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Abstract

Modern nanotechnology provides efficient and cost-effective nanomaterials (NMs). The increasing 

usage of NMs arises great concerns regarding nanotoxicity in humans. Traditional animal 

testing of nanotoxicity is expensive and time-consuming. Modeling studies using machine 

learning (ML) approaches are promising alternatives to direct evaluation of nanotoxicity based 

on nanostructure features. However, NMs, including two-dimensional nanomaterials (2DNMs) 

such as graphenes, have complex structures making them difficult to annotate and quantify 

the nanostructures for modeling purposes. To address this issue, we constructed a virtual 

graphenes library using nanostructure annotation techniques. The irregular graphene structures 

were generated by modifying virtual nanosheets. The nanostructures were digitalized from the 

annotated graphenes. Based on the annotated nanostructures, geometrical nanodescriptors were 

computed using Delaunay tessellation approach for ML modeling. The partial least square 

regression (PLSR) models for the graphenes were built and validated using a leave-one-out 

cross-validation (LOOCV) procedure. The resulted models showed good predictivity in four 

toxicity-related endpoints with the coefficient of determination (R2) ranging from 0.558 to 0.822. 
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This study provides a novel nanostructure annotation strategy that can be applied to generate 

high-quality nanodescriptors for ML model developments, which can be widely applied to 

nanoinformatics studies of graphenes and other NMs.

Graphical Abstract

Keywords

Nanotoxicity; Graphenes; Nanostructure annotation; Nanodescriptors; Machine learning

1. Introduction

Modern nanotechnology is a critical technology for sustainable nanomaterial (NM) 

developments in both basic research and commercial applications [1–3]. The global 

nanotechnology market is expected to exceed $125 billion by 2024 [4]. Due to their diversity 

in structures, properties, and bioactivities, NMs have gained prominence in fields such as 

food security and safety processing [5–8], precision agriculture [9–11], clean energy [12], 

and clinical medicine [13, 14]. However, the increasing use of NM is coupled with concerns 

for nanotoxicity [15–21]. There is an urgent need for comprehensive risk assessments of 

both emerging and existing NMs. Traditional experimental methods to evaluate NM toxicity, 

which often use large numbers of animals, are expensive and time-consuming. With the 

development of Machine Learning (ML) approaches, computational modeling is emerging 

as an alternative for predicting the behavior of NMs in biological environments [22] and 

evaluating their nanotoxicity [23, 24]. Quantitative Nanostructure Activity Relationship 

(QNAR) modeling using ML approaches reveals the relationships between NMs’ structural 

features and biological activities such as toxicity in a quantitative manner [25]. In the 

Organization for Economic Co-operation and Development (OECD) 2022 report on risk 

assessment for NMs, ML-based modeling study was highlighted as a promising strategy for 

rapid toxicity screening of NMs [26].
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ML has been successfully utilized in modeling studies of physicochemical properties 

and bioactivity for small molecules [27–31]. However, ML applications in computational 

nanotoxicology are limited because of lacking nanotoxicity data and the difficulties of 

nanostructure annotations [32]. Based on the EU-US Nanoinformatics Roadmap 2030 

guidance for ML model development, the good performance of predictive nanotoxicity 

models relies heavily on the well-defined descriptors that tie nanostructures and 

physicochemical properties to the bioactivities of NMs [33]. Nanodescriptors represent 

NMs’ chemical and physical identities, intrinsic properties and extrinsic properties, which 

can be classified as experimental, empirical, and geometrical [34]. Experimental results of 

NMs’ morphological properties and physicochemical properties such as size [35], magnetic 

properties [36], and zeta potentials [37], can be used as descriptors for modeling purposes. 

However, these measured nanodescriptors vary significantly with different experimental 

conditions and may not be reliable without prior references. Empirical descriptors have 

been developed using molecular simulations and quantum chemistry [38–40], however, 

these descriptors need expertise for selecting appropriate force fields and calculation 

methods to generate descriptors. Geometrical descriptors provide more detailed information 

on nanostructures by annotating the important structural features such as molecular 

structures, mechanical properties, and electrical properties [23]. In our previous studies, 

novel geometrical nanodescriptors were developed by employing Delaunay tessellation and 

atomic properties. The nanodescriptors quantified nanostructures, by simulating the surface 

chemistry, to develop ML models for NMs such as metallic nanoparticles [41, 42]. However, 

for more complex NMs, such as two-dimensional nanomaterials (2DNMs) like graphenes, 

nanostructure annotations and simulations were not previously successful due to complex 

nanostructures.

