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Abstract

Purpose: To develop an end-to-end deep learning (DL) framework to segment ventilation defects 

on pulmonary hyperpolarized MRI.

Materials and methods: The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive 

Pulmonary Disease (COPD) study is a nested longitudinal case-control study in older smokers. 

Between February 2016 and July 2017, 56 participants (age, mean ± SD, 74 ± 8 years; 34 

men) underwent same breath-hold proton (1H) and helium (3He) MRI, which were annotated for 

non-ventilated, hypo-ventilated, and normal-ventilated lungs. In this retrospective DL study, 820 
1H and 3He slices from 42/56 (75%) participants were randomly selected for training, with the 

remaining 14/56 (25%) for test. Full lung masks were segmented using a traditional U-Net on 1H 

MRI and were imported into a cascaded U-Net, which were used to segment ventilation defects 

on 3He MRI. Models were trained with conventional data augmentation (DA) and generative 

adversarial networks (GAN)-DA.

Results: Conventional-DA improved 1H and 3He MRI segmentation over the non-DA model (P = 

0.007 to 0.03) but GAN-DA did not yield further improvement. The cascaded U-Net improved 

non-ventilated lung segmentation (P < 0.005). Dice similarity coefficients (DSC) between 

manually and DL-segmented full lung, non-ventilated, hypo-ventilated, and normal-ventilated 

regions were 0.965 ± 0.010, 0.840 ± 0.057, 0.715 ± 0.175, and 0.883 ± 0.060, respectively. We 

observed no statistically significant difference in DCSs between participants with and without 

COPD (P = 0.41, 0.06, and 0.18 for non-ventilated, hypo-ventilated, and normal-ventilated 

regions, respectively).

Conclusion: The proposed cascaded U-Net framework generated fully-automated segmentation 

of ventilation defects on 3He MRI among older smokers with and without COPD that is consistent 

with our reference method.

Keywords

MRI; Deep learning; COPD; Ventilation defects; Hyperpolarized gas

1. Introduction

Hyperpolarized gas MRI is a functional pulmonary imaging modality that is used to assess 

ventilation defects in chronic obstructive pulmonary disease (COPD) and other lung diseases 

[1–4]. A strength of hyperpolarized gas (e.g., helium and xenon) MRI is the visual contrast 

between ventilated and non-ventilated regions in lung, which are often expressed as a 

percentage of the lung volume and have been shown to correlate with pulmonary function 
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[1–4]. Due to the high cost and long polarization time (12–14 h) of helium (3He) gas [2], the 

sample size of 3He MRI cohorts is often limited [5–8].

Unfortunately, there is no consensus ‘gold standard’ method for quantifying ventilation 

defects via segmentation on 3He MRI as this has been only reported in few exploratory 

studies [5,6]. Quantification of ventilation defects was achieved by two linked steps: full 

lung mask was segmented on 1H MRI and was subsequently utilized for ventilation defects 

segmentation on 3He MRI [7]. Most of previous studies have utilized manual or semi-

automatic methods (e.g., region growing and thresholding with manual editing) for full lung 

segmentation [5,7,9–12]. Segmentation of ventilation defects also often requires expert’s 

input. (e.g., to define cluster hierarchy or cluster number) [5–7,9,10,13,14]. Deep learning 

(DL) has the potential to provide increased reproducibility, efficiency, and robustness in 

both full lung and ventilation defects segmentation without operator / user input. One recent 

DL study segmented normal-ventilated regions but did not segment ventilation defects 

[15]. Another DL study segmented ventilation defects but did not segment hypo-ventilated 

lung regions (i.e., pathological progression from normal-ventilated to non-ventilated lung 

regions) [8]. As lung damage in COPD progresses from subclinical to exacerbation over 

decades [16], it is likely that affected lung regions initially manifest decreased ventilation 

and progress to completely non-ventilated over time. Quantification of hypo-ventilated lung 

regions can potentially serve as an imaging marker for COPD progression as well as for 

evaluation of potential early intervention.

The U-Net model is one of the most popular DL architectures in medical image 

segmentation [17]. One recent optimization proposed for the U-Net model is a cascaded 

U-Net, also known as a hierarchical U-Net [18–20], which can improve multi-label 

segmentation through first segmenting major classes with large interclass difference and 

then subdividing the major classes into tissue sub-classes [18–20]. Previous studies 

reported that cascaded U-Net could improve accuracy in multiclass brain and liver lesion 

segmentation over traditional U-Net models.

