Biological Studies

To create a repository of blood,
serum, tissue, urine, and tumors

to perform omics profiling.

Sarcoma,
Endocrine

Tumors,
Neuroblastoma,
Retinoblastoma,

Renal Cancer

Not provided United
States NCT01109394
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Table 2. Cont.

Study Title Study Purpose Conditions Interventions Locations Study
Number

Concurrent Ra-
diochemotherapy
and Anlotinib for
Locally Advanced

Cervical Cancer

To observe the efficacy and
safety of a new treatment option
for cervical cancer. Multi-omics
technology and bioinformatics
tools were used to analyze the

patients.

Uterine Cervical
Cancer

Drug:
Hydrochloride

anlotinib, Drug: cis
Plat-

inum/carboplatin,
Radiation:

External beam
radiotherapy and

brachytherapy

China NCT04772001

Lethal Prostate
Cancer

Biology–Urine
Metabolomics

A prospective, observational
and investigational study that

aims to find new
markers/targets for screening

prostate cancer.

Prostate Cancer
Dietary

supplement:
Multi-carotenoids

Taiwan NCT03237702

Artificial
Intelligence System

for Pathological
Diagnosis and

Therapeutic Effect
Prediction Based
on Multimodal
Data Fusion of

Common Tumors
and Major

Infectious Diseases
in the Respiratory

System.

To create a large medical
database that includes

standardized and structured
clinical diagnosis and treatment
information, and to develop a

multi-modal data fusion-based
technology system for

individualized intelligent
pathological diagnosis and

therapeutic effect prediction
using artificial intelligence

technology.

Lung Cancer,
Pulmonary

Tuberculosis,
Covid19

Not provided China NCT05046366

Early Diagnosis of
Small Pulmonary

Nodules by
Multi-omics

To analyze the immunological
repertoire and genetic

mutations of pulmonary
nodules using imaging tests,

three-dimensional
reconstruction, bioinformatics

R-scripts and algorithms
(OptiType algorithm).

Non-small-cell
Lung Cancer Not provided China NCT03320044

AI early screening
of Colorectal

Cancer Based on
Plasma

Multi-omics.

AI algorithm to evaluate
accuracy and effectiveness of a
novel screening method based

on plasma multi-omics to detect
colorectal cancer and advanced

adenomas.

Colorectal
Adenoma,
Colorectal

Cancer

Diagnostic test:
Colonoscopy,

Diagnostic test:
ctDNA

methylation,
Diagnostic test:

characteristics of
ctDNA fragment

China NCT05587452

Evaluation of
Clinical Treatment

of Multiple
Myeloma Based on

Multi-omics

Multi-omics method to find
biomarkers of clinical efficacy,
adverse reactions, and blood

concentration of bortezomib in
peripheral blood samples.

Multiple
Myeloma,

Bortezomib
Drug: Bortezomib China NCT04678089
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Table 2. Cont.

Study Title Study Purpose Conditions Interventions Locations Study
Number

Gut Microbiota
and Metabolomic

(MBS)

To evaluate the correlation
between intestinal microbiota
and metabolites in Borrmann
type IV gastric cancer and to

use Machine Learning to build
models of intestinal microbiota

and metabolomics.

Stomach
Neoplasms, Gut

Microbiota,
Metabolomics

Procedure:
Healthy control

specimen
collection,
Procedure:

Non-Borrmann IV
patient specimen

collection,
Procedure:

Borrmann IV
patient specimen

collection

China NCT05205187

I3LUNG:
Integrative Science,

Intelligent Data
Platform for

Individualized
lung cancer

immunotherapy

AI international project that
aims to predict immunotherapy

efficacy for NSCLC patients
using the integration of

multisource data (real-word
and multi-omics data).

Lung Cancer Not provided

United
States,
Greece,
Israel,
Spain

NCT05537922

Integrative Omics
Analysis for

Colorectal Cancer
and Metastasis

Integrative omics to analyze
and predict candidate

biomarkers of colorectal cancer
and distant metastasis.

Colorectal
Cancer

Other: Integrative
omics China NCT05482529

Multi-omics
Characterization of

Pancreatic
Neuroendocrine

Tumors

Integrated multi-omics to
identify tumor subgroups in
pancreatic neuroendocrine

tumors and carcinomas
regardless of their grade and

stage.