As 2DNMs, graphenes are carbon-based NMs consisting of single- or few-layer atoms 

arranged in a planar honeycomb structure and are being widely applied in biomedicines, 

biosensors, and solar cells [43, 44]. Graphenes usually present planar structures with 

irregular edges, which is a key factor influencing their effects on cellular uptake and 

cytotoxicity [45–47]. Lateral size has long been shown to modulate the pathogenicity of 

graphenes [48, 49], but subtle surface modifications can also influence their bioactivity 

[46, 47, 50]. For example, primary endothelial cells develop more cytoplasmic protrusions 

and are more prone to losing their barrier function when exposed to increasingly oxidized 

graphene sheets [51]. The type of surfactant necessary to disperse the more hydrophobic 

graphenes and its concentration may also affect their cytotoxicity [52]. As graphene 

derivatives, graphene oxides have carbon frames oxidized with oxygen-containing functional 

groups on their edges and basal plane. The diverse graphene structures, especially 

the irregular edges, are difficult to annotate precisely through simulating experimental 

conditions, which prohibits the use of geometrical nanodescriptors in ML modeling.

In this study, we developed a novel structure annotation strategy by (1) simulating the 

nanostructures of synthesized graphenes; (2) developing geometrical nanodescriptors to 

characterize the structure features of graphenes; and (3) using the calculated nanodescriptors 

to develop ML models for various toxicity endpoints of graphenes. In a previous study, we 

synthesized and assessed the toxicities of graphenes and graphene-like inorganic 2DNMs 

[53], which generated a high-quality dataset for graphene toxicity modeling. The irregular 
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structures of the graphenes and inorganic 2DNMs were constructed by modifying the 

number of vertices and edges on virtual nanosheets. For graphene oxides, functional groups 

including hydroxyl, epoxy, and carboxyl groups were added on the graphene surface to 

reach the carbon/oxygen (C:O) ratio experimentally measured. The annotated nanostructures 

were saved as Protein Data Bank (PDB) files. Novel geometrical nanodescriptors were 

computed from the annotated nanostructures using the Pauling electronegativity and 

the Delaunay tessellation approach. Partial least square regression (PLSR) models were 

developed for various nanotoxicity endpoints including LDH release, cell viability, oxidative 

stress, and apoptosis. This structure annotation strategy shows great potential in developing 

ML models for nanotoxicity predictions of NMs with complex nanostructures.

2. Material and methods

2.1. 2DNMs dataset

The 11 2DNMs used for ML modeling were synthesized and characterized in our previous 

study [53]. Graphene oxides were synthesized according to a modified Hummer’s method 

[54]. Reduced and partially reduced graphene oxides were synthesized by controlled 

reduction using L-ascorbic acid and size-sorted graphene oxide as the starting material. 

Graphene and inorganic 2DNMs were synthesized by liquid-phase exfoliation in the 

presence of sodium cholate hydrate (NaC) or Pluronic® F-108 (PF108). The toxicities of 

all the 2DNMs were investigated in a triculture model of small intestinal epithelium. LDH 

release, cell viability, and oxidative stress were tested after treating with 1 μg ml−1 and 

5 μg ml−1 2DNMs and apoptosis was tested after treating with 5 μg ml−1 2DNMs. LDH 

release (plasma membrane damage) was calculated as % of LDH in lysed control. Cell 

viability (mitochondrial enzymatic activity) was expressed as % of activity (fluorescence) 

measured in cells treated with control fasting food model (FFM) digesta. Caspase 3/7 

activity (apoptosis) was expressed as fold changes relative to that in cells exposed to FFM 

digesta. Oxidative stress (ROS generation) was expressed as fold changes relative to that in 

cells exposed to FFM digesta. The Pearson correlation analysis was implemented using the 

Python package SciPy 1.6.2 to test for results associations between two doses of 2DNMs in 

LDH release, cell viability, and oxidative stress.