Data augmentation (DA) is critical for training DL models on small datasets. Conventional-

DA (e.g., geometric transformations, deformations, and noise) has been widely used for 

medical image segmentation [21,22] applications. Recently, a novel DA method [23,24] 

was proposed using a pre-trained generative adversarial network (GAN) to generate 

realistic synthetic data by learning the training data distribution [25]. Previous studies have 

demonstrated improved performance of GAN-based DA methods over conventional DA 

methods on various imaging modalities including lung CT, brain MRI, and cell nuclei image 

[26–28].

The present study used inherently registered 1H MRI scans and hyperpolarized 3He MRI 

scans from the Multi-Ethnic Study of Atherosclerosis (MESA) COPD study [29]. Our goal 

was to develop an end-to-end DL framework to segment pulmonary ventilation defects 

including hypo-ventilated and non-ventilated regions on 3He MRI without any human 

intervention, eliminating operator dependence. To train the DL lung ventilation defect 

segmentation tool, GAN-based DA was compared with conventional-DA, and cascaded 

U-Net was compared with traditional U-Net.
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2. Materials and methods

2.1. Participants and datasets

The MESA COPD Study is a nested longitudinal case-control study of 10+ pack-year 

smokers, and the recruitment criteria have been described previously [29]. A subset of 

MESA COPD participants underwent same breath-hold 1H and 3He MRI (n = 56) between 

February 2016 and July 2017 [age, mean ± standard deviation (SD), 74 ± 8 years, 34 men, 

Table 1]. For each participant, we included 9–10 inherently registered 1H and 3He MRI 

coronal slices that contain lungs. The paired 1H and 3He MRI scans were randomly split 

into training and test datasets with a 3:1 ratio at the participant-level (i.e., scans from 42 

participants were used for training/validation and the remaining scans from 14 participants 

were used for testing). 820/1088 (75.37%) of slices were included in the training dataset; 

164/820 (20%) of slices from the training dataset were randomly withheld and were used as 

validation dataset for parameter tuning during training; 268/1088 (24.63%) of slices from 14 

participants were used for testing. This study was approved by the institutional review board 

(AAAO1456) and complied with HIPAA rules, and participants’ written informed consents 

were obtained. The 3He MRI were acquired under Food and Drug Administration-approved 

Investigational New Drug application for hyperpolarized gas (i.e., 3He).

2.2. MRI acquisition and annotation
3He MRI were acquired using a 3 T Achieva Philips MR scanner (Philips, Eindhoven, 

Netherlands) with a flexible wrap-around 3He radio frequency coil. 3He gas was polarized to 

29 ± 5.7% using a 3He polarizer (GE Healthcare, Princeton, NJ). Participants were coached 

to exhale to their residual volume and then inhale 300 mL of 3He mixed with 700 mL N2 

in order to image at approximately functional residual volume. Inherently registered coronal 
1H MRI and 3He MRI were acquired at the same voxel size and matrix size (1.76 × 1.76 × 

16.5 mm3, 256 × 256 × 12) during the same breath-hold [30]. 1H and 3He MRI was acquired 

using a fast section select gradient reversal (SSGR), TE/TR = 1.5/48 ms protocol. The 5 s 
3He MRI was acquired first. It took ~3 s to switch the scanner from 3He to 1H acquisition. A 

6 s 1H MRI scan was then acquired afterwards within the same breath hold. The total breath 

hold time was 15 s, which can be comfortably performed by all patients.

A total of 544 slices of 1H pulmonary MRI and 544 slices of 3He pulmonary MRI of 

56 participants were annotated (i.e., 1088 slices were semi-automatically segmented) [31]. 

We developed a “ground-truth” method leveraging the experience of our Image Analysis 

Core Lab [32–35] as well as the combined experience of image analysts, radiologists, 

physiologists, and physicians. The image analysts have 15–20 years of experience in MRI 

analysis at Image Analysis Core Lab and the radiologist has over 35 years of experience in 

MRI reading and evaluation.

2.2.1. Full lung mask annotation—Lung masks were segmented on coronal 1H MRI 

images of each participant to define the lung boundaries (Fig. 1). A region of interest (ROI) 

was drawn on each coronal slice within each lung excluding regions with partial volume 

effects (i.e., loss of contrast between two adjacent tissues in a slice caused by insufficient 

resolution so that more than one tissue type occupies the same voxel or pixel). The mean 
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and SD of the signal intensity (SI) of the lung ROI were calculated for each coronal slice 

of lungs. The lungs were then segmented on 1H MRI images using a region growing 

method with threshold values adaptively tied to mean SIlung ROI ± 2.576 SDlung ROI (Fig. 1). 

