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Kidney renal clear cell carcinoma (KIRC) is one of the most hazardous tumors in the urinary system. The regulation of oxygen
consumption in renal clear cell carcinoma is a consequence of adaptive reprogramming of oxidative metabolism in tumor cells.
APPL1 is a signaling adaptor involved in cell survival, oxidative stress, inflammation, and energy metabolism. However, the
correlation of APPL1 with regulatory T cell (Treg) infiltration and prognostic value in KIRC remain unclear. In this study, we
comprehensively predicted the potential function and prognostic value of APPL1 in KIRC. For KIRC patients, relatively low
expression of APPL1 was associated with high degree of metastasis, pathological stage, and shorter overall time or poor
prognosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that
low expression of APPL1 may be adapted to the malignant progression of tumors via affecting oxygen-consuming metabolism.
In addition, the expression level of APPL1 was negatively correlated with Treg cell infiltration and chemotherapy sensitivity, which
indicated that APPL1 may regulate the tumor immune infiltration and chemotherapy resistance by decrease oxygen-consuming
metabolic process in KIRC. Therefore, APPL1 may become one of the important prognostic factors, and it may serve as a
candidate prognostic biomarker in KIRC.

1. Introduction

Renal cell carcinoma (RCC) is a lethal cancer of the urinary
system, which is second only to prostate and bladder cancer
in mortality worldwide [1–3]. Kidney renal clear cell carci-
noma (KIRC) is a predominant heterogeneous histological
subtype (~70%) of kidney cancer and is one of the most
malignant diseases [4, 5]. Tumor metastases occur in
approximately 30% in diagnosed KIRC patients, and it has
a 40% of recurrence rate after surgery [6, 7]. Currently,

patients with KIRC could obtain a favorable prognosis after
chemotherapy, radiotherapy, and especially immunotherapy
and chemotherapy, but chemotherapy resistance is still a
very challenging issue [8–10]. The poor prognosis of KIRC
may be related to the reprogramming of energy metabolism
in tumor cells, such as the downregulation of the oxygen-
consuming tricarboxylic acid cycle (TAC) and damage
caused by oxidative stress [11]. The immune system can
inhibit tumor cell growth, while some T cells from tumor
microenvironment can also promote tumor malignant
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progression via promoting immunosuppressive state [12].
Numerous studies have shown that CD4+ T cells, CD8+ T
cells, etc. played dual roles in KIRC: functioning as antitu-
mor or leading to a poor prognosis [12–14]. Therefore, there
is an urgent need to clarify the immunophenotype of tumor-
immune interactions and related therapeutic targets for
improving the prognosis of KIRC therapy.

Adaptor protein containing a pH domain, a PTB
domain, and a leucine zipper motif 1 (APPL1) is a mediator
protein that associates with regulation of cellular energy
metabolism, survival, oxidative stress, and inflammation
regulation [15–17]. In addition, the APPL1/AMPK or
APPL1/Nrf2 pathways promote the uptake and metabolism
of glucose and fatty acids for anti-inflammatory and antiox-
idant responses in normal cells [18, 19]. Thus, expression
level of APPL1 may be correlated with change of tumor
microenvironment in KIRC. However, the mechanism and
poor prognosis of APPL1 expression on Treg cell infiltration
in KIRC remain unclear.

In this study, we integrated multiple bioinformatics
methods based on database online to explore whether
APPL1 affects tumor Treg infiltration and try to find its cor-
relation with poor prognosis in KIRC patients. We found
that the expression of APPL1 was significantly downregu-
lated in KIRC tumor tissues compared with adjacent normal
tissues. Besides, the expression level of APPL1 was correlated
with survival rate and Treg infiltration and immune check-
points in KIRC. Our further analysis revealed that APPL1
and related genes may affect the oxygen-consuming meta-
bolic process, which contribute to chemotherapy resistance
of KIRC patients. These results highlight that APPL1 may
serve as a biomarker in predicting the prognosis of KIRC.

2. Materials and Methods

2.1. APPL1 Expression Analysis. APPL1 mRNA expression
level data for 33 tumor types were obtained from the
TIMER2.0 online database (http://timer.comp-genomics
.org). The RNA-seq transcriptome data and related clinical
information were obtained from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/). There
are 539 KIRC samples and 72 adjacent normal samples
included in this study. Statistical analyses were performed
using the R software v4.0.3 (R Foundation for Statistical
Computing, Vienna, Austria), ∗p < 0:05, ∗∗p < 0:01, and
∗∗∗p < 0:001.

The data on KIRC tumor protein expression levels were
obtained from Clinical Proteomic Tumor Analysis Consor-
tium (CPTAC). The difference of APPL1 mRNA and pro-
tein level for tumor tissue and adjacent normal tissue in
KIRC was analyzed via UALCAN database online (http://
Ualcan.path.uab.edu/analysis). We also investigate the
various clinicopathological parameters for KIRC (gender,
tumor stage, lymph node metastasis status, etc.) in UALCAN.