2.2. Virtual 2DNMs library construction

The construction of virtual 2DNMs (v2DNMs) was performed by the new graphenes 

generation toolkit of VINAS, which took the target lateral size and C:O ratio as the input 

parameters. Briefly, a 2DNM sheet was first created with a lateral size larger than the target 

lateral size. Then, the irregular 2DNM was generated by scaling down the initial lateral 

size to the target and modifying the number of vertices and edges on the sheet. For GOs, 

rGOs, and prGO, the functional groups such as hydroxyl, epoxy, and carboxyl groups were 

randomly placed on the irregular graphene frame until the C:O ratio reached the target 

value. The structure information of annotated 2DNMs was then saved as PDB files. To 

avoid potential inconsistency of calculated nanodescriptor results due to different irregular 

shapes and randomly distributed functional groups, total 30 v2DNMs were generated for 

each 2DNMs in the dataset.
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2.3. Nanodescriptor generation

Based on the generated v2DNMs, nanodescriptors were calculated using the new descriptor 

calculation toolkit of VINAS coded in Java 1.8.0_301. There are eight types of atoms in 

these v2DNMs: C (carbon), O (oxygen), H (hydrogen), N (nitrogen), S (sulfur), B (boron), 

Mo (molybdenum) and W (tungsten). Every four nearest atoms (e.g., CCCC, CCHO, etc.) 

that can form a trigonal planar, quadrangulation, or tetrahedron were identified from the 

v2DNM structures using the Delaunay tessellation approach. In 3D space, atoms within a 

distance cutoff of 2.0 Å and 2.5 Å played a key role in the physicochemical properties of 

GRMs and graphene-like inorganic 2DNMs, respectively [55–58]. Accordingly, the distance 

between any two atoms in a formed 3D tetrahedron fragment was set to within 2.0 Å 

in GRMs and within 2.5 Å in inorganic 2DNMs. In 2D planar, atoms within a distance 

cutoff of 2.5 Å were important for the 2D features of 2DNMs, the distance between 

any two atoms in a formed 2D trigonal planar or quadrangulation fragment was set to 

within 2.5 Å in all 2DNMs [59, 60]. The geometrical nanodescriptors were calculated 

without considering the atom order within a quadrangulation or tetrahedron (e.g., CCCO 

was the same as COCC). As described in our previous study [41], the procedure of 

geometrical nanodescriptors calculation can be summarized as follows: (1) the value of 

each quadrangulation or tetrahedron was the sum of the electronegativity of four atoms in 

this quadrangulation or tetrahedron. (2) The descriptor value in each v2DNM was computed 

as the value of the relevant quadrangulation or tetrahedron multiplied by its occurrences. 

(3) The final descriptor values of a 2DNM were averaged from results obtained from 30 

v2DNMs. In this study, additional surfactant descriptors to describe the surfactants for 

experimental testing were also used.

2.4. Machine learning modeling

ML models were developed using the PLSR algorithm. PLSR is a method that combines 

principal component analysis and multiple regression [61]. PLSR performs a descriptor 

dimension reduction procedure and constructs a set of components that accounts for as much 

as possible of the total descriptors variance in the dataset, which can avoid multicollinearity 

and model overfitting [62, 63]. It is suitable for the modeling of small training sets using 

large sets of descriptors [64–66]. In this study, the generated geometrical nanodescriptors 

and surfactant descriptors were used to develop PLSR models for 2DNMs’ toxicities. The 

PLSR algorithm was implemented using scikit-learn 0.24.1 [67]. The original dataset was 

split into training and test sets with the ratio of 9:2 for cell viability, LDH release, and 

oxidative stress and 8:1 for apoptosis. The training sets were used to build models and 

relevant test sets were used for the prediction purpose. The leave-one-out cross-validation 

(LOOCV) procedure was performed to find the optimal number of components for modeling 

using the training set. Briefly, a single 2DNM was excluded from the training set and the 

remaining 2DNMs were used for model development. Then the developed models were 

used to predict the excluded 2DNM. This procedure was repeated until every 2DNM in 

the training set was used for prediction purpose one time. In the LOOCV procedure, the 

root mean square error (RMSE) and coefficient of determination (R2) were used as the 

parameters to identify the optimal number of components and the best PLSR model for each 

toxicity endpoint as follows:
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R2 = 1 −
∑Y Y PRED − Y EXP

2

ΣY Y EXP − Y MEAN
2 (1)

RMSE = 1
nΣY Y PRED − Y EXP

2
(2)

where YEXP was the experimental results, YPRED was the predicted results, YMEAN was the 

mean value of the experimental results, n was the number of samples. Then, the external test 

set was used to evaluate the performance of selected PLSR models.