Manual corrections were applied if necessary. The corrections were mostly small anatomical 

corrections such as removing low intensity regions including cortical bones, central airways 

and background.

2.2.2. Ventilation annotation—The full lung masks from 1H MRI images were applied 

to each corresponding 3He slice to define the lung boundaries on 3He MRI (Fig. 1). SI 

of heart was used as a reference for non-ventilated regions and SI of central airways was 

used as a reference for ventilated regions. ROIs of the heart and central airways were 

manually defined on the 3He MRI images excluding regions with partial volume effect. 

Non-ventilated regions were segmented via region growing with a threshold defined as the 

mean SIheart ROI ± 2.576 SDheart ROI. After non-ventilated regions were annotated, ventilated 

regions were further divided into normal-ventilated regions and hypo-ventilated regions. 

Normal-ventilated regions were segmented by region growing with a threshold as mean 

SIheart ROI + 0.25 (mean SIcentral airway ROI – mean SIheart ROI). The remaining lung regions 

(i.e., the first quartile of the range of mean SIheart ROI and mean SIcentral airway ROI) were 

defined as hypo-ventilated regions (Fig. 1).

The analysts were blinded to the clinical information of the participants. One analyst 

performed the image analysis. A second analyst was included to evaluate inter-reader 

agreement. Two readings were included for intra-reader agreement. A total of 10 randomly 

selected MRI scans were used the intra-reader and inter-reader agreement assessment and 

were read twice. The intra-reader and inter-reader % CV was 1.7% and 2.6% for non-

ventilated, 3.8% and 3.4% for hypo-ventilated, and 3.4% and 4.0% for normal-ventilated 

lung regions, respectively. SliceOmatic (TomoVision, Magog, Canada) was used to perform 

the manual ROI selection, region growing and manual corrections.

2.3. Deep learning framework and cascaded U-Net

The proposed DL framework consisted of 1H and 3He segmentation models trained 

separately on the 1H and 3He MRI training datasets (Fig. 2). Using supervised training, 

annotated full lung masks from 1H MRI were fed into the 3He model concatenated with 

the 3He MRI data to perform ventilation defect segmentation. After training, an end-to-end 

framework was built combining the two models for testing: the 1H MRI was first segmented 

by the 1H segmentation model, and the segmented full lung masks were concatenated with 
3He MRI as the input of the 3He segmentation model. Such an end-to-end framework took 

only the original 1H and 3He MR images as input and required no human intervention.

We used a U-Net architecture (Fig. 2a) to build the 1H and 3He segmentation models 

(Fig. 2b). In the 1H segmentation model, we first used a traditional U-Net to generate 

full lung masks and replaced the max pooling layer with a 2D convolution layer. In the 
3He segmentation model, we utilized a cascaded U-Net which consisted of two U-Nets. 

The cascaded U-Net utilized the full lung masks and 3He MRI scans as a two-channel 

input. The first step was to segment non-ventilated and ventilated regions. The segmented 
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ventilated regions were subsequently imported into a second layer, which subdivided the 

ventilated regions into hypo-ventilated and normal-ventilated regions. We normalized the 

image intensity of 1H and 3He MRI to [−1,1] range.

2.4. Data augmentation

For conventional-DA, we included random scaling (scaled by 80–120% along each axis 

separately), random translation (translated by −10 to 10% pixels per axis), random rotation 

(−45° to 45 °), random shearing (−15 ° to 15 °), random horizontal flip (with probability 

P = 0.5), random vertical flip (with probability P= 0.5). Though flip is not a common 

source of variability in MRI scans, we utilized them to increase the model generalization as 

much as possible (e.g., to ensure that the model was not biased by a prevalence of certain 

lung patterns in left versus right lungs and in apical versus basal or central versus pleural 

regions). Implementation was performed using the Python library imgaug (Fig. 3).

For GAN-DA, we used a dual-GAN network consisting of two separate GANs, in which the 

first GAN [36] was trained to generate 1H lung masks from random latent noise, and the 

second conditional GAN (using pix2pixHD [37]) was trained to synthesize corresponding 

realistic 1H MRI images conditioned by the lung mask. Similarly, the first GAN was trained 

to generate 3He lung masks from random latent noise, and the second conditional GAN was 

trained to synthesize corresponding realistic 3He MRI images conditioned by the lung mask 

(Fig. 3).