2.2. Cell Migration and Proliferation Assays. The culture
conditions of 786O, 769P, and Caki-1 cells were DMEM-
F12 (90%, Gibcol) + FBS (10%, Gibcol) + penicillin and
streptomycin (1%, Biosharp). Scratch wound and Transwell

assay were used in cell migration experiments. The scratch
wound assay was photographed at 0 h and 24 h, respectively;
Transwell was fixed with 4% paraformaldehyde and stained
with crystal violet at 24 h. The proliferation assay of cells in
each group was conducted by adding CCK8 (DOJINDO)
to determine the OD450 absorption value from 1 to 5 days.
All experiments were independently repeated three times.

2.3. Kaplan-Meier Plotter and ROC Analysis. RNA-sequenc-
ing expression (level 3) profiles and related clinical informa-
tion for KIRC were from TCGA dataset (https://portal.gdc
.com). Log-rank test was used to compare differences in
overall survival (OS), progression-free interval (PFI), and
disease specific survival (DSS) between these groups, and it
compared the predictive accuracy of APPL1 mRNA by the
time ROC (v 0.4). For the Kaplan-Meier curves, p values
and hazard ratio (HR) with 95% confidence interval (CI)
were generated by log-rank tests and univariate Cox propor-
tional hazards regression.

2.4. Prognostic Model (Nomogram). Univariate and multi-
variate cox regression analyses were performed to identify
the proper terms to construct the nomogram. The forest plot
was used to display the p value, HR, and 95% CI of each
variable via R package (forest plot). The nomogram was con-
structed based on the results of multivariate cox proportional
hazards analysis to predict the 1-, 3-, 5-year overall recurrence.
The nomogram provided a graphical representation of the
factors, which can be used to calculate the risk of recurrence
for an individual patient by R package (rms).

2.5. Correlation Analysis. Immune correlation analysis of
APPL1 expression and the two-gene correlation map in
KIRC were conducted by the R software gg stats plot pack-
age. We used Spearman’s correlation analysis to describe
the correlation between quantitative variables without a nor-
mal distribution. All the analysis methods and R package
were implemented by R version (∗p < 0:05, ∗∗p < 0:01, and
∗∗∗p < 0:001). TISIDB is a web portal for tumor and
immune system interaction, which integrates multiple het-
erogeneous data types. Immune checkpoint analysis of
APPL1 expression in KIRC was conducted through TISIDB
database online (http://cis.hku.hk/TISIDB/index.php).

We used the R software GSVA package to analyze,
choosing parameter as method= “ssgsea.” The correlation
between genes and pathway scores was analyzed via Spear-
man’s correlation. All the analysis methods and R packages
were implemented by R version 4.0.3 (∗p < 0:05, ∗∗p < 0:01,
and ∗∗∗p < 0:001).

2.6. Enrichment Analysis of Genes Correlated with APPL1.
Metascape (https://metascape.org) is a tool that integrated
the enrichment functions of GO and KEGG [20]. The genes
positively correlated with APPL1 expression were analyzed,
and we obtain the related biological processes and pathways.
The p < 0:01 and an enrichment factor > 1:5 indicate signif-
icance of the results. GSEA enrichment analysis was con-
ducted by software R (version 3.6.3) and ggplot2 package
(version 3.3.3), and the threshold for significant enrichment
was false discovery rate ðFDRÞ < 0:25 and p:adjust < 0:05.
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2.7. Cell Culture and Real-Time PCR. Human renal cortical
proximal tubule epithelial cell HK-2 and human renal carci-
noma cell lines 786O, 769P, and Caki-1 were cultured in
DMEM/F12, RPMI1640, and McCoy’s 5A, respectively,
containing 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin. All these cells were incubated in an incubator
with 5% CO2 at 37

°C. Total RNA of cell samples was extracted
by TRIzol, after which reverse transcription into cDNA as
qPCR template was conducted. The primers APPL1 (forward,
5′-GGACAGCCCGCAGACAAG-3′, reverse, 5′-CCTCCC
AATGGAAAACGCTG-3′) and ribosomal RNA 18S (for-
ward, 5′-GTTCCGACCATAAACGATGCC-3′, reverse, 5′-
TGGTGGTGCCCTTCCGTCAAT-3′) were used for three
independent replicates of qPCR.

2.8. Western Blot. For sample preparation, 106 cells were col-
lected and lysed by 120μL protein loading buffer (2x) and
predenatured at 100°C for 10min. The 12% SDS-PAGE
was performed with 4μL of cell protein samples, and the rest
of the steps were performed according to the protocol of
Western blot [21, 22]. Antibodies used in the experiment
included rabbit monoclonal antibody APPL1 (ab180140,
Abcam), mouse monoclonal antibody α-tubulin (YM3035,
Immunoway), and goat anti-rabbit/mouse HRP (HA1001,
HA1006, HUABIO).