3. Results and Discussion

3.1. 2DNMs dataset overview

The information of the original 2DNMs dataset is summarized in Table 1. The dataset 

consisted of two types of 2DNMs: (1) eight graphene-related materials (GRMs) including 

two graphenes, three graphene oxides (GO), two reduced graphene oxides (rGO), and 

one partially reduced graphene oxide (prGO); (2) three graphene-like inorganic 2DNMs 

including one hexagonal boron nitride (h-BN), one molybdenum disulfide (MoS2), and one 

tungsten disulfide (WS2). Amphiphilic GOs were dispersed in water and the remaining 

2DNMs, which are hydrophobic NMs, were dispersed in NaC or PF108 solutions for 

experimental testing. The toxicity data of the 2DNMs were summarized in Table S1. After 

treatment with 1 μg ml−1 2DNMs, the values for LDH release, cell viability, and oxidative 

stress range from 1.61% to 6.63%, 95.95% to 113.88%, and 0.81 to 2.23 (fold change) 

respectively. After treatment with 5 μg ml−1 2DNMs, the toxicity results of LDH release, 

cell viability, oxidative stress, and apoptosis range from −1.08% to 16.40%, 76.03% to 

119.96%, 0.80 to 2.15 (fold change), and −2.50 to 0.55 (fold change) respectively. Pearson 

correlation analysis between the experimental results of 1 μg ml−1 and 5 μg ml−1 2DNMs 

were shown in Fig. S1. The resulted Pearson correlation coefficient r and two-tailed p-value 

showed that two doses 2DNMs have good correlation in oxidative results while they were 

not correlated in LDH release and cell viability results.

3.2. Annotating 2DNMs by constructing virtual 2DNMs

The in-house Virtual Nanostructure Simulations (VINAS) toolbox coded in Python 3.8 was 

used to construct all v2DNMs in this study with specified lateral size and C:O ratio as the 

input parameters. The key structure features of GRMs were shown in Fig. 1A-D. Pristine 

graphene represented a carbon frame arranged in a hexagonal lattice (Fig. 1A). Based on the 

Lerf-Klinowski-type structural models [68], hydroxyl groups were added randomly on the 

carbon frame (Fig. 1B); epoxy groups were placed on two adjacent connected carbon atoms 

(Fig. 1C); and carboxyl groups were (Fig. 1D) to form GO, rGO and prGO respectively. 

Each carbon atom on the graphene frame can be modified by adding one functional group 

and the functional groups can be added either above or below the carbon frame layer. The 

vGRMs generation procedure has three steps. First, a graphene sheet was created. The actual 

sheet’s lateral size, which was based on the experimental results, was marked as p3p4 on 

the diagonal line p1p2 (Fig. 1E). The virtual graphene sheet was generated by randomly 
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forming other vertices with their distances to the sheet center o no larger than half of the 

target lateral size. Then these vertices were connected to form a polygon with an irregular 

shape, and the remaining sheet outside the polygon was deleted (Fig. 1F). To generate GO, 

rGO, and prGO, the functional groups were randomly added on the surface of the graphene 

to reach the target C:O ratio. For three inorganic 2DNMs in the dataset, the constructions 

of corresponding v2DNMs followed the same procedure except using different atoms and 

associated residues to generate the initial sheet. For example, h-BN had a lattice with B 

and N atoms in a hexagonal formation (Fig. 2). MoS2 and WS2 showed similar atom 

arrangements in which S and Mo or WWWW atoms were connected by covalent bonds as 

S-Mo-S and S-W-S respectively (Fig. 2). In the end, the constructed v2DNMs were saved as 

individual PDB files. All 11 2DNMs’ PDB files and bioactivity data are downloadable from 

in-house nanoinformatics portal (http://vinas-toolbox.com/explore_group/2DNMs).

3.3. Nanostructure visualizations

Using the PDB files consisting of annotated 2DNMs, the nanostructures in the dataset can 

be rendered by visual molecular dynamics (VMD) [69] using van der Waals (VDW) method. 

All the GRMs and inorganic 2DNMs have irregular polygon structures that varied in sizes, 

edge numbers, atom types, and surface groups (Fig. 2). Specifically, G-NaC and G-PF108 

are graphenes with different lateral sizes, which were constructed only with carbon atoms. 