Four different U-Net + DA segmentation models were trained:

1. Non-DA model: trained on (n = 410 × 0.8 = 328 for 1H MRI and n = 410 × 0.8 = 

328 for 3He MRI, respectively) original coronal slices without any DA;

2. Conventional-DA model: trained on original coronal slices plus 10-fold slices 

generated using conventional-DA (n = 3608 for 1H MRI and n = 3608 for 3He 

MRI, respectively);

3. GAN-DA model: trained on original coronal slices plus 10-fold slices generated 

using dual-GAN DA (n = 3608 for 1H MRI and n = 3608 for 3He MRI, 

respectively);

4. Combined-DA model: trained on original coronal slices plus 5-fold slices 

generated using conventional-DA plus 5-fold slices generated using GAN-DA 

(n = 3608 for 1H MRI and n = 3608 for 3He MRI, respectively).

2.5. Training strategies

The training of DL models was performed using Python (version 3.6; Python Software 

Foundation, Wilmington, Del) and PyTorch library [38]. Random initialization was applied 

to each model. The models were trained with the following parameters: 15 epochs with a 

batch size of 16 for 1H lung segmentation and 100 epochs with a batch size of 4 for the 
3He ventilated regions segmentation. A linear learning rate decay strategy was used [37], 

decreasing the learning rate from starting value 0.0001 to 0 starting from the 5th epoch for 
1H segmentation model and the 50th epoch for the 3He segmentation model. The best model 

on the validation set was used to evaluate the performance on the test set. Detailed training 
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and validation curves can be found in Supplemental Fig. 5. We used a hybrid loss function 

combining cross-entropy (CE) and Dice loss. For a sample image X ∈ RW×H (W, width; 

H, height), the segmentation model takes X as input and generates a probability map P, in 

which P(w, h, c) serves as the probability distribution at pixel (w, h) over C classes. The 

ground truth label for each pixel in X was provided by Y(w, h, c) as a one-hot vector, and 

the Y′(w, h, c) was the one-hot vector of predicted label. CE was defined as:

CE = − ∑
w = 0

W
∑

ℎ = 0

H
∑

c = 0

C
Y w, ℎ, c log P w, ℎ, c

The CE compares the probability distributions of predictions and true labels. In addition, we 

used the Generalized Dice Loss (GDL) [39], an extension of the Dice similarity coefficient 

(DSC) which is an established evaluation metric in semantic segmentation, as a constraint on 

the spatial regularity of the prediction. DSC and GDL are defined as:

DSC = 1
W × H × C ∑

w = 0

W
∑

ℎ = 0

H
∑

c = 0

C 2 × Y w, ℎ, c Y ′ w, ℎ, c
Y w, ℎ, c + Y ′ w, ℎ, c

GDL = 1 − 2
W × H × C ∑

w = 0

W
∑

ℎ = 0

H
∑

c = 0

C W eigℎtc × Y w, ℎ, c × P w, ℎ, c
W eigℎtc × Y w, ℎ, c + P w, ℎ, c

where Weightc is a class-wise weight to address data imbalance, and equals to the reciprocal 

of the population prevalence of that class [39]. A previous study found that the CE and GDL 

improved model training most when they have the same weight [40]. Therefore, both 1H and 
3He models were trained with the Adam optimizer [41] to optimize the overall loss function 

L:

L = CE + GDL

To test if there was overfitting in our model, we performed a 4-fold cross-validation by 

randomly splitting our dataset into 4 groups, each as a test dataset and the remaining 3 as a 

training dataset.

2.6. Statistical analysis

We evaluated the performance of our segmentation models using two metrics: DSC and 

mean surface distance (MSD). MSD is a surface-based metric and measures the average 

distance between the surfaces of predicted and ground-truth regions. DSC and MSD were 

calculated based on the entire 3D volume of full lungs or lung regions as we aimed 

to evaluate our algorithm at participant-level rather than slice-level. MSD was calculated 

through a public package provided by DeepMind (London, UK) [42]. Different DA methods 

were compared using DSCs and MSDs. Cascaded U-Net’s performance was compared 

with traditional U-Net (using directly 3 ventilation level classes) on 3He ventilation defect 

segmentation.
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We used Wilcoxon signed-rank test to compare DSCs and MSDs between GAN-DA and 

conventional-DA methods (1H segmentation model), as well as cascaded and traditional 

U-Nets (3He segmentation model); the Wilcoxon signed-rank test was used to compare 

ground-truth values to inferred values for the total lung volume returned by the 1H model, 

and volumes of non-ventilated, hypo-ventilated, and normal-ventilated regions returned by 

the 3He model. Bonferroni-Holm correction was used when applicable. Mann-Whitney U 
test was used to compare models’ performance among participants with and without COPD. 