2.9. Immunohistochemistry (IHC). Twelve patient samples
involved in this study were obtained and used for validation
experiment, under the approval by the Ethics Committee of
Sichuan Provincial People’s Hospital, and informed consent
was obtained from the participants. Each tissue sample was
fixed in 4% neutral formaldehyde solution for 48 hours, then
embedded in paraffin, section, dewaxing, and antigen
retrieval, and the rest of steps were completed according to
the immunohistochemical protocol [23, 24]. The images
were collected by light microscope (200x, Nikon). Anti-
bodies used in the experiment included rabbit monoclonal
antibody APPL1 (ab180140, Abcam) and Donkey anti rabbit
HRP (bs-0295D, BIOSS). In addition, another IHC images
of clear cell carcinoma were obtained from the Human Pro-
tein Atlas online database (https://www.proteinatlas.org/
learn/dictionary/cell).

2.10. Statistical Analysis. The results of UALCAN, TIMER2.0,
TISIDB, and Kaplan-Meier plots are displayed with p value,
HR, and Cox p values via a log-rank test. The correlation of
APPL1 expression was evaluated by Spearman’s or statistical
analysis. The heat map of the correlations between APPL1
and its positive-related genes was performed by the R software
package with Spearman’s correlation. Statistical significance is
expressed as ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.

3. Results

3.1. APPL1 mRNA Expression Is Downregulated in KIRC
Patients. To explore the roles of APPL1 in tumor, we
analyzed the expression level of APPL1 mRNA in various
human tumor tissues via the Tumor Immune Estimation
Resource (TIMER2.0) online database. The results showed

that APPL1 mRNA was significantly downregulated in thir-
teen tumor tissues, which included breast invasive carcinoma
(BRCA), colon adenocarcinoma (COAD), esophageal carci-
noma (ESCA), head and neck squamous cell carcinoma
(HNSC), kidney chromophobe (KICH), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), prostate adenocarcinoma (PRAD),
rectum adenocarcinoma (READ), thyroid carcinoma (THCA),
and uterine corpus endometrial carcinoma (UCEC) (∗p < 0:05
and ∗∗∗p < 0:001) (Figure 1(a)). We included the following two
sets of clinical data from the TCGA database and conducted
analysis for KIRC tumor tissues (tumor: 539 cases, normal:
72 cases; clinical information for the samples is included in
Supplementary Table 1) and 72 pairs of KIRC tissues (tumor/
normal). The results showed that APPL1 mRNA expression
of tumor tissues was significantly lower than that of adjacent
normal tissues (∗∗p < 0:01 and ∗∗∗p < 0:001) (Figures 1(b)
and 1(c)). Meanwhile, the trend of protein APPL1 expression
in KIRC tumor from CPTAC cohort was consistent with the
mRNA level (∗∗∗p < 0:001) (Figure 1(d)).

To further investigate the variations in APPL1 expression
during the progression of KIRC, we analyzed different patho-
logical stages of KIRC patients from the UALCAN database.
As expected, the results showed that the expression of APPL1
mRNA was significantly downregulated, with the progression
of pathological stage, N classification, and histological grade
in KIRC (∗∗p < 0:01 and ∗∗∗p < 0:001) (Figures 1(e)–1(g)).
These results confirmed the correlation between APPL1 and
tumor progression.

We further verified the expression of APPL1 in KIRC
based on histological and cellular experiments. We found
that APPL1 expressed in the cytoplasm was significantly
downregulated in tumor tissues relative to normal adjacent
tissues (∗∗∗p < 0:001) (Figures 2(a) and 2(b)). In addition,
the expression levels of APPL1 in KIRC tumor cell lines
Caki-1 and 769P were significantly lower than that of HK-2
cells (a normal proximal tubular cell line) (∗p < 0:05 and
∗∗p < 0:01) (Figures 2(c) and 2(d)), and this result was
consistent with the gene expression distribution from CCLE
database (Figure 2(e)). The Caki-1 cells belong to the
metastatic cell line form KIRC. Based on the difference of
APPL1 protein expression between Caki-1 and 786O cells,
we speculate that the metastasis of KIRC tumor cells may
be related to the expression level of APPL1.