GOs, rGOs, and prGO are GRMs oxidized with hydroxyl, epoxy, and carboxyl groups with 

C:O ratios ranging from 61:39 to 78:22. h-BN has a structure similar to graphene, where B 

and N atoms alternately constructed hexagonal lattices instead of carbons. MoS2 and WS2 

showed a sandwich-like structure with two hexagonal planes of S atoms and a hexagonal 

plane of Mo or W atoms in the middle. All the annotated 2DNM structures were used to 

calculate nanodescriptors for modeling purposes.

3.4. Nanodescriptors generations

To account for the uncertainty of experial synthesis of 2DNMs, 30 v2DNMs were 

constructed for every 2DNM to mimic the diverse irregular structures of corresponding 

2DNM [53]. The average lateral sizes of generated v2DNMs for each 2DNM are consistent 

to experimental conditions and were shown in Table 1. The designed nanodescriptors should 

be able to describe the diverse 2DNM and but not be sensitive to changes of irregular shapes 

of 2DNM due to the synthesis uncertainty. Based on the Delaunay tessellation approach, 

quadrangulations or tetrahedrons were generated for each four nearest neighboring atoms 

on v2DNM structure as nanodescriptors. The ientified quadrangulations or tetrahedrons 

can describe v2DNM structure features on the surface, which account for their properties, 

activities and toxicities. The value for each identified quadrangulation or tetrahedron 

was the sum of electronegativity values of the four atoms within this trigonal planar, 

quadrangulation or tetrahedron. For example, the value of CCCC was 10, obtained from 

the sum of four carbon electronegativity values (2.5 × 4). The atomic electronegativity 

values of all atoms were summarized in Table 2. Furthermore, a nanodescriptor value for a 

v2DNM was calculated as the value of each trigonal planar, quadrangulation, or tetrahedron 

electronegativity multiplied by its occurrences in this v2DNM. As mentioned above, 30 

v2DNMs were constructed for every 2DNM. Thus, the nanodescriptors for a 2DNM were 

calculated by averaging descriptor values of 30 v2DNMs. Since surfactants can influence 
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2DNMs’ stability and surface chemistry [70–72], additional categorical descriptors were 

introduced to account for the effects of different surfactants on 2DNMs’ properties. Based 

on the surfactants used in the experimental testing (Table 1), the surfactant descriptors 

of the corresponding 2DNM were binary descriptors with “0” representing the absence 

and “1” representing the presence of the associated surfactant. Binary descriptor is widely 

used in ML modeling for drug discovery, such as MACCS keys fingerprints and PubChem 

fingerprints [73–76]. The results of calculated nanodescriptors for all 2DNMs were provided 

in Supporting Information Excel file E1. The standardized nanodescriptor values in each 

2DNM were shown in Fig. 3. Some geometrical nanodescriptors have relatively high values 

for specific 2DNMs. Since the structures of G-NaC and G-PF108 were constructed with 

carbon atoms, the values of CCCC descriptor were higher than the other 2DNMs. In 

graphene lattice, six carbons located at the hexagon apexes with two sublattices, A and B. 

The carbon atom of one with three nearest neighbors of the other sublattice, which is one of 

the important features influencing graphene’s activity [59, 60]. As shown in Fig. S2, CCCC 

descriptors in graphene were developed using the trigonal planar geometry based on the 

relationship of sublattice A and B, which can reflect the structure feature of armchair edges 

(a and b)/zigzag (c), dangling atoms (d and e), and general atoms (f and g) in the plane. It 

can also extract the features of convex corner. For future explorations, descriptors reflecting 

2DNMs’ frame structures can be divided into different subtypes. For example, CCCC 

descriptors reflecting the edge effect features can be separated from the general CCCC, and 

different weights can be given to these subtype descriptors for modeling purposes. Besides 

CCCC descriptor, surfactant descriptors NaC and PF108 showed high values in G-NaC and 

G-PF108, respectively (Fig. 3). These two surfactant descriptors were also used to further 

differentiate G-NaC and G-PF108. For GOs, rGOs and prGO, hydroxyl, epoxy and carboxyl 

groups were added on the graphene frame, so the values of nanodescriptors consisting of C, 

H, and O atoms were larger than the other nanodescriptors. h-BN, MoS2, and WS2 structures 

were constructed with inorganic atoms, so the nanodescriptors containing B, N, Mo, W, and 

S atoms showed higher values than others.