Kruskal-Wallis H Test was used to compare model performance in 4-fold cross-validation. 

Statistical analysis was performed using the SAS 9.4 package (SAS Institute. Inc., Cary, NC, 

USA). Two-tailed (α = 0.05) tests of significance were used.

3. Results

3.1. Participant characteristics

Characteristics of the study participants, stratified by training and test datasets, are shown in 

Table 1. The training dataset contains 42/56 (75%) participants (73.5 ± 7.5 years; 25 men) 

and the test dataset includes the remaining 14/56 (25%) participants (71.9 ± 7.0 years; 9 

men). There were 22 participants with mild and moderate COPD in the training datasets 

and 8 participants with mild and moderate COPD in the test dataset. There were no large 

differences between the training and test datasets, as would be expected by the allocation 

due to chance (Table 1).

3.2. 1H MRI segmentation

Compared with the non-DA model (0.955 ± 0.012), improvement in DSCs was observed 

with combined-DA model (0.965 ± 0.010, P = 0.0007) and conventional-DA model (0.961 

± 0.011, P = 0.03), but not GAN-DA model (0.959 ± 0.010, P = 0.13) (Table 2). There was 

no significant difference between DSC of combined-DA model (0.965 ± 0.010) and DSC 

of conventional-DA model (0.961 ± 0.011, P = 0.13). Additionally, combined-DA yielded 

higher DSC than GAN-DA model (0.959 ± 0.010, P = 0.007).

Similarly, conventional-DA model (0.594 ± 0.137 mm) had smaller MSD than non-DA 

model (1.055 ± 0.953 mm, P = 0.005) (Table 2). Combined-DA models also reduced the 

surface distance to 0.657 ± 0.254 mm (P = 0.03) when compared to the non-DA model. 

MSD of GAN-DA model (0.928 ± 0.690 mm) was not significantly different from that of 

the non-DA model (1.055 ± 0.953 mm, P = 0.31). MSD of conventional-DA model (0.594 ± 

0.137 mm) was not significantly different from combined-DA model (0.657 ± 0.254 mm, P 
= 0.86) but was significantly lower than GAN-DA model (0.928 ± 0.690 mm, P = 0.01).

There was no significant difference observed between DL-predicted total lung volume and 

ground truth total lung volume (3.727 ± 1.075 L vs. 3.721 ± 1.109 L, P = 0.86).

3.3. 3He MRI segmentation

GAN- and combined-DA did not improve 3He segmentation (Supplemental Tables 1–3). 

Therefore, we only applied conventional-DA in 3He model training.
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In the cascaded U-Net 3He model using an end-to-end framework, DSCs of non-ventilated, 

hypo-ventilated, and normal-ventilated regions were 0.840 ± 0.057, 0.715 ± 0.175, and 

0.883 ± 0.060, respectively. The DSC of cascaded U-Net for non-ventilated regions was 

significantly higher than traditional U-Net (0.840 ± 0.055 vs. 0.818 ± 0.055, P < 0.001, 

Table 3). Cascaded U-Net also had lower MSD for non-ventilated regions than traditional 

U-Net (1.275 ± 1.396 mm vs. 1.432 ± 1.343 mm, P < 0.005, Table 3). DSCs and MSDs 

for the cascaded U-Net on 3He MRI were not significantly different between COPD 

and non-COPD participants (P = 0.06–0.75, Table 4). For non-ventilated, hypo-ventilated, 

and normal-ventilated regions, DL-predicted volumes were not significantly different from 

ground truth volumes (0.528 ± 0.334 L vs. 0.556 ± 0.370 L, 1.049 ± 0.584 L vs. 1.012 

± 0.610 L, and 2.150 ± 0.345 L vs. 2.153 ± 0.674 L, respectively, P = 0.12–0.36). Fig. 

4 showed examples of a higher agreement with cascaded U-Net segmentation than with 

traditional U-Net segmentation when compared to the ground truth.

In 4-fold cross-validation, there was no overfitting in traditional U-Net and cascaded U-Net, 

as there was no statistically significant difference among DSCs from 4 folds validation (Data 

not shown).