Cancer of
Pancreas Not provided France NCT05234450

Multi-omics
Sequencing in
Neoadjuvant

Immunotherapy of
Gastrointestinal

Tumors

To find new biomarkers of
efficacy of combined

immunotherapy.

Immunotherapy,
Gastric Cancer,
Rectal Cancer,
Chemotherapy

Effect,
Radiotherapy

Drug: Terelizumab,
Drug: CapeOx,

Drug:
Trastuzumab,

Radiation:
Radiotherapy

China NCT05515796

Multi-Omics
Noninvasive
Inspection of

Tumor Risk for
Gastric Cancer

A prospective, case-control
study intended to develop and

validate a blood-based
multi-omics assay and

computational model for early
detection of gastric cancer.

Gastric Cancer Device: ctDNA
multi-omics test China NCT04947995

Omics of Cancer:
Onco Genomics

To create a registry of
genomic/clinical data of cancer

or cancer predisposition
patients.

Neoplasms
Cancer Not provided United

States NCT05431439

Pleural
Carcinomatosis
Tissue Banking

To create a biocollection of
tissues from pleural

carcinomatosis and characterize
intratumoral heterogeneity
through multi-omics and
bioinformatics analysis.

Pleural Effusion,
Malignant Pleural biopsies France NCT04844827
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Table 2. Cont.

Study Title Study Purpose Conditions Interventions Locations Study
Number

Predictive
Biomarkers in
Patients with

Advanced
Hepatocellular

Carcinoma Treated
with Systemic

Therapy

Multi-omics to find biomarkers
of treatment response in
hepatocellular carcinoma

(HCC).

Hepatocellular
Carcinoma

Drug:
atezolizumab plus

bevacizumab
Korea NCT05197504

Project CADENCE
(CAncer Detected

Early caN be
CurEd)

(CADENCE)

To develop and validate
multi-cancer screening tests

based on multi-omics
(single-cell early cancer
detection algorithms).

Thoracic,
Ovarian, Liver,

Prostate, Gastric,
Colorectal,

Breast,
Esophageal, and

Pancreatic
Cancer

Not provided Singapore NCT05633342

Prospectively
Predict

Gastrointestinal
Tumor Treatment
Efficacy Based on

Peripheral
Multi-omics

Liquid Biopsy

To predict and monitor
immunotherapeutic outcomes

of gastrointestinal tumors.

Advanced
Gastric Adeno-

carcinoma,
Immunotherapy

Device: EV-array China NCT04993378

ML radiomic and
pathomic study of

Pituitary
Adenomas

Machine learning to study
multi-dimensional and

multi-omics data, to train a risk
prediction algorithm for

refractory pituitary adenomas.

Pituitary
Neoplasms

Diagnostic test:
Artificial

intelligence model
China NCT05108064

Multi-omics
immune

prevention and
treatment of

gliomas

Omics sequencing and
molecular biology technologies

to study glioma treatment
efficacy.

Transcriptomics,
Radiomics,

Glioma
Procedure: surgery China NCT04792437

Esophageal Cancer
Neoadjuvant

Chemoradiation
response

prediction using
Artificial

Intelligence &
Machine Learning

(QARC)

To predict treatment response in
esophageal cancer patients

using radiomics AI modeling.

Esophageal
Cancer

Radiation:
Neo-adjuvant
radiotherapy,

Drug:
Neo-adjuvant
chemotherapy,

Procedure:
Esophagectomy

India NCT04489368

Easy-to-use
Adrenal

Cancer/Tumor
Identity Card

To provide an easy-to-use
“identity card” of adrenal

tumors for personalized patient
management.

Adrenal Gland
Neoplasms

Biological: omics
identity card France NCT02672020
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6. Integrating Complex Diseases through TBI

Ontologies are used to document new knowledge from biological and biomedical
research, from classical biochemical experiments to omics experiments. These ontologies
are created, maintained, and extended by experts, with the goal of providing a unified anno-
tation schema that is human- and machine-readable [43]. According to The Gene Ontology
Consortium [44], the ontology encompasses three divisions, these being: (i) molecular
function (the activity of a gene product at the molecular level), (ii) cellular component (the
location of a gene product’s activity in relation to biological structures), and (iii) biological
process (a larger biological program in which the molecular function of a gene is used). Ac-
cording to these divisions, ontology enables complex answers to be obtained in a simplified
way, being treatable by both man and machine, in order to offer reliable data according to
the system addressed.