The calculated nanodescriptors can be used to show the chemical space of 2DNMs through 

principal component analysis (PCA). Both the top two and top three principal components 

were used to represent the distribution of all 2DNMs, which accounted for 73% and 81% 

of the total descriptor variance, respectively. As shown in Fig. 4 and Fig. S3, the 2DNMs in 

the dataset were structurally diverse due to various shapes, lateral sizes, atom types, surface 

chemistry, and surfactant types. The three GRMs, prGO, rGO-S, and G-NaC, are close to 

each other in both 2D and 3D chemical space, which mainly due to their similar lateral size 

and same surfactant. Although h-BN and, they locate differently in 3D chemical space. 3D 

chemical space retains more information of the original chemical space, which can better 

differentiate h-BN and MoS2. Compared to other GRMs, GO-L is a structure outlier mainly 

due to the large number of hydroxyl groups on its surface, which significantly increases the 

value of descriptor HHHH. To better analyze this type of GRMs, more graphene oxides with 

different sizes should be included in future studies.

Wang et al. Page 8

Carbon N Y. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.5. Computational modeling

Four nanotoxicity models were developed using the calculated nanodescriptors and PLSR 

approach for the 2DNMs in the dataset. When data in two doses (1 μg ml−1 and 5 μg 

ml−1) were available for LDH release and cell viability, both dose results were used in 

the model development (Table S1), so this effort resulted in models for low/high doses of 

these toxicity endpoints. Two medium-sized graphenes in the dataset, prGO and GO-M, 

were selected as test set, and the remaining nine 2DNMs were used as the training set for 

model development. For apoptosis dataset, which consists of nine 2DNMs total (Table S1), 

one medium-sized graphene (prGO) was selected for test purpose, and the remaining eight 

2DNMs were used as training set for model development. The LOOCV procedure was used 

to evaluate the performance of developed nanotoxicity models within training sets.

The correlations between experimental values and predicted values of the resulted four 

nanotoxicity models were shown in Fig. 5. The optimal number of components for 

developing the best PLSR model in the training set was obtained from the LOOCV 

procedure. The training set R2 values using the obtained optimal number of components 

ranged from 0.558 to 0.822 in corresponding PLSR models (Table 3). The RMSE values of 

training (test) set were 1.371 (0.916), 5.882 (7.361), 0.250 (0.164), and 0.447 (0.591) for the 

models of LDH release (%), cell viability (%), oxidative stress (fold change), and apoptosis 

respectively (fold change) (Table 3). The RMSE values between the training and test set of 

all four models are similar, indicating that the resulted nanotoxicity models are reliable for 

prediction purposes. Although most 2DNMs were correctly predicted, prediction errors still 

exist. For example, G-PF108 has relatively large prediction errors in the models of LDH 

release, oxidative stress, and apoptosis (Fig. 5 A, C and D). This issue was mainly due to 

the lack of other GRMs tested by using PF108 as the surfactant in the dataset. Compared to 

the other GRMs dispersed in NaC, G-PF108 was the only GRM dispersed in PF108. PF108 

is a non-ionic surfactant while NaC is an ionic surfactant, which can influence the toxicity 

of 2DNMs [77, 78]. For the model of cell viability, 5 μg ml−1 rGO-S has a larger prediction 

error than others (Fig. 5 B and D). For the model of cell viability and apoptosis, 5 μg ml−1 

rGO-S has a larger prediction error than others (Fig. 5 B and 5D). The reason for prediction 

errors of rGO-S was similar to G-PF108. rGO-S has its structural nearest neighbor as prGO. 

However, 5 μg ml−1 rGO-S and prGO have cell viability testing results as 76.03% and 

87.88% respectively, and apoptosis testing results as −2.22 and −2.26 respectively. The 

issues are similar to the “activity cliff” of QSAR modeling studies [79]. There are only two 

types of rGO in the dataset, and the lateral size of rGO-L is at least 5 times larger than 

rGO-S. The training data used in this study are not sufficient to cover the structure diversity 

of rGO, so the model performance can be improved when new rGO with different lateral 

sizes are added into the training sets.