4. Discussion

4.1. Cascaded U-Net for multi-class lung ventilation segmentation

Our cascaded U-Net framework provided a fully automatic segmentation of pulmonary 

ventilation defects on 3He MRI among participants with and without COPD. This end-

to-end framework accelerated the process of ventilation segmentation and yielded results 

consistent with our semi-automatic reference standard. This approach with no human input, 

provided quantification results equivalent to human annotation. One strength of our study is 

the use of inherently registered and fully annotated 1H and 3He MRI, which enabled us to 

validate a fully automated DL pipeline in an end-to-end manner.

Compared with a previous DL study which segmented ventilated and non-ventilated lung 

regions, our cascaded U-Net additionally segmented a hypo-ventilated class to distinguish 

the lung regions with impaired ventilation from the non-ventilated lung regions with 

no airflow [8]. Furthermore, our model had better performance in non-ventilated region 

segmentation than a previous DL study (DSC, 0.84 ± 0.06 vs. 0.70 ± 0.30) [8]. We found 

that conventional-DA and combined-DA models improved full lung mask segmentation 

from baseline performance (i.e., no DA applied) with statistical significance.

Likewise, the Cascaded U-Net improved segmentation accuracy with statistical significance 

for non-ventilated regions compared with traditional U-Net. The finding is in agreement 

with previous studies that utilized cascaded U-Net in liver tumor and brain tumor 

segmentation [18,19]. Multi-layer cascaded U-Net addressed multi-class segmentation 

through applying a hierarchical strategy [18,19]. The Cascaded U-Net took advantage of 

hierarchical distribution of lung ventilation. In the present study, the first layer U-Net 

learned the features that best differentiate ventilated and non-ventilated regions; the second 

layer learned the features to distinguish normal-from hypo-ventilated regions. In the present 
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study, we utilized this multi-scale model to improve the segmentation for lung ventilation 

defects regions (Fig. 4).

Prior the development and application of DL models in medical image analysis, clustering 

methods were prevalent in pulmonary ventilation defect segmentation on 3He MRI [5–

7,10,13]. Although clustering methods can segment ventilation defects on hyperpolarized 

gas MRI, the segmentation of full lung mask from 1H MRI could still be time-consuming. 

The end-to-end DL model in the present study would tremendously decrease analysis 

time. Our DL framework provided accurate full lung segmentation from 1H MRI and 

multi-categorical ventilation segmentation from 3He MRI through a multi-channel scheme.

4.2. GAN-DA for data-limited learning

In the present study, we explored a novel data augmentation (i.e., GAN-DA). Our results 

showed that both conventional-DA and combined-DA statistically significantly improved 

the 1H MRI segmentation while GAN-DA did not. Combined-DA had higher mean DSCs, 

and lower mean MSDs than conventional-DA but these differences did not reach statistical 

significance. Our finding was in agreement with a previous study [27] which suggested that 

GAN-DA and conventional-DA provided additional information independently. GAN-DA 

interpolated and enriched the diversity of training data in latent space, while conventional-

DA could only extrapolated beyond the observed original scans through geometric 

transformations [27].

In contrast to a previous report that GAN-DA using a dual-GAN approach improved 

nuclei segmentation [26], we found that GAN-DA impaired the performance of 3He MRI 

segmentation. A potential explanation is that GAN-DA failed to generate high-quality 

synthetic 3He MRI images (Supplemental Fig. 2), in contrast to the high-quality synthetic 
1H MRI images (Supplemental Fig. 1). Using a pre-trained VGG16 network (Supplemental 

Fig. 3) [43] and t-Distributed Stochastic Neighbor Embedding [44], we extracted and 

visualized feature distributions of synthetic and real masks and MRI images for 1H MRI 

(Supplemental Fig. 4a and b), and for 3He MRI (Supplemental Fig. 4c and d). As noted 

in Supplemental Fig. 4c, we observed large discrepancies between synthetic and real 3He 

MRI masks. Future studies are needed to further investigate the utility of GAN-based 

DA to improve DL segmentation of biomedical images with complex textures rather than 

well-contrasted anatomical or biological structures.