3.2. APPL1 Expression Inhibits Caki-1 Cell Migration and
Proliferation. APPL1 is expressed at low levels in Caki-1
cells, and we evaluated the effect on metastatic renal cancer
cells by restoration to overexpression of APPL1. The results
of scratch wound assay showed that the wound closure of
the group overexpressing APPL1 (oeAPPL1, 12.81%) was
significantly lower than control (oeCTL, 33.18%) for
Caki-1 cells (Figure 2(f), ∗∗p < 0:01). Meanwhile, cell migra-
tion assay showed that the cell migration ability of the group
oeAPPL1 was significantly lower than oeCTL (∗∗∗p < 0:001)
(Figure 2(g)). Based on these two results, we confirmed that
low expression of APPL1 was significantly associated with
the migratory ability of Caki-1 cells. In addition, the cell
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Figure 1: Continued.
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proliferation activity of the group oeAPPL1 was also
significantly lower than oeCTL from day 3 to 5 (Figure 2(h),
∗p < 0:05 and ∗∗p < 0:01). Altogether, the expression level of
APPL1 is associated with the malignant phenotype of KIRC
cells andmay affect the survival and prognosis of KIRC patients.

3.3. Decreased APPL1 Expression Correlates with Poor
Prognosis in KIRC Patients. Since downregulation of APPL1
was correlated with progression of KIRC, we investigated the
effects of APPL1 expression level on the prognosis. Through
the Kaplan-Meier plotter (K-M) database, we found that the
KIRC patients with low expression of APPL1 had a signifi-
cantly poor prognosis, which included decreased overall
survival (OS), progression-free interval (PFI), and disease
specific survival (DSS) (Figures 3(a)–3(c)). To evaluate the
accuracy of APPL1 as a prognostic factor, we drew receiver
operating characteristic (ROC) curves and calculated area
under the curve (AUC) values for APPL1 from TCGA data-
base. As shown in Figures 3(d)–3(f), APPL1, as a potential
prognosis factor for KIRC, is of reliability in 1, 3, and 5
years, respectively (OS, AUC > 0:6; PFI, AUC > 0:6; and
DSS, AUC > 0:6). Subsequently, the gene APPL1, age, gen-
der, and different classification of KIRC patients were
included in univariate and multivariate Cox analyses. The
results indicated that APPL1, age, and M stage were signifi-
cantly independent prognostic factors for OS (Figures 3(g)
and 3(h)). Moreover, a nomogram and calibration analysis
for KIRC patients also supported the above findings
(Figures 3(i) and 3(j)). Taken together, these results suggested
that APPL1 may be a prognostic factor for KIRC patients.

3.4. Correlation of APPL1 Expression with Treg Cell
Infiltration in KIRC. KIRC is a heterogeneous tumor with

high immune infiltration, which affects tumor microenvi-
ronment [25, 26]. Among those immune cells, tumor-
infiltrating T lymphocytes are closely correlated with prog-
nostic survival [12]. Therefore, we explored the correlation
of between APPL1 expression level and typical T cell infiltra-
tion. The results indicated that APPL1 expression level had
significantly negative correlation with regulatory T cells
(Treg) (R = −0:310, p < 0:001), CD8+ T cells (R = −0:193,
p < 0:001), and total T cells (R = −0:104, p = 0:016)
(Figure 4(a)). Meanwhile, central memory T cells (Tcm)
(R = 0:434, p < 0:001), effector memory T cells (Tem)
(R = 0:210, p < 0:001), and T helper cells (Th) (R = 0:320, p
< 0:001) were positively correlated with APPL1 expression
(Figure 4(a)). Treg cells are typical cells of immune infiltration,
and the marker genes FOXP3 and IL2RA were significantly
upregulated in tumor tissues in paired and unpaired samples
(Figures 4(b) and 4(c)), which correlated with poor survival
and prognosis of KIRC patients (Figures 4(d)–4(f)). Immuno-
histochemistry showed the infiltrating distribution of Treg cell
marker proteins FOXP3 and IL2RA in renal carcinoma tissue
from theHuman Protein Atlas database (Figures 4(g) and 4(h)).