3.6. Mechanism analysis of 2DNMs-induced toxicities

Analysis of the developed ML models allowed to identify nanostructure features responsible 

for nanotoxicity, which can be used to illustrate potential mechanisms of 2DNMs-induced 

toxicity and guide future 2DNMs design. The top ranked nanodescriptors were obtained 

from accepted PLSR models (Fig. 6). The high coefficient value of a descriptor indicates 

its critical contribution to the final models. The ranking was calculated based on the 
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descriptors’ contributions to the models of 2DNMs. Descriptors with contributions greater 

than 4% of the total descriptor contributions were shown in Fig. 6. In a resulted ML model, 

the high frequency of a nanodescriptor utilization indicates its critical contribution to the 

associated nanotoxicity [41, 80].

To explore the mechanism of 2DNMs-induced toxicity, several descriptors were found to be 

critical for various toxicities of 2DNMs. Specifically, the descriptor CCCC was important 

for LDH release obtained by low concentration 2DNMs (1 μg ml−1) (Fig. 6 A), which 

mainly reflects the geometries of GRMs (Fig. S4 A). This result implies that geometries 

influence GRMs’ toxicities, which had been reported in previous studies [45, 81, 82]. 

Descriptors containing functional groups were also found to be important for 2DNMs’ 

toxicity in developed models (Fig. 6 A and G). For example, CCCO descriptor mainly 

reflects the neighbor relationship between a carboxyl group and a hydroxyl group (Fig. S4 

B). This substructure can make GRMs interact with biomolecules by hydrogen bonding 

thus influencing GRMs’ toxicity [83, 84]. OOOO descriptor represents four oxygen atoms 

from neighbor hydroxyl groups (Fig. S4 C), which describes an oxidized region of GRMs. 

Intramolecular or Intermolecular hydrogen bonds can be formed with this substructure, 

which were important for GRMs’ bioactivity and toxicity [85, 86]. Descriptors, such as 

SSSS, SSSW, and WWWW, were found to be important for WS2-mediated toxicity in 

developed models (Fig. 6 A, B, E, F, and G). SSSS/WWWW descriptors capture structure 

features on sulfur/tungsten layers, and SSSW reflected the sublattice of WS2 (Fig. S4 D-F). 

Although the toxicity of WS2 is still under investigation, tungstate ion has been identified 

as a potentially toxicant against guppies and shows tumorigenicity and genotoxicity in 
vitro [87–89], which partially validate the importance of this descriptor. MoS2-related and 

h-BN-related descriptors, such as MoMoMoS, MoSSS, BBBN, and BNNN, showed positive 

contribution in cell viability models, which may reflect the low toxicity of MoS2 and h-BN 

(Fig. 6 D). Surfactant descriptors (i.e. PF108, Water and NaC) were also found to be 

important to nanotoxicity models, which increased the 2DNMs’ dispersibility and stabilized 

their dispersion under different mechanisms [77, 78].

3.7. Pitfalls and perspectives

In this study, nanodescriptors calculated from annotated 2DNMs structures afford the 

predictive modeling of 2DNM toxicity. Some pitfalls still exist due to limited data. For 

example, G-PF108 is a structural outlier and more similar 2DNMs needs to be tested to 

cover the relevant structure diversity. Furthermore, besides lateral size and surface chemistry, 

which are critical features influencing 2DNMs’ toxicity, thickness should also be considered 

as a potential feature in the modeling process, as investigated in previous studies [90]. 

Although the above issues exist, the current results showed the feasibility of using the 

current nanostructure annotation and modeling strategy to predict nanotoxicity in the future 

study.

4. Conclusions

In this study, novel structure annotation strategy and machine learning approach were 

integrated for computational modeling of nanotoxicities of 2DNMs with irregular shapes, 
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which characterized the complex nanostructure features and enable the toxicity prediction 

of 2DNMs. A new computational approach was designed to construct virtual 2DNMs, 

which simulated 2DNMs’ irregular geometries and diverse functional modifications. The 

annotated 2DNMs structures were saved as PDB files and were further used for geometrical 

nanodescriptors calculations. Additional surfactant descriptors were also added. To prove 

the applicability of the nanostructure annotation and nanodescriptors calculation, a dataset 

containing diverse 2DNMs with different atom types, lateral sizes and surface chemistry was 

used to develop various nanotoxicity models. Good predictivities were shown in the resulted 

models for all available endpoints including LDH release, cell viability, oxidative stress, 

and apoptosis. This novel structure annotation strategy shows great potential to generate 

high-quality nanodescriptors for ML modeling purposes. Integration of structure annotation 

and machine learning approaches paves a road for the future development of NMs with 

complex structures.
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Fig. 1. 
Schematic workflow of v2DNMs development. The three-dimensional (3D) structures of 

graphene hexagonal lattice (A), hydroxyl group (B), epoxy group (C), and carboxyl group 