4.3. Limitations and conclusions

We noticed that the difference between COPD and non-COPD participants is borderline 

significant for DSC of hypo-ventilated regions, and for MSD of normal-ventilated regions 

(i.e., P= 0.06, P = 0.08, respectively). With the small sample size of the COPD and non-

COPD participants (i.e., n = 8, n = 6, respectively) in the test dataset, the present study 

could not provide a definitive conclusion on our DL model’s consistency on hypo- and 

normal-ventilated regions between COPD and non-COPD participants. Future large-scale 

studies are needed to further evaluate our DL model on the segmentation of different disease 

conditions.
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One limitation of our study is that the ROIs for determining thresholds for lung MRI 

segmentation were manually selected. We excluded partial volume effects in ROI selection 

for threshold calculation and this can be a source of error during inference. Additionally, 

some limitations in the original data might be propagated in the augmented data and could 

be a potential source of error. It should be noted that there is currently no consensus on 

a reference method for MRI lung mask segmentation and ventilation defects segmentation 

[5,7–9]. Both previously reported methods and our method rely on experts’ judgment and 

experience to some degree. We believe that expert panels and cross-validation among 

different institutes are needed to establish a consensus on lung ventilation segmentation. 

It should also be pointed out that for investigators who prefer other reference lung 

segmentation methods, our pre-trained model may not be directly generalized without fine-

tuning. With appropriate labels, future studies will test if this DL algorithm can potentially 

generate end-to-end lung segmentation model that may tremendously cut down analysis time 

for different reference methods [5,7–9].

In conclusion, we developed a reliable end-to-end DL framework using a cascaded U-

Net to automatically segment 1H and 3He MRI into non-ventilated, hypo-ventilated, and 

normal-ventilated regions. The performance of this DL model was found to be similar for 

participants with and without COPD. Conventional-DA and cascaded U-Net improved the 

robustness of quantifying ventilation defects.

Note. —Data are presented as mean ± standard deviation. DSC = Dice similarity coefficient, 

MSD = mean surface distance. Wilcoxon signed-rank test was used to compare traditional 

U-Net and cascaded U-Net.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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COPD chronic obstructive pulmonary disease

DA data augmentation

DL deep learning
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Fig. 1. 
Illustration of ground truth segmentation. Full lung masks were segmented on 1H MRI and 

subsequently applied to 3He MRI. To determine appropriate thresholds for full lung masks 

and ventilation segmentations, ROIs were manually drawn inside the lungs on 1H MRI, and 

inside the central airways and the heart on 3He MRI. SD = standard deviation; SI = signal 

intensity; ROI = region of interest. Colour coding: Orange = central airway ROI; blue = 

heart ROI; red = non-ventilated lung regions; yellow = hypo-ventilated lung regions; green 

= normal-ventilated lung regions. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Conv2d = 2D convolution, BN = batch normalization, LeakyReLU = leaky rectified linear 

unit, ConvTrans2d = 2D transpose convolution.

a): U-Net architecture, in which we substituted the max pooling layer with a 2D convolution 

layer (Conv2d) with a 4*4 kernel.

b): The proposed end-to-end deep learning framework. Full lung mask was segmented from 
1H MRI through a traditional U-Net. For 3He segmentation, we applied a two-layer cascaded 

U-Net which first segmented 3He MRI into ventilated (blue) and non-ventilated (red) lung 

regions. The ventilated regions were then segmented into normal-(green) and hypo-(yellow) 

ventilated lung regions. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.)
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Fig. 3. 
PG = progressively-growing. Data augmentation (DA). a): Conventional-DA includes 

random transformations: scaling (scaled by 80–120% along each axis separately), translation 

(translated by −10 to 10% pixels per axis), rotation (−45° to 45 °), shearing (−15 ° to 15 

°), horizontal flip (probability P = 0.5), vertical flip (probability P = 0.5); b): GAN-based 

DA used two separate generative adversarial networks (GANs). The first unconditional GAN 

generated random synthetic full lung masks, and the second conditional GAN translated the 

random masks into corresponding synthetic 1H MR image.
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Fig. 4. 
Comparison of ventilation segmentation results between traditional U-Net and cascaded 

U-Net. Red = non-ventilated lung region; yellow = hypo-ventilated lung region; green 

= normal-ventilated lung regions. The circled regions highlight higher agreement with 

cascaded U-Net segmentation than with traditional U-Net segmentation when compared 

to the ground truth. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.)
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Table 1

Characteristics of the training and test sets of participants (n = 56).