KIRC has a higher T cell infiltration score among 19
cancer types detected [25]. To further investigate the
mechanism of APPL1 as an important factor in KIRC, T cell
populations and APPL1 had been included for correlation
analysis via TIMER2.0 database. As expected, the results
showed that APPL1 was significantly negatively correlated
with exhausted T cells (∗p < 0:05 and ∗∗∗p < 0:001)
(Table 1). In addition, Th2 and effector T cells were found
to have significantly positive correlation with APPL1
expression level (∗p < 0:05 and ∗∗∗p < 0:001) (Table 1). In
summary, the expression level of APPL1 was negatively cor-
related with Treg cell infiltration.
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Figure 1: Expression of APPL1 in KIRC. (a) APPL1 expression levels of human different tumor types in the TIMER2.0 database. (b) APPL1
mRNA expression between tumors and normal tissues of KIRC patients from TCGA database. (c) APPL1 mRNA expression between 72
pairs of tumors and adjacent normal tissues of KIRC patients from TCGA database. (d) APPL1 protein expression between primary
tumors and normal tissues of KIRC patients from the CPTAC database. (e–g) The downregulation of APPL1 mRNA was significantly
correlated with KIRC patients’ pathological stage (e), N classification (f), and histological grade (g).
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Figure 2: Protein expression of APPL1 in KIRC patients. (a) Immunohistochemical staining of APPL1 in tumor and adjacent tissues form
KIRC patients. Dot plots represent statistical quantification with mean ± SD from 24 pairs of KIRC patients (∗∗∗p < 0:001). (b)
Immunohistochemical staining for APPL1 in KIRC sample from the Human Protein Atlas database. (c, d) The mRNA and protein
expression levels of APPL1 in HK-2, 768O, 769P, and Caki-1 cell lines were detected by Western blot and qPCR, respectively (∗p < 0:05
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oeCTL, and oeAPPL1, respectively (∗∗p < 0:01). (g) The Transwell assay and statistical analysis of caki-1 cells for the group original, oeCTL,
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Figure 3: Continued.
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3.5. Correlation of APPL1 Expression with Immune
Checkpoints in KIRC. Based on the negative correlation
between APPL1 expression and Treg cells, we analyzed the
correlation between APPL1 expression and eight typical
checkpoints for KIRC via TISIDB database. The results
showed that the expression of APPL1 was significantly and
negatively correlated with immune checkpoints of CTLA4
(R = −0:301, p < 0:001), LAG3 (R = −0:377, p < 0:001),
PDCD1 (R = −0:383, p < 0:001), TIGIT (R = −0:22, p < 0:001),
and TGFB1 (R = −0:122, p < 0:01); was positively correlated
with CD274 (R = 0:339, p < 0:001) and PDCD1LG2 (R = 0:21,
p < 0:001); and had no correlation with HAVCR2 (R = 0:036,
p = 0:412) (Figure 5(a)). These eight immune checkpoints were
included in a univariate Cox prognosis regression analysis for
KIRC, the results of which showed that others were
significantly associated with survival prognosis except for
PDCD1LG2 (p = 0:415) (Figure 5(b)). These results showed
that APPL1 expression was significantly and negatively corre-
lated with immune checkpoints of Treg cells, and these
immune checkpoints (CTLA4, LAG3, PDCD1, TIGIT, and
TGFB1) may contribute to poor prognosis in KIRC.

3.6. Functional Enrichment of Genes Positively Correlated
with APPL1 in KIRC. To further explore the mechanism of
APPL1 for Treg cell infiltration in KIRC, we found 246 genes
shared between the 6389 genes that positively correlated with
APPL1 (APPL1-PCGs) and 1300 differentially expressed
genes (downregulated/differentially expressed genes (DEGs))
in KIRC from UALCAN and TCGA databases, respectively
(Figure 6(a)). These genes had been included in GO and
KEGG enrichment analyses. The results showed the metabolic

pathways of several different substances, which may be
involved in energy metabolic processes (Figure 6(b)). We
further chose the 4 pathways related to metabolism for energy
(R-HSA-70895, GO: 0032787, R-HSA-556833, and hsa05230)
to conduct GO and KEGG enrichment analyses, respectively.
The results of enrichment focus on some oxygen-consuming
metabolic processes, such as carboxylic acid catabolic process,
tricarboxylic acid cycle enzyme complex, mitochondrial
matrix, fatty acid metabolic process, central carbon metabo-
lism in cancer, cellular respiration, and energy derivation by
oxidation of organic compounds (Figures 6(c)–6(f)).

In addition, the differentially expressed genes from
TCGA and GEO (GSE53757) databases were included in
GSEA enrichment analysis, respectively. The results showed
that two major processes involved in branched-chain amino
acid and fatty acid metabolism were consistent with results
of GO/KEGG enrichment, and both showed a significant
downregulation trend (FDR < 0:25 and p:adjust < 0:05)
(Figures 7(a) and 7(c)). Meanwhile, the four processes
involved in oxygen-consumption metabolism (KEGG_OXI-
DATIVE_PHOSPHORYLATION, REACTOME_THE_
CITRIC_ACID_TCA_CYCLE_AND_RESPIRATORY_ELEC-
TRON_TRANSPORT, REACTOME_RESPIRATORY_ELEC-
TRON_TRANSPORT, and REACTOME_RESPIRATORY_
ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMI-
OSMOTIC_COUPLING_AND_HEAT_PRODUCTION_BY_
UNCOUPLING_PROTEINS) were downregulated (FDR <
0:25 and p:adjust < 0:05) (Figures 7(b) and 7(d)). Taken
together, the low expression of APPL1 and its related genes
may be positively correlated with the process of oxygen-
consumption metabolism in KIRC.
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Figure 3: Effect of APPL1 expression on the survival and prognostic value of KIRC patients. (a–c) OS, PFI, and DSS survival curves of KIRC
(n = 539 and n = 72). (d–f) Receiver operating characteristic (ROC) analysis curve of APPL1 for OS, PFI, and DSS survival curves in KIRC.
(g) Univariate Cox analysis. (h) Multivariate Cox analysis. (i) Nomogram for OS in KIRC patients. (j) The calibration curves for each year.
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11Oxidative Medicine and Cellular Longevity