(D) are visualized by CPK drawing method in VMD. The v2DNMs generated in the 

workflow (E-G) are also shown by CPK drawing method in VMD. The construction of 

irregular graphene with 10 nm lateral size and five edges (F) is based on a 12×12 nm2 

graphene sheet (E). Then, a graphene oxide with C:O ratio of 64:35 (G) is constructed based 

on the generated irregular graphene. The C, O, and H atoms are represented in black, red, 

and blue.
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Fig. 2. 
Visualization of the v2DNMs library. The 2DNMs of the dataset vary in shapes, lateral sizes, 

atom types, and surface groups. The 3D structures of the v2DNMs are rendered by VDW 

drawing method in VMD. The C, O, H, N, B, S, Mo, and W atoms are represented in black, 

red, blue, green, pink, yellow, cyan, and purple.
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Fig. 3. 
Standardized nanodescriptors for 11 in-house 2DNMs in the dataset.
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Fig. 4. 
Principal component analysis (PCA) of v2DNMs based on the nanodescriptors. Every 

2DNMs is visualized in 3D chemical space. The projections of all 2DNMs on three planes 

(cyan, green, and pink) are also shown.
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Fig. 5. 
Correlations between experimental (Exp.) and predicted (Pred.) values for developed PLSR 

models in (A) LDH release, (B) cell viability, (C) oxidative stress, and (D) apoptosis. Red, 

blue, green, and purple dots are 1 μg ml−1 2DNMs in the training set, 5 μg ml−1 2DNMs 

in the training set, 1 μg ml−1 2DNMs in the test set and 5 μg ml−1 2DNMs in the test set, 

respectively. The coefficient of determination (R2) from the modeling results is also shown.
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Fig. 6. 
Contributions of the top-k nanodescriptors from the PLSR modeling results in (A and B) 

LDH release, (C and D) cell viability, (E and F) oxidative stress, and (G) apoptosis. The 

descriptors contribution for both 1 μg ml−1 and 5 μg ml−1 2DNMs are shown from the model 

results. The percentage contributions of descriptors in all four models are harmonized.

Wang et al. Page 22

Carbon N Y. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 23

Table 1

Key physicochemical properties of the 2DNMs used in this study.

2DNM Lateral size (nm ± SD) C:O ratio Surfactant

Graphene-related Small-sized graphene in NaC (G-NaC) 184 ± 23 N/A Na-Cholate

Small-sized graphene in PF108 (G-PF108) 206 ± 51 N/A PF108

Small-sized graphene oxide (GO-S) 271 ± 34 64:35 Water

Medium-sized graphene oxide (GO-M) 462 ± 114 61:39 Water

Large-sized graphene oxide (GO-L) 1560 ± 750 61:38 Water

Small-sized reduced graphene oxide (rGO-S) 411 ± 79 78:22 Na-Cholate

Large-sized reduced graphene oxide (rGO-L) 2015 ± 674 78:22 Na-Cholate

Partially reduced graphene oxide (prGO) 357 ± 42 72:28 Na-Cholate

Inorganic Hexagonal boron nitride (h-BN) 149 ± 12 N/A Na-Cholate

Molybdenum disulphide (MoS2) 428 ± 103 N/A Na-Cholate

Tungsten disulphide (WS2) 323 ± 28 N/A PF108
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Table 2

Atomic electronegativity values used in the calculation of nanodescriptors.

Atoms C O H N S B Mo W

Electronegativity value 2.5 3.5 2.2 3.1 2.4 2.0 2.2 2.4
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Table 3

The optimal number of components, the coefficient of determination (R2) and root mean square error (RMSE) 

of PLSR models for four toxicity endpoints.

Toxicity endpoint The optimal number of components R2 RMSE for the training set RMSE for the test set

LDH release (%) 3 0.822 1.371 0.916

Cell viability (%) 3 0.612 5.882 7.361

Oxidative stress (fold change) 2 0.760 0.250 0.164

Apoptosis (fold change) 2 0.861 0.447 0.591
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