Variables Participants in training dataset (n = 42) Participants in test dataset (n = 14) P-value*

Age, years 73.5 ± 7.5 71.9 ± 7.0 0.43

Male, N (%) 25 (59.5%) 9 (64.3%) 0.75

Race/Ethnicity, N (%) 0.60

 White 21 (50.0%) 8 (57.1%)

 Black 12 (28.6%) 5 (35.7%)

 Hispanic 9 (21.4%) 1 (7.1%)

Current smokers, N (%) 10 (23.8%) 6 (42.9%) 0.19

Pack years 38.2 ± 20.9 46.8 ± 28.9 0.47

COPD, N (%) 22 (52.4%) 8 (57.1%) 0.76

 None 20 (47.6%) 6 (42.9%)

 Mild 11 (26.2%) 3 (21.4%)

 Moderate 11 (26.2%) 5 (35.7%)

% normal-ventilated 63.3 ± 21.3 59.7 ± 13.9 0.27

% hypo-ventilated 25.0 ± 14.8 26.8 ± 11.6 0.36

% non-ventilated 11.7 ± 10.1 13.5 ± 6.3 0.13

Note. — For quantitative vsariables, data are presented as mean ± standard deviation unless otherwise noted. COPD = chronic obstructive 
pulmonary disease.

*
The Mann-Whitney U, Chi-squared, and Fisher’s exact tests were used as appropriate to compare differences between the training and test 

subjects.
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Table 2

Comparison of different data augmentation (DA) strategies for full lung mask segmentation on 1H MRI test set 

(n = 14).

Models DSC P value (vs. non-DA model) MSD (mm) P value (vs. non-DA model)

Non-DA model 0.955 ± 0.012
(0.947, 0.953, 0.964) – 1.055 ± 0.953

(0.632, 0.775, 0.916) –

Conventional-DA model 0.961 ± 0.011
(0.955, 0.963, 0.968) 0.03 0.594 ± 0.137

(0.536, 0.601, 0.680) 0.03

GAN-DA model 0.959 ± 0.011
(0.949, 0.959, 0.967) 0.13 0.928 ± 0.690

(0.550, 0.726, 0.883) 0.31

Combined-DA model 0.965 ± 0.010*
(0.955, 0.967, 0.971)

0.0007 0.657 ± 0.254*
(0.477, 0.630, 0.715)

0.005

Note. —Data are presented as mean ± standard deviation (25th percentile, median, 75th percentile). DA = data augmentation, GAN = generative 
adversarial network, DSC = Dice Similarity Coefficient, MSD = mean surface distance. Wilcoxon signed-rank tests with the Bonferroni-Holm 
correction were used to account for multiple comparisons. Adjusted P-values are reported.

*
Combined-DA model has statistically significantly higher DSC (P = 0.0007) and lower MSD (P = 0.01) compared with GAN-DA model.

DSCs are not statistically significantly different between conventional-DA and GAN-DA, or between conventional-DA and combined-DA.
MSDs are not statistically significantly different between conventional-DA and GAN-DA, or between conventional-DA and combined-DA.
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Table 3

Comparison of traditional U-Net and cascaded U-Net on ventilation defect segmentation in the test set (n = 

14).

Traditional U-Net Cascaded U-Net P value

Non-ventilated (3He)

 DSC 0.818 ± 0.055 0.840 ± 0.057 <0.001

 MSD (mm) 1.432 ± 1.343 1.275 ± 1.396 <0.005

Hypo-ventilated (3He)

 DSC 0.697 ± 0.192 0.715 ± 0.175 0.24

 MSD (mm) 1.288 ± 1.357 1.166 ± 1.237 0.30

Normal ventilated (3He)

 DSC 0.875 ± 0.070 0.883 ± 0.060 0.50

 MSD (mm) 1.359 ± 0.845 1.506 ± 1.054 0.76
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Table 4

Comparison between ventilation defect segmentation in participants with and without COPD using cascaded 

U-Net in the test set (n = 14).

COPD No COPD P value

n = 8) (n = 6)

Non-ventilated (3He)

 DSC 0.851 ± 0.056 0.826 ± 0.061 0.41

 MSD (mm) 1.228 ± 1.630 1.338 ± 1.158 0.75

Hypo-ventilated (3He)

 DSC 0.653 ± 0.208 0.799 ± 0.066 0.06

 MSD (mm) 1.516 ± 1.561 0.700 ± 0.331 0.66

Normal ventilated (3He)

 DSC 0.861 ± 0.071 0.912 ± 0.024 0.18

 MSD (mm) 1.855 ± 1.158 1.042 ± 0.748 0.08

Note. —Data are presented as mean ± standard deviation. DSC = Dice similarity coefficient, MSD = mean surface distance. The Mann-Whitney U 
test was used to compare participants with and without COPD.
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