0.0

Overall survival
HR = 1.85 (1.37-2.49)
Log–rank P < 0.001

0 50

Low

High

269

270 98

109 23

17

0

1

Time (months)

100 150

0.2

0.4

0.6
Su

rv
iv

al
 p

ro
ba

bi
lit

y 0.8

1.0

FOXP3
Low+
High+

(d)

0.0

Overall survival
HR = 1.42 (1.05-1.91)
Log–rank P = 0.022

0 50

Low

High

269

270 93

114 24

16

1

0

Time (months)

100 150

0.2

0.4

0.6

Su
rv

iv
al

 p
ro

ba
bi

lit
y 0.8

1.0

IL2RA
Low+
High+

(e)

0.0
0.0

0.2

0.2

1 – specificity (FPR)

0.4 0.6 0.8 1.0

0.4

Se
ns

iti
vi

ty
 (T

PR
)

0.6

0.8

1.0

FOXP3 (AUC = 0.762)
IL2RA (AUC = 0.820)

(f)

CAB026301

FOXP3

Tumor Normal

CAB002419

IL2RA

(g)

CAB002419 Tumor Normal

IL2RA

(h)

Figure 4: Correlation of APPL1 expression with immune infiltration level in KIRC. (a) The correlation of APPL1 expression with 6 types of
T cells. (b, c) The expression difference of Treg cell marker genes FOXP3, IL2RA, and CD4 with unpaired and paired samples in KIRC. (d, e)
K-M survival curve of Treg cell marker genes FOXP3 and IL2RA in KIRC. (f) ROC curve of Treg cell marker genes FOXP3 and IL2RA in
KIRC. (g, h) Immunohistochemistry of Treg cell marker genes FOXP3 and IL2RA.
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3.7. Correlation between the Oxygen-Consumption Metabolism
and Treg/Tcm Infiltration in KIRC. To confirm the association
between oxygen-consumption metabolism-related genes and
Treg/Tcm cell infiltration, we selected the pathway “central car-
bon metabolism in cancer” as a representative verification and
analysis. The central carbon metabolism is the main source of
energy required by organisms and plays a major role in oxida-
tive energy supply. Therefore, we screened 9 genes by Cox uni-
variate regression analysis (Supplementary Figure 1A), LASSO
regression analysis (Supplementary Figure 1B, C), and analysis
of risk factor signature (Supplementary Figure 1D) based on
21 genes from central carbon metabolism in cancer. These
genes include THRB, ATP1B1, TEK, NNT, MTOR, FGFR2,
KL, FDX1, and ACADM, which showed a significant
downregulation trend in KIRC (Figure 8(a)). In addition,
there were significant differences in survival and prognosis
(Figures 8(b) and 8(c), p < 0:05 and AUC > 0:8).

We further assessed the correlation of these 9 genes with
immune infiltration used by Treg and Tcm cells, respec-
tively. The results showed that only FDX1 had no significant
correlation with Tcm (R = 0:002, p = 0:969), and others had
significantly negative and positive correlations with Tregs
and Tcm (p < 0:05), respectively (Figure 8(d)). In addition,
the immunohistochemical protein levels revealed that 8 pro-
teins were significantly downregulated in renal cancer tissues
relative to adjacent tissues from the Human Protein Atlas
(THPA) database (Supplementary Figure 2) (the protein KL
was not included in the THPA database). Taken together,
this part suggested that low expression of 9 genes, which

related to oxidative metabolism processes, was associated
with immune infiltration and antitumor immunity.

3.8. Downregulation of APPL1 Expression Reduces Drug
Chemosensitivity via MTOR Pathway. The expression of 9
genes was involved in oxidative metabolism of central
carbon in KIRC, including MTOR gene (Figure 8(a)). In
addition,MTOR and related pathway nodesmay affect the sen-
sitivity of MTOR-targeted chemotherapeutics. Based on the
correlation analysis between APPL1 and PI3K/AKT/MTOR
in KIRC, we confirmed that APPL1 has a significant positive
correlation with the mTOR pathway axis (Figures 9(a)–9(c)).
We conduct an online evaluation of the sensitivity of several
drugs targeting MTOR based on Genomics of Drug Sensitivity
in Cancer (GDSC, https://www.cancerrxgene.org/). The results
showed that the sensitivity (IC50) of the chemotherapeutic
drugs PI-103/PIK-93 (Figures 9(d) and 9(e), p < 0:001), AKT
inhibitor III/MK-2206 (Figures 9(f) and 9(g), p < 0:001), and
AZD8055/temsirolimus (Figures 9(f) and 9(g), p < 0:001)
(targeting PI3K, AKT, and MTOR, respectively) was signifi-
cantly negatively correlated with the expression level of APPL1.
Taken together, downregulation of APPL1 expression in
Caki-1 cell line may attenuate the sensitivity of PI3K/AKT/
MTOR-targeting drugs during chemotherapy.