Manda [45] addressed the use of association rule mining focused on predicting an-
notations, becoming crucial to discover new relationships between ontologies and other
applications. Wang [46] and Quan [47] demonstrated the use of ontology data in pathway
analysis (organizing and eliminating pathway data redundancy), which are crucial for
understanding physiology and pathogenesis of diseases. Schriml et al. [48] applied a
human disease ontology (DO) to provide disease classification by formal semantic rules to
specifically express meaningful disease models, aiming to include mechanistically inferred
multiple-disease classifications, enabling new insights into related diseases, such as the
heterogeneity of genetic diseases and the multicellular origin of cancer.

7. Application of TBI in Complex Diseases

Applications of TBI are evidenced by Roy, Singh and Gupta [49], who highlighted
an innovative study against pancreatic ductal adenocarcinoma, through an integrated
analysis of DNA methylation and gene expression datasets aiming at better mechanistic
and molecular insights that can be correlated with clinical data. These authors provide
valuable results for prognostic improvements, personalized treatment and delineation
of the heterogeneous landscape of pancreatic ductal adenocarcinoma, and may enable
personalized therapies and risk prediction.

According to Liu et al. [50], a new connection of TBI with validation through in vitro,
in vivo, and patient-derived samples has proven possible in the face of breast cancer
biomarker discovery. They used circulating non-coding RNA as a source of new biomarkers
for non-invasive screening. As a consequence, hsa-miR-423-5p expression in plasma and
blood exosomes of breast cancer patients was observed to be abnormally high compared to
healthy controls. Encoding genes regulated by hsa-miR-423-5p were widely distributed in
signaling pathways associated with tumors in silico.

Cai et al. [51] incorporated improvements in analytical methods for the detection
of differentially expressed genes (DEGs) between two different phenotypes with limited
sample sizes, enabling improvements in reaching vital clues for cancer treatment. Chen
et al. have developed a highly effective tool to accurately detect and visualize gene fusions,
which play an important role in cancer.

Yu, Zhao and Gao [52] used miRNA data on target genes and disease tissue specificity,
as well as information from the Food and Drug Administration, to construct drug-miRNA-
disease networks, and potential disease treatment prediction, which was employed in
breast cancer cases, detecting new potential drugs for treatment. Zeng et al. [53] built a
co-expression network using a gastric cancer model, and performed enrichment analyses to
identify key unique genes, suggesting them as likely biomarkers of cell subtype. Likewise,
Zhou et al. [54] demonstrated green tea data on suppression of proliferation pathways
in cancer, as well as positive regulation for certain miRNAs, in a study combing miRNA,
mRNA, pathway and network analysis.

TBI has highlighted several new and improved studies for other complex diseases,
such as rare diseases, metabolic syndrome, and pandemic diseases, and has served as a
pillar for new research on biological networks, such as co-expression networks and multi-
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omics analyses. In this context, Akgün et al. [55] addressed the importance of TBI for rare
disease analyses and preservation of genomic data for these patients, due to the difficulty
of obtaining biological data.

Immel et al. [56] portrayed the use of genomic DNA analysis from buried victims who
had been afflicted by the medieval plague. Given its devastating effect, the second plague
pandemic caused by Yersinia. pestis was a strong candidate to exert selective pressure on
the human immune response. Thus, the authors developed a study that indicated that the
differences in allele frequencies of HLA genes involved in innate and adaptive immunity
(responsible for extracellular and intracellular responses) to pathogenic bacteria (such as
Yersinia. pestis) may have been affected by the historical epidemics that occurred in Europe
in the past.

Recently, humanity experienced a major pandemic caused by the SARS-CoV-2 virus,
which, due to the lack of available drugs or vaccines, made the rapid virus spread and
progress throughout the world, causing many deaths. TBI proved to be useful and in-
novative by performing a crosstalk between molecular modeling techniques, molecular
docking, and in vitro testing, as described by Pooja et al. [57], who made the ability of in
silico studies to provide candidate molecules for antiviral drug development explicit.