4. Discussion

Renal cancer is second only to prostate cancer and bladder
cancer among the malignant tumors of the urinary system,

Table 1: Correlation analysis between APPL1 and gene markers of different types of T cells form TIMER.

Description Gene markers
KIRC

None Purity
Cor p Cor p

Th1

TBX21 0.039 0.367 0.047 0.312

STAT4 0.019 0.662 0.033 0.481

STAT1 0.338 ∗∗∗ 0.340 ∗∗∗

TNF 0.067 0.124 0.078 0.0925

Th2
STAT6 0.397 ∗∗∗ 0.384 ∗∗∗

STAT5A 0.227 ∗∗∗ 0.253 ∗∗∗

Effector T cell

CX3CR1 0.431 ∗∗∗ 0.447 ∗∗∗

FGFBP2 0.221 ∗∗∗ 0.224 ∗∗∗

FCGR3A 0.235 ∗∗∗ 0.25 ∗∗∗

Naïve T cell
CCR7 0.022 0.613 0.015 0.755

SELL 0.222 ∗∗∗ 0.244 ∗∗∗

Exhausted T cell

HAVCR2 0.201 ∗∗∗ 0.193 ∗∗∗

LAG3 -0.214 ∗∗∗ -0.221 ∗∗∗

CXCL13 -0.185 ∗∗∗ -0.189 ∗∗∗

PD-1 (PDCD1) -0.219 ∗∗∗ -0.225 ∗∗∗

CTLA4 -0.110 ∗ -0.097 ∗

GZMB -0.148 ∗∗∗ -0.16 ∗∗∗

∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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and about 70% of the kidney cancer are clear cell carcinomas
[4, 27]. Immune infiltration and immune evasion are the
main causes for poor prognosis in KIRC patients [12].
Therefore, it is important to explore the mechanisms that
affect immune infiltration or immunosuppression and find
reliable tumor prognostic markers [28]. APPL1 is an adaptor
of adiponectin signaling, and it is also closely correlated with
the development and differentiation of lymphocytes, such as
T cells and macrophages [29, 30]. However, the effects of
APPL1 expression on tumor Treg cell infiltration and corre-
lation with poor prognosis have not been reported in KIRC.

In this study, we performed bioinformatics analysis
based on the TCGA, UALCAN, TIMER, and TISIDB data-

bases and found that APPL1 was downregulated in KIRC
tumor tissues relative to adjacent normal tissues (Figures 1
and 2(a) and 2(b)). Meanwhile, the results of cellular level
in vitro also reflected that the expression of APPL1 was
associated with the malignant phenotype of tumor cells
(Figures 2(f)–2(h)). This finding could also be observed in
other 11 types of tumors, which suggesting that downregula-
tion of APPL1 expression may be associated with the devel-
opment of some tumors. However, this finding was different
from a few studies, which found that APPL1 was highly
expressed in cholangiocarcinoma (CHOL), liver hepatocel-
lular carcinoma (LIHC), stomach adenocarcinoma (STAD),
and breast cancer. Ding et al., Zhai et al., and Liu et al. found
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Figure 5: Correlations of APPL1 expression with immune checkpoints and prognostic analysis. (a) Correlations of APPL1 expression with
immune checkpoints (CTL4, PDCD1, TIGIT, HAVCR2, CD274, PDCD1LG2, LAG3, and TGFB1). (b) Forest plot shows univariate Cox
regression analysis for immune checkpoints in KIRC patients from TCGA database.
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Figure 6: Functional enrichment of APPL1 and its related genes in KIRC. (a) 246 genes shared by between the APPL1-PCGs and
downregulation/DEGs in KIRC from UALCAN and TCGA databases, respectively. (b) GO and KEGG enrichment analyses of 246 genes.
(c–f) The bubble charts of GO and KEGG enrichment analyses based on pathways of R-HSA-70895, GO: 0032787, R-HSA-556833, and
hsa05230, respectively.
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Figure 7: The GSEA enrichment analysis from TCGA and GEO databases for KIRC samples. (a, b) The results of GSEA enrichment for
gene set of the amino acid/fatty acid metabolism and oxygen consumption metabolism from TCGA database, respectively. (c, d) The
results of GSEA enrichment for gene set of the amino acid/fatty acid metabolism and oxygen consumption metabolism from GSE53757
data, respectively.
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that the expression of APPL1 was upregulated in breast
cancer (MCF-7) and liver cancer cells (HepG2), and they
verified that APPL1 could promote the proliferation and
migration of tumor cells via leptin-mediated phosphoryla-
tion of STAT3, ERK1/2, and AKT, which could explain the
relevant mechanisms [31–33]. The clinical prognosis analy-
sis for KIRC showed that the survival rate was significantly
lower in an APPL1-downregulated condition (Figure 3).