Jaballah et al. [58] coupled in silico studies via biological networks with molecular
analyses for understanding menopausal hormonal changes associated with the onset of
metabolic syndrome (MS) and its consequences for type 2 diabetes (T2DM) and cardiovas-
cular disease (CVD). To achieve this goal, the authors exploited a TBI approach to detect
common genetic signatures for MS, DM2 and CVD, and menopausal status, and, through
enrichment analysis, provided core genes that may play a key role in menopausal status
and influence the risks of MS, DM2, and CVD.

Based on Djeddi et al. [59], TBI has also been used in multi-omics approaches finding
different molecular signatures common to diverse diseases and therapeutic strategies.
Huang et al. [60] highlighted the high demand of using gene co-expression network (GCN)
mining, in such way that TBI identified gene modules with correlated expression profiles.
These interactions have made it possible to discover new latent genetic interactions, and
new gene functions, and to extract molecular features of certain disease groups, finding
new disease biomarkers.

Thalor et al. [61] highlighted the impact of a translational approach on the elucidation
of potential gene signatures, such as genes associated with MAPK, PI3-AkT, Wnt, TGF-β
and other signal transduction pathways, to demonstrate new molecular hypotheses about
the metastasis process related to triple negative breast cancer (TNBC). Ullah et al. [62] high-
lighted the ability of bioinformatics to provide better diagnostic and therapeutic markers
for colorectal cancer, being able to identify the effectiveness of SRY-Box Transcription Factor
9 (SOX9) in improving colorectal cancer prognosis.

Kaur [63] applied a TBI approach to the study of gliomas to obtain better molecular
classification of different grades of glioma and demonstrated the need for in-depth assess-
ments on critical genes for cancer development. Yi et al. [64] applied TBI on mantle cell
lymphoma by including sequencing of patient longitudinal samples and RNA-seq data, ob-
taining genetic subsets that could guide a clinical understanding of cancer clonal evolution.

Yu et al. [65] have highlighted how connecting Bioinformatics with the clinic allows for
the construction of a novel framework to evaluate and select assays to monitor cancer. They
used NGS with large gene panels of somatic cancer mutations of circulating tumor DNA
(ctDNA). In parallel, Xu et al. [66] pointed to the application of this area on the current
COVID-19 pandemic research, in which TBI have helped understand potential disease
mechanisms, and effective and less toxic treatments.

Last, but not least, Battineni et al. [67] emphasized an improvement on sample storage
for future research through the use of TBI, because this area provides a crucial means of ap-
plying artificial intelligence on data analysis, disease diagnosis, prediction and classification
of pathological findings. These numerous applications underscore the unequivocal innova-
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tive role of TBI in various areas of medicine in an interdisciplinary and multidisciplinary
way, as symbolized in Figure 2.
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Figure 2. Integration between origin and outcomes of Translational bioinformatics. TBI applied to the
study of complex diseases involves basic research and clinical research in a reciprocal, collaborative
and multidisciplinary way. For correct understanding and treating complex multifactorial diseases,
there is a need to integrate information from multiple areas, such as Big Data, bioinformatics,
computational biology, molecular biology associated with omics data and precision medicine. By
doing so, this knowledge can be applied to treatment customization, understanding disease networks,
elucidating biological processes and developing translational pharmacology.

7.1. Relationship between Next-Generation Sequencing (NGS) and TBI in the Study of
Complex Diseases

The constant evolution of sequencing technologies has motivated modern bioinfor-
matics, shaping the area of basic and clinical research with advanced techniques based on
sophisticated computation, artificial intelligence, machine, and deep learning [68].

The development and application of next-generation sequencing platforms enabled
bioinformatics improvements primarily through sequencing automation methods, mainly
due to the needs of personal genomes and metagenomics projects [68].

Sequencing is subdivided into generations: (i) first generation (Sanger sequencing),
provides high precision and helps in validating NGS discoveries, but has a low yield;
(ii) second generation, with high throughput, short reading length, low cost, difficult
sample preparation, clinical applications and PCR amplification; (iii) third generation,
highlights the absence of PCR amplification, requires less initial material, longer reading
lengths, very low cost and low error rate during library preparation, but permeates a
relatively high sequencing error rate and a small number of algorithms/tools for final
analysis; and (iv) fourth generation, ultra-fast scanning of the entire genome, enabling
sample spatial distribution reads (in situ sequencing) [69].