Thus, these results indicated that APPL1 may be a prognos-
tic factor for KIRC.

Although nephrectomy has always been a common
treatment for kidney cancer, 30% of the patients have local-
ization after surgery and then develop into metastases and
finally contribute to a high mortality rate [34–36]. Previous
studies have shown that APPL1 can inhibit cell migration
via inhibiting activation of AKT pathway in tumor [37,
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Figure 8: Analysis of survival prognosis and Treg/Tcm cell infiltration from the expression of the 9 genes in KIRC. (a) The expression
differences of the 9 genes in KIRC from TCGA database (∗∗∗p < 0:001). (b) The K-M survival curves of 9 genes, respectively. (c) The
ROC curves of the 9 genes, respectively. (d) The correlation analysis of Treg and Tcm cells for the 9 genes, respectively.
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38]. Therefore, downregulation of APPL1 expression may
contribute to tumor cell metastasis in KIRC. Moreover, the
high aggressiveness of KIRC tumors was mainly associated
to the hypoxia induction [39, 40], high infiltration of T cells
[41, 42], Th2 cells, and macrophages from tumor microenvi-
ronment [25, 43–45]. We found that APPL1 expression was
significantly and negatively correlated with Treg cells in
KIRC (Figure 4). These correlations suggest that immune
response of antitumor may decreased with downregulation
of APPL1, and it was consistent with suboptimal chemother-
apy outcome or poor prognosis in KIRC [46]. Meanwhile,
immunosuppression is closely related to the immune check-
points of Treg cells in KIRC microenvironment [43, 47],
which is a predominant immunosuppressive effect of tumor
[25, 47]. However, the results of correlation analysis indi-
cated that downregulation of APPL1 may lead to upregula-
tion of immune checkpoints (CTLA4, LAG3, PDCD1,
TIGIT, and TGFB1) in KIRC (Figure 5 and Table 1). The
infiltrating T cells could have some typical phenotype that
may be closely related to the tumor metabolic microenviron-
ment in KIRC [48–50], but this study has not yet further
explored the molecular mechanism of the effect of APPL1
expression on T cell phenotype transformation in tumor
microenvironment.

Our study identified the correlation of APPL1 expression
with Treg cell infiltration and poor prognosis in KIRC for the

first time. We found the expression of APPL1 associated with
oxygen-consuming metabolic process in KIRC (Figure 6(b),
the red arrow). The proliferation of renal cancer cells
undergoes oxidative metabolic reprogramming during adapta-
tion to the hypoxic tumor microenvironment, such as the
downregulation processes of hypoxia-induced fatty acid catab-
olism [51–53]. We confirmed that expression level of APPL1
may affect the Treg cell infiltration (or exhausted T cells) in
KIRC via downregulated the processes of oxygen-consuming
metabolism in tumor microenvironment. (Figures 6(c)–6(f),
7(c) and 7(d), and 8(d)). However, we still need to further verify
this conclusion via restoration experiments. In addition, gene
MTOR belong to one of the 9 genes related to oxidative metab-
olism of central carbon, and the expression level of APPL1may
decrease chemosensitivity of KIRC targeting PI3K/AKT/
MTOR (Figure 9). Therefore, low expression of APPL1 may
be a reason for chemoresistance in KIRC.

In conclusion, we preliminarily explored the relationship
between APPL1 and KIRC and the effect of APPL1 expres-
sion. The APPL1 was significantly downregulated with
tumor progression in KIRC tissues and might lead to
increased infiltration level of Treg cells. Meanwhile, down-
regulation of APPL1 expression may affect the sensitivity
of chemotherapeutics, and it may have contributed to the
poor prognosis of KIRC patients. However, we need to fur-
ther verify or explore the correlation of APPL1 expression

–4

–3

–2

–1

0

2 3 4 5 6

Log2 (APPL1 expression)

Te
m

sir
ol

im
us

 IC
50

r = –0.58
p < 0.001
r = –0.58–
p < 0.0010

(i)

Figure 9: Correlations of APPL1 expression with MTOR pathway and drug chemosensitivity in KIRC. (a–c) Correlations of APPL1
expression with PI3K, AKT1, and MTOR, respectively. (d–i) Correlations of APPL1 expression with drug chemosensitivity of PI-103,
PIK-93, AKT inhibitor VIII, MK-2206, AZD8055, and temsirolimus from GDSC database, respectively.
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level on different subtypes of KIRC and deeper impact
mechanism of immune infiltration based on animal level.
In summary, APPL1 may serve as a potential biomarker
for the diagnosis or prognosis of KIRC and a potential
immunotherapy target.
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