Among numerous applications of this crosstalk between NGS and bioinformatics,
clinical genetics has achieved numerous improvements regarding the analysis of hundreds
of genes at an unprecedented speed and low cost, applying bioinformatics algorithms to
deal with complex and heterogeneous disorders by combining information from multiple
omics sources (such as genome, transcriptome, proteome and epigenome), to develop new
machine learning algorithms, aiming at improving NGS utility and performance, achieving
superior clinical diagnostics and opening new therapeutic paths [70].

In addition, third-generation sequencing has demonstrated innovative translational
solutions for the diagnosis of infectious diseases (pathogen detection and characterization of
mixed microbial communities) [71], cancers and other diseases, identifying a large number
of disease variants in the human genome [72], using a relatively low-cost platform, fast
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response time and easy-to-use bioinformatics pipelines [71], thus, generating an increase in
disease molecular diagnostic accuracy, using unique and real-time molecular sequencing
technologies [73].

Exome sequencing has been providing an increase in disease diagnostic yield, identi-
fying new pathogenic genetic variants [74].

Bioinformatics coupled with high computational power through cloud platforms,
offers scalability, safety and performance [75], integrating diagnostic and therapeutic tools
for genomic and pharmacogenomic discoveries, in order to provide routine medical care,
design specific drugs and personalized genome tests [76].

7.2. Multi-Omics, Single Cells, and TBI in the Study of Complex Diseases

The advances provided by sequencing associated with precision medicine have driven
new paradigm shifts in clinical practice and basic research. The union of collective and
individualized clinical data with patient-specific multi-omics data has resulted in new
therapeutic strategies [13]. Multi-omics approaches allow for the integration of data from
various platforms, in a multifaceted view of disease processes [77].

Single-cell omics provides a basis for data-driven reconstruction of cell lineage hier-
archies, deepening the understanding of the underlying mechanisms that govern health
and disease [77,78]. Bioinformatics plays a crucial role in the interpretation and analy-
sis of single-cell data results. To achieve this, five complementary strategies are applied:
(i) combine; (ii) separate; (iii) split; (iv) convert; and (v) predict [78].

While new research methodologies have been developed, new computational re-
sources, along with new algorithms, mathematical models and new tools, have been used
in multi-omics single-cell studies to uncover new information about complex diseases,
such as cancer [77–79]. Nam, Chaligne and Landau [80] highlighted the multidimensional
incorporation of omics with single cells in cancer, promoting better understanding of
tumor evolution, unveiling the cell-to-cell genetic diversity, epigenetic profiles, spatial
distributions, and microenvironment interactions.

8. Conclusions

TBI has the mission to investigate tumor biology from different perspectives, using
novel approaches, combining cellular and molecular biology techniques, bioinformatics,
and clinical data. By these means, it is possible to better understand and characterize tumor
evolution, as well as develop new strategies for disease detection, control, and treatment.
Research in this area aims to evaluate a large amount of data and understand molecular
alterations in the cell genome that lead to the tumor phenotype, and evaluate the effects
of these alterations on cell signaling and metabolic pathways, as well as the interaction
of tumor biology with the immune system and its microenvironment. In the face of new
discoveries in TBI, biomarkers for clinical and therapeutic use can be identified.

TBI research is characterized by being multidisciplinary, and it brings together ex-
pertise from different areas such as cell biology, molecular biology, genetics, immunology,
virology, biochemistry, bioinformatics, and medicine, applying it in the pharmaceutical
and biotechnology industry, in oncology translational research, and in the development
of mathematical and computational models that can bring forward better treatment and
quality of life for cancer patients.

Given the information presented, it appears that a joint effort is needed to increase
the dissemination of knowledge about TBI from academia to society, highlighting the great
benefit and impact of this area on the study, understanding, and elucidation of mechanisms
for the treatment of complex diseases, especially cancer. In addition, it is important
that higher education institutions offer students integrated and interdisciplinary training,
bringing together the areas of computing, mathematics, statistics, biology, medicine, and
other areas of health, aiming to train professionals to be able to act and develop research
projects in TBI integrating basic and clinical research through diverse and dynamic content.
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We hope to have provided an efficient guide for the dissemination of academic knowl-
edge in this area for numerous audiences, especially students and health professionals